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Abstract: Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence 

of free and open-source models to estimate the sea-level impact can contribute to improve coastal 

management. This study aims to develop and validate two different models to predict the sea-level 

rise impact supported by Google Earth Engine (GEE)—a cloud-based platform for planetary-scale 

environmental data analysis. The first model is a Bathtub Model based on the uncertainty of projec-

tions of the sea-level rise impact module of TerrSet—Geospatial Monitoring and Modeling System 

software. The validation process performed in the Rio Grande do Sul coastal plain (S Brazil) resulted 

in correlations from 0.75 to 1.00. The second model uses the Bruun rule formula implemented in 

GEE and can determine the coastline retreat of a profile by creatting a simple vector line from topo-

bathymetric data. The model shows a very high correlation (0.97) with a classical Bruun rule study 

performed in the Aveiro coast (NW Portugal). Therefore, the achieved results disclose that the GEE 

platform is suitable to perform these analysis. The models developed have been openly shared, 

enabling the continuous improvement of the code by the scientific community. 
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1. Introduction 

Coastal areas are densely populated gathering more than 30% of the world’s popu-

lation and this is increasing exponentially [1,2]. Depending on the geologic, climatic, and 

oceanographic conditions, coastal zones may present a high risk of flooding, erosion, and 

regional sea-level fluctuations among others. All these phenomena are natural and con-

tributed to model present-day coastlines. However, in the last seventy years, the effect of 

these drivers has increased in both intensity and frequency [3,4], and it is expected that 

this rising trend keeps up in the future, being the anthropogenic forcing the main reason 

for the global average sea level rise since 1970 [5]. 

The sea-level rise is a common problem that affects about 70% of coastal zones world-

wide that it is accelerating and it is expected to be worst in the future [6,7]. The global 

mean sea-level (GMSL) rose 0.16 m between 1902 and 2015. However, in the period 2006–

2015, the GMSL rise rate was 3.6 mm yr–1, about 2.5 times higher than in the period 1902–

1990 (1.4 mm yr–1). The ice sheet and glacier contributions over the period of 2006–2015 
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were the most important sources of sea-level rise (1.8 mm yr–1), exceeding the influence of 

the thermal expansion of ocean water (1.4 mm yr–1) [7]. 

Considering the dimension and complexity of sea-level rise hazards, the use of Geo-

graphic Information Systems (GIS) to organize and to analyze the information produced 

about those issues is crucial to improve coastal management. Desktop GIS applications 

such as ArcGIS [8], gvSIG [9], Terraview [10], or QGIS [11] have traditionally been used 

in coastal management. However the exponential increase of Google Earth Engine (GEE) 

[12] in terms of available data, and capability to address a considerable volume of datasets 

with high spatial resolution has become GEE capable of connecting large-scale problems 

on coastal management in a new point of view. 

The Google Earth Engine is a cloud-based platform that offers high-performance 

computing resources for processing geospatial data [12]. It provides access to an increas-

ing amount of remotely obtained datasets through its application programming interfaces 

(API) for JavaScript and Python languages, which decrease the complexity of laborious 

desktop-based computations [13]. 

GEE use has been growing very fast in the last few years. Several applications were 

developed, such as MapBiomas [14], which provide a historical dataset of land use maps; 

CoastSat that allows extracting coastlines from Landsat and Sentinel images [15]; and the 

extraction of bathymetry from Sentinel 2 images [16]. One of the benefits of creating mod-

els on GEE is the possibility to work efficiently and quickly on a large scale. These ad-

vantages can be integrated into scripts (based on GEE API) by implementing modeling 

frameworks and creating new tools and analysis methodologies, which can improve new 

knowledge and its application. 

The simple Bathtub method is a GIS technique that shows the areas below a specific 

elevation level as being flooded, like a bathtub or single value water surface [17]. Based 

on the former, the uncertainty Bathtub model (uBTM) [18] is a modified version of this 

technique that combines the uncertainty of sea-level projections and the vertical error of a 

digital elevation model (DEM). Based on the Terrset sea-level impact tool [19], the model 

defines the probability of the sea-level to flood a considered zone, using the level of un-

certainty associated with the DEM and the sea-level rise projections. 

The Brunn rule for GEE model (BRGM) [20] is based upon a formula created to esti-

mate the retreat of sandy beaches coastline in response to sea-level changes [21]. The 

Bruun rule has some limitations, and its application requests precaution due to the sim-

plicity of the formula; the equation does not include some essential variables such as ex-

treme washover events, changes in sediment budget, and anthropic action. However, the 

formulation shows accurate results in the history of its application [22,23], and allows to 

obtain better results than those produced by modern models, such as the profile transla-

tion model (PTM) [24]. 

The main objective of this work is to explore the potential of GEE as support for two 

models—uBTM and BRGM—and its validation in the context of coastal management 

problems. The uBTM model uses the uncertainties of sea-level projections and the vertical 

digital elevation model error to create a coastