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Abstract 

Motivation. Recently, the opportunistic fungal infections have risen dramatically. One of the biggest problems 
facing nowadays the antifungal therapy is the arising of drugs resistance strains for most of the drugs currently 
used in clinic practice. Therefore, it is important to find new antifungal candidate compounds, particularly new 
leads, able to become the basis for developing new drugs. 
Method. Molecular topology, a formalism based on describing the molecules as hydrogen–depleted graphs, as 
well as linear discriminant analysis, a statistical tool able to distinguish between two or more categories or 
objects, have been used to design new antifungal compounds. 
Results. A topological–mathematical model comprised of two discriminant functions have been developed. The 
model is able to classify correctly 98.5% of the inactive compounds from the training set. The model validation 
was performed in two ways. The first one was to check the literature sources available to confirm the predicted 
antifungal activity. In the second test, for those compounds not found in the literature, experimental tests were 
performed to check the antifungal activity. A set of four compounds was selected to be tested in the laboratory 
against C. albicans, C. glabrata and S. cerevisiae. All compounds, namely anethole, 2–methyl–4,5–
diphenyloxazole, 2–mercaptobenzoxazole and –naphtyl caproate, showed activity against the three species with 
MIC50 ranging between 25 and 100 g/mL. 
Conclusions. The results confirm other previous results from our group, regarding the usefulness of molecular 
graphs and topological indices as effective tools to discover new antifungal compounds, especially new leads. 
Keywords. Linear discriminant analysis; antifungal activity; topological indices; molecular graph. 
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1 INTRODUCTION 

Infections due to Candida species are the most common of the fungal infections [1]. Candida
species produce a broad range of infections, ranging from non life threatening muco–cutaneous 
illnesses to invasive process that may involve virtually any organ [2]. The frequency of 
opportunistic infections caused by the fungus Candida albicans is very high and is expected to 
continue to increase as the number of immuno–compromised patients rises [3]. Additionally, until 
recently, Candida glabrata was considered a relatively nonpathogenic fungal organism of the 
human mucosal tissues. 

However, with the increased use of immunosuppressive agents, mucosal and systemic infections 
caused by C. glabrata have increased significantly, especially in the human immunodeficiency 
virus–infected population [4]. Antifungal drugs currently being used in clinic include polyene 
antibiotics, azole derivatives and 5–fluorocytosine. However, one significant obstacle preventing 
successful antifungal therapy is the dramatic increase in drug resistance, especially against azole 
antimycotics [1]. 

It is urgent, therefore, to find new chemical structures with a wide antifungal spectrum that can 
be taken as a starting point for the development and optimization of new antifungal agents. The 
most successful set of molecular descriptors for drug design, QSAR, and classification of chemical 
libraries are the molecular connectivity indices [5–7]. These indices are based on a graph–
theoretical invariant introduced by Randi  25 years ago in order to compute a branching index for 
alkanes [8]. 

Topological indices have demonstrated their utility in the prediction of diverse physical, 
chemical and biological properties for different types of compounds [9–12]. Their utility was 
recently demonstrated in the design of new antivirals [13], cytostatics [14], sedative/hypnotics [15], 
analgesics [16], antihistaminics [17], anticancer [18], antimicotics [19], antimalarials [20], 
bronchodilators [21]. 

In a recent paper, we have applied molecular topology to identify a QSAR model able to predict 
the antifungal activity [22]. Using this QSAR model, several compounds were selected as 
potentially active. Some of them, such as benztropine mesylate and diclopentamethylenthiuram
disulfide, showed activity against C. albicans similar to miconazole, the reference drug. The overall 
accuracy in the selection of new candidates was about 60%. 

In this paper we aim to improve the former results, using new topological indices as well as 
applying the discriminant analysis only to synthetic compounds showing antifungal activity (the 
antibiotics are taken out from the study). 
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2 MATERIALS AND METHODS 

2.1 Chemical Data 
The set of antifungal compounds included into the training set for the linear discriminant 

analysis was collected from the Merck Index [23], and contains allylamines, imidazoles, 
thiocarbamates, triazoles and other derivatives. The inactive group was also gathered from the 
Merck Index from among those drugs not referenced to show antifungal activity. The set of 
compounds is presented in Table 4. 

2.2 Structural Descriptors 
In order to characterize the structure of each compound, a set of graph–theoretical descriptors 

was calculated for each compound by using Hall’s MOLCONN–Z [24], and Desmol13 [25] 
programs. The indices calculated belong to the following families (Table 1): Randi –Kier–Hall
subgraph connectivity indices m t [26] up to order four, and their corresponding valence indices 

[27], topological charge indices [28], topological constitutional indices [29], kappa indices [30], 
atom type E–state indices [31] and Wiener index [32]. 

Table 1. Symbols for Topological Indices and Their Definitions 
Symbol Definition Reference 

m
p Path connectivity index of order m = 0 to 4 [26]

m v
p Path valence connectivity index of order m = 0 to 4 [27]

m
c Cluster connectivity index of order m = 0 to 4 [26]

m v
c Cluster valenceconnectivity index of order m = 0 to 4 [27]

m
pc Path–cluster connectivity index of order m = 0 to 4 [26]

m v
pc Path–cluster valence connectivity index of order m = 0 to 4 [27]

m
i

m
i– m

i
v of order m = 0 to 4 [27] 

Cm
i

m
i/m

i
v of order m = 0 to 4 [27]

Gm Topological charge index of order m = 1 to 5 [28]
Jm Bond topological charge index of order m = 1 to 5 [28]
Gv

m Valence topological charge index or order m = 1 to 5 [28]
Jv

m Valence bond topological charge index of order m = 1 to 5 [28]
i Kappa indices [30]

STi Atom type E–state indices  [31]
V3 Number of vertices of degree 3 [29]
W Wiener path number [32] 
Numhbd Number of hydrogen bond donors [24] 
Numhba Number of hydrogen bond acceptors [24] 
Pri Number of vertices pair of degree 3 at i-th topological distance [29] 

2.3 Linear Discriminant Analysis
The objective of the linear discriminant analysis, LDA, which is considered as a heuristic 

algorithm able to distinguish between two or more categories or objects, is to use the structural 
descriptors and find linear functions able to discriminate between the active and inactive 
compounds. One set was made by the antifungal drugs, while the second set contained the inactive 
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compounds. The discriminant ability is evaluated by the percentage of correct classifications into 
each group. 

LDA was performed by using the BMDP 7M package [33]. The selection of the descriptors was 
based on the F Snedecor parameter, and the classification criterion was the shortest Mahalanobis 
distance (distance of each compound to the mean of all compounds used in the regression equation). 
The software 7M chooses the variables used in computing the linear classification functions in a 
stepwise manner, i.e. at each step the variable that adds the most to the separation of the groups is 
entered into (or the variable that adds the least is removed from) the discriminant function. The 
quality of the discriminant function is evaluated by the Wilk’s lambda parameter , which is a 
multivariate analysis of variance statistic that tests the equality of group means for the variable(s) in 
the discriminant function. 

2.4 Pharmacological Tests of Antifungal Activity
The viability of the topological–mathematical models used to search and select new compounds 

with antifungal activity was confirmed by the adequate experimental microbiological tests. The in
vitro sensibility tests were performed with three species: Candida albicans SC 5314, Candida
glabrata and Sacharomyces cerevisiae X21801A. The drug concentration able to inhibit the cellular 
growth on at least 50% (MIC50) was calculated by a liquid medium dilution method [35] YNB 
(glucose 20 g, YNBW/O SO4(NH4)2 1.67 g, SO4(NH4)2 5 g in a liter of distilled water). 

2.4.1 Inoculate Preparation 

The strains were prepared with an YPD solid medium and incubated at 28 ºC during 24 hours. 
From each culture, a 1 mm diameter colony was taken and suspended into tubes containing 5 mL 
YPD medium (Yeast extract 10 g, peptone 20 g, glucose in water 20 g, per liter), up to stationary 
phase.

2.4.2 Antifungal dilutions 

The testing compounds were provided by Sigma. A 8:2 V/V mixture ethanol/DMSO was used as 
solvent because of the water insolubility of the tested products. A set of sterile test tubes containing 
5 mL each of culture medium was prepared. From a standard 10 mg/mL solution, the corresponding 
dilutions were prepared to reach the concentrations of 0.5, 5, 10, 25, 50, 75, 100 and 125 g/mL on 
the test tubes. As a control, a test tube containing just medium and solvent was used. 

2.4.3 Inoculation 

5 L of the cells suspension was added into each tube. After stirring they were left for 24 hours 
at 28 ºC. In order to evaluate either the growth or the inhibition of cell cultures, cell concentration 
was determined by counting the cells on a Neubauer chamber. Miconazole was used as reference. 
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3 RESULTS AND DISCUSSION 

In this work, an SAR model based on molecular topology was developed to predict new 
molecules with antifungal activity. The set of topological indices was calculated for every molecule 
into the training set (i.e. the set of molecules used to get the predictive model) and linear 
discriminant analysis (LDA) was applied to find the best discriminant functions. LDA was 
performed on two set of compounds: The first was formed only by antifungal drugs, and the second 
one of molecules not described as showing antifungal activity and therefore expected to be inactive. 
Furthermore, two different sets of topological indices were used separately in the discriminant 
analysis. One of them, DF1, included connectivity–like indices, topological charge indices and other 
in house molecular descriptors accounting for molecular shape constitutional indices, while the 
second, namely DF2, contained other indices, mainly the electrotopological indices. Tables 2 and 3 
show the coefficients for each function as well as the overall classification within each group. As 
may be realized, both models are rather similar (about 80% of correct classification within the 
active and over 90% within the inactive set). 

Table 2. Discriminant Function and Classification Matrix Obtained by Linear Discriminant Analysis on 
Antifungal Activity Study using Connectivity and Charge Descriptors

Discriminant function DF1 Classification matrix 
Variable Coefficient Group % Correct Active Inactive 
Constant 10.631     

4
pc –1.455 Active 83.3 35 7 

G2 1.000     
G2

v –0.620 Inactive 90.4 5 47 
1 –6.912     

C2 –18.134 Total 87.2 40 54 
4

p 7.385     
C4

pc 7.573 (Wilks’ Lambda) = 0.392 
PR1 –0.864 Approximate F–Statistic = 14.5 
V3 0.269  

Table 3. Discriminant Function and Classification Matrix Obtained by Linear Discriminant Analysis on 
Antifungal Activity Study using Electrotopological Descriptors 

Discriminant function DF2 Classification matrix 
Variable Coefficient Group % Correct Active Inactive 
Constant 1.511     
ST(aaaC) 1.673 Active 81.0 34 8 
ST(aNHa) –1.835     
ST(=N–) 0.747 Inactive 94.2 3 49 
ST(=S) 1.152     
ST(Cl) 0.195 Total 88.3 37 57 

W –0.076  (Wilks’ Lambda) = 0.387 
Numhbd –1.045 Approximate F–Statistic = 19.5 

Table 4 illustrates the probability and DF values obtained for each of the discriminant functions 
and compounds studied. For most of the cases, the classification probability for every drug is over 
90%, a fact that clearly supports the quality of the discrimination achieved. 
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Table 4. Classification Results Obtained from the Linear Discriminant Analysis 
Active Prob. DF1 Prob. DF2 Class Inactive Prob. DF1 Prob. DF2 Class
Bifonazole 0.96 3.22 0.99 5.06 + Alclofenac 0.85 –1.69 0.50 0.01 – 
Biphenamine 0.04 –3.11 0.48 –0.09 – Ambroxol 0.47 0.12 0.99 –5.03 – 
Buclosamide 0.87 1.86 0.24 –1.15 – Amiodarone 0.82 –1.52 0.59 –0.35 – 
Butenafine 0.45 –0.21 0.93 2.55 – Amrinone 0.54 –0.15 0.97 –3.53 – 
Butoconazole 0.99 4.20 0.99 4.88 + Apomorphine 1.00 –5.86 0.80 –1.38 – 
Chlordantoin 0.62 0.48 0.80 1.38 + Aprobarbital 0.87 –1.87 0.95 –2.87 – 
Chlormidazole 0.99 4.43 0.96 3.25 + Atenolol 0.93 –2.65 0.99 –4.50 – 
Chlorphenesin 0.55 0.20 0.32 –0.77 – Azathioprine 0.99 –4.62 0.96 –3.26 – 
Ciclopirox 0.58 0.31 0.16 –1.67 – Bambuterol 1.00 –6.54 0.97 –3.48 – 
Cloconazole 0.99 4.90 0.93 2.58 + Captopril 0.64 –0.58 0.81 –1.44 – 
Clotrimazole 1.00 6.03 0.83 1.61 + Carbamazepine 0.32 0.76 0.97 –3.55 – 
Cloxyquine 0.37 –0.52 0.88 2.00 – Carbidopa 0.99 –5.08 1.00 –6.82 – 
Diamthazole 0.05 –2.86 0.93 2.54 – Carteolol 0.94 –2.68 0.99 –4.22 – 
Econazole 1.00 6.27 0.99 4.84 + Carvacrol 0.64 –0.56 0.70 –0.83 – 
Enilconazole 0.94 2.76 0.99 4.44 + Cetirizine 0.98 –3.68 0.87 –1.93 – 
Exalamide 0.81 1.43 0.10 –2.26 – Citalopram 0.73 –1.02 0.91 –2.30 – 
Fenticonazole 1.00 7.80 0.94 2.83 + Clonidine 0.18 1.54 0.05 3.04 + 
Fluconazole 0.91 2.26 1.00 8.68 + Codeine 0.99 –4.64 0.99 –4.72 – 
Flucytosine 0.97 3.40 0.42 –0.33 – Cotinine 0.96 –3.09 0.60 –0.40 – 
Flutrimazole 0.99 4.19 0.51 0.06 + Deflazacort 1.00 –6.42 0.94 –2.76 – 
Halethazole 0.86 1.82 1.00 6.27 + Dopamine 0.53 –0.11 0.98 –3.89 – 
Hexetidine 0.69 0.78 0.04 –3.17 – Doxepine 0.83 –1.56 0.83 –1.62 – 
Isoconazole 0.99 5.15 1.00 5.80 + Fenproporex 0.39 0.46 0.70 –0.83 – 
Itraconazole 1.00 6.35 0.99 5.15 + Flumetramide 1.00 –6.93 0.86 –1.82 – 
Ketoconazole 1.00 5.34 0.79 1.34 + Guanabenz 0.95 –2.87 0.30 0.83 – 
Lanoconazole 0.45 –0.21 0.93 2.58 – Indapamide 0.97 –3.44 0.99 –4.30 – 
Loflucarban 1.00 6.33 1.00 5.34 + Ketoprofen 0.95 –3.01 0.89 –2.13 – 
Miconazole 1.00 6.04 1.00 5.82 + Labetalol 0.92 –2.43 1.00 –6.69 – 
Naftifine 0.84 1.68 0.95 2.99 + Lacidipine 1.00 –6.51 0.98 –4.03 – 
Nifuratel 1.00 5.31 0.87 1.90 + Lisinopril 0.99 –4.43 1.00 –7.37 – 
Omoconazole 1.00 5.52 0.99 4.39 + Methoxamine 1.00 –5.59 0.97 –3.53 – 
Oxiconazole 1.00 5.65 1.00 8.88 + Metoclopramide 0.99 –4.92 0.95 –2.90 – 
Saperconazole 1.00 5.22 0.92 2.49 + Mianserin 0.79 –1.31 0.89 –2.07 – 
Sertaconazole 0.99 4.24 1.00 7.65 + Nandrolone 1.00 –6.47 0.97 –3.58 – 
Sulconazole 1.00 5.21 0.99 4.90 + Norepinephrine 0.95 –2.89 0.99 –5.16 – 
Tenonitrozole 0.90 2.19 0.16 –1.67 – Norgestrel 1.00 –5.60 0.99 –4.34 – 
Terconazole 0.98 4.03 0.99 4.42 + Omeprazole 0.76 –1.16 1.00 –6.44 – 
Tioconazole 1.00 6.63 0.99 4.87 + Oxymetazoline 0.96 –3.05 0.52 –0.09 – 
Tolciclate 0.47 –0.11 0.98 3.86 – Pentazocine 0.96 –3.11 0.96 –3.19 – 
Tolindate 0.90 2.23 0.99 4.62 + Praziquantel 0.94 –2.81 0.92 –2.46 – 
Tolnaftate 0.95 2.90 1.00 8.43 + Salmeterol 0.84 –1.65 1.00 –5.95 – 
Ujothion 0.36 –0.57 0.99 4.37 – Simvastatin 0.94 –2.74 0.98 –4.03 – 

      Sotalol 0.99 –5.08 0.97 –3.45 – 
      Sulpiride 1.00 –7.79 0.99 –4.83 – 
      Tamoxifen 0.68 –0.73 0.91 –2.30 – 
      Terazosin 1.00 –5.42 0.95 –2.87 – 
      Terbutaline 0.94 –2.68 0.99 –4.35 – 
      Terfenadine 0.40 0.41 1.00 –5.92 – 
      Timolol 0.98 –4.07 0.96 –3.10 – 
      Tramadol 0.92 –2.48 0.91 –2.28 – 
      Verapamil 1.00 –5.59 0.96 –3.14 – 
      Xipamide 0.97 –3.59 0.99 –4.90 – 

Moreover, although the quality of both discriminant functions is similar, their joint use leads to a 
very significant improvement for the inactive set. As long as the goal is to minimize the risk of 
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selecting false active candidates, this is the best strategy. Indeed, while the percentage of accuracy 
gets down up to 60% within the actives, that percentage increases up to 98% for inactive. In theory, 
this would mean that the probability to select a false active is just 1/100. Anyway, it should work as 
a very good filter for the selection/design of new drug candidates. Table 4 (the columns six and 
twelve) illustrates the results obtained for each one of the analyzed compounds. The only one false 
active selected by the model is clonidine, which is supposed to be inactive just because no literature 
references were found on its activity. Though experimental tests should be carried out to confirm its 
inactivity, still the overall accuracy of the inactive set classification is 51/52, namely 98%. 

The stability of the discriminant functions DF1 and DF2 was tested taking random test sets 
having 20% of the compounds, using the same variables and performing new classification 
analyses. As outlined in Table 5, the models were stable on random tests as well as fully 
reproducible.

Table 5. Classification Matrix Obtained in the Random Test using DF1 and DF2
  DF1   DF2  
 Correct % Actives Inactives Correct % Actives Inactives 
Non–random       
Actives 83.3 35 7 81.0 34 8 
Inactives 90.4 5 47 94.2 3 49 
Test actives – – – – – – 
Test inactives – – – – – – 
Run 1 =0.381 F=11.7  =0.39 F=15  
Actives 91.2 31 3 81.8 27 6 
Inactives 92.7 3 38 93.2 3 41 
Test actives 87.5 7 1 88.9 8 1 
Test inactives 72.7 3 8 87.5 1 7 
Run 2 =0.38 F=12  =0.41 F=14  
Actives 87.9 29 4 77.1 27 8 
Inactives 95.1 2 39 95.6 2 43 
Test actives 77.8 7 2 85.7 6 1 
Test inactives 81.8 2 9 100.0 0 7 
Run 3 =0.40 F=11  =0.39 F=15  
Actives 85.3 29 5 85.3 29 5 
Inactives 91.1 4 41 91.1 4 41 
Test actives 100 8 0 87.5 7 1 
Test inactives 85.7 1 6 71.4 2 5 
Run 4 =0.39 F=11  =0.40 F=14  
Actives 83.9 26 5 81.6 31 7 
Inactives 93.3 3 42 95.0 2 38 
Test actives 81.8 9 2 75.0 3 1 
Test inactives 85.7 1 6 91.7 1 11 
Run 5 =0.39 F=10  =0.40 F=14  
Actives 79.3 23 6 84.8 28 5 
Inactives 92.5 3 37 92.7 3 38 
Test actives 84.6 11 2 77.8 7 2 
Test inactives 100 0 12 100.0 0 11 
Average       
Actives 85.7 138 23 82.1 142 31 
Inactives 92.9 15 197 93.5 14 201 
Test actives 85.7 42 7 83.8 31 6 
Test inactives 85.4 7 41 91.1 4 41 
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Figure 1 illustrates the pharmacological distribution diagrams with the expectancy profile for 
both active and inactive compounds for each interval of DF1 and DF2. In general, expectancy for a 
set A along each interval x is defined as: E = Percentage of A in x / (Percentage of non–A in x + 100) 
[34]. Despite the presence of an overlapping region, it is remarkable that for the values 7 > DF1 > 1 
and 9> DF2 > 0, most of the active compounds are located within while virtually no inactive 
compound is found. Thus, within these intervals, the classification was considered optimal. 

-9 -7 -5 -3 -1 1 3 5 7

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

E

DF1

-8 -6 -4 -2 0 2 4 6 8

0

0.05

0.1

0.15

E

DF2

Figure 1. Pharmacological distribution diagrams for antifungal activity from the DF1 and DF2 discriminant functions 
(white lines: inactive drugs; black lines: active drugs). 

The selected discriminant function, DF1 includes the topological descriptors PR1 (pairs of 
ramifications located at a topological distance 1) and V3 (number of vertices with topological 
valence 3). Both terms encode pure structural information. The topological assembly is defined 
basically by combinations of connectivity indices such as 1 , 4

p , C2  and C4
p. Finally, the G2
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and G2
v indices are the topological charge indices, which evaluate intramolecular charge transfers 

between atoms situated at a topological distance i = 2. They take into account molecular properties 
such as dipole moments and electronic polarizability [28]. All these topological indices can be 
considered as global molecular descriptors as they describe the whole structure of molecules instead 
of a substructure or region inside it. 

The DF2 discriminant function is essentially comprised of descriptors that can be considered as 
local molecular descriptors. The E–state index for an atom in a molecule represents the accessibility 
of that atom. It is a combination of electron richness or deficiency together with topological 
accessibility [36]. In this work we have used the atom type E–state indices, ST

i.

Table 6. Test Compounds (Compounds Not Included in the Training of the Discriminant Functions)
Compound DF1 DF2 Activity References 
Aliconazole 7.0 4.9 Antifungal Clin Microbiol Rev 1988 Apr;1(2):187–217 
Allicin 5.4 1.0 Antifungal Microbes Infect 1999 Feb;1(2):125–9 
Azaconazole 3.0 6.8 Antifungal Toxicology 1985 Jan;34(1):1–11 
Benzoxazole 2.8 6.1 Antifungal Acta Biochim Pol 2000;47(2):481–6 
Butyrolactone 5.4 1.0 Antifungal J Antibiot (Tokyo) 1997 Sep;50(9):742–9 
Broxaldine 1.0 4.0 Antifungal J Assoc Physicians India 1973 Mar;21(3):295–8 
Climbazole 4.8 2.9 Antifungal Mycoses 1996 Jul–Aug;39(7–8):309–12 
Chloropicrin 4.7 3.8 Fungicide Appl Environ Microbiol 2001 Jul;67(7):3245–57 
Chlorpyrifos 1.3 8.7 Pesticide Fresenius J Anal Chem 2001 Dec;371(8):1134–8 
Clofentezine 0.2 4.4 Pesticide J Chromatogr A 1998 Oct 9;823(1–2):11–6 
Croconazole 4.9 2.6 Antifungal Clin Microbiol Rev 1988 Apr;1(2):187–217 
Crotonic acid 10.4 0.2 Antifungal J Med Chem 1976 Aug;19(8):1069–72 
Dichlofenthion 3.7 7.8 Herbicide Environ Sci Technol 2001 Jan 15;35(2):398–405 
Furaspor 1.4 0.3 Antifungal J Med Assoc Ga 1967 Jul;56(7):286–8 
Halothane 0.0 0.9 Anest/Antifun Minerva Med 1986 Nov 10;77(42–43):2007–10 
Lombazole 3.1 6.0 Antifungal Antimicrob Agents Chemother 1986 Aug;30(2):238–44
Oxadiazon 2.2 4.5 Herbicide Water Res 2002 Jan;36(1):315–29 
Surecide 5.1 5.3 Insecticide Environ Sci Health B 1987 Apr;22(2):149–70 
1;1;2;2–tetrachloroethane 2.4 3.1 Antifungal Teratog Carcinog Mutagen 1989;9(6):349–57 
Valconazole 4.7 3.9 Antifungal Am J Obstet Gynecol 1991 Oct;165(4Pt2):1200–6 
Vinclozolin 2.9 0.9 Fungicide J Agric Food Chem 1999 Aug;47(8):3372–80 
Anethole 1.6 0.4 Anestesic Planta Med 2001 Aug;67(6):564–6 
Brompheniramine 1.1 2.5 Antihistaminic J Ocul Pharmacol 1994 Winter;10(4):665–75 
Clemizole 4.6 2.7 Antihistaminic J Auton Pharmacol 1999 Oct;19(5):281–9 

–naphtyl caproate 2.3 3.1 reactive Aldrich Catalogue 
2–mercaptobenzoxazole 4.4 4.5 reactive Aldrich Catalogue 
Zindotrine 2.1 9.6 Bronchodilator Drug Intell Clin Pharm 1988 Oct;22(10):760–3 
Lotifazole 6.5 7.4 AINE Agents Actions 1984 Jan;14(1):93–101 
2–methyl–4,5–diphenoxazole 3.6 8.6 reactive Aldrich Catalogue 

Although all these results are interesting it still remains the test on the applicability of the model 
to the search of new antifungals, particularly new leads. The only way to check this applicability is 
through an external validation by applying the discriminant functions for compounds not included 
in the training set. The predicted activity of these compounds is checked either by experimental 
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tests or by literature sources. In our case, we followed a two steps process. In the first step, a 
computational screening (using the antifungal topological–mathematical model, DF1 and DF2

functions) was applied to our databases. A set of compounds classified as highly probable 
antifungals was selected. The results are outlined in Table 6. Many of them, such as allicin, 
benzoxazole, climbazole, were described as antifungals in the literature, which is a very 
encouraging result. However, other compounds showed pharmacological activities, for instance 
anethole (anestesic and carminative) [23]. It would be of great interest to test it as antifungal. 

Table 7. Minimal Inhibitory Concentration MIC50 for Each Compound and Strain Assayed 
   

Compound C. albicans C. glabrata S. cerevisiae 
MIC50 ( g/mL) 

2–methyl–4,5–diphenyloxazole 25 50 125 
2–mercaptobenzoxazole 25 25–50 25 
Beta–naphtyl caproate 50 75–100 >100 
Anethole 75 25–50 25 
Miconazole (reference drug) <0.5 0.5 0.5 
2–methyl–4,5–diphenyloxazole 

O

N

2–mercaptobenzoxazole 

O

H
N S

–naphtyl caproate 

O

O

Anethole 

O

In the second step, four compounds were selected for experimental tests on three highly 
representative fungal species: C. albicans, C. glabrata and S. cerevisiae. The compounds were: 2–
methyl–4,5–diphenyloxazole, 2–mercaptobenzoxazole, –naphtyl caproate and anethole. After the 
experimental test, all of them exhibited antifungal activity albeit far away from the reference drug 
(miconazol). In fact, while miconazol has MIC50 values below 0.5 g/mL, the selected compounds 
have MIC50 values between 25 and 125 g/mL (see Table 7). Although the activity level of these 
four compounds is not close to that of the miconazol, a clear antifungal activity was found for every 
candidate. We are looking forward at improving these results in the future by finding more potent 
candidates. However, our current results are significant because they demonstrate the 
straightforward way in which molecular topology can identify new drug candidates, particularly 
new antifungals. 
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4 CONCLUSIONS 

Molecular topology has demonstrated to be a useful methodology for identifying new 
compounds with antifungal activity. In this paper, a topological–mathematical model comprising 
two discriminant functions have been developed. The SAR model is able to classify correctly 98.5% 
of the inactive compounds from the training set. The SAR model validation was performed in two 
ways. The first one was performed by checking the literature sources available to confirm the 
predicted antifungal activity. In the second test, those compounds not found in the literature sources 
were experimentally tested for the antifungal activity. Four compounds were selected to be tested in 
the laboratory against C. albicans, C. glabrata and S. cerevisiae. All compounds, namely anethole, 
2–methyl–4,5–diphenyloxazole, 2–mercaptobenzoxazole and –naphtyl caproate, showed activity 
against the three species with MIC50 ranging between 25 and 100 g/mL. The results confirm other 
previous results from our group, regarding the usefulness of molecular graphs and topological 
indices as effective tools in descovering new antifungal compounds. 
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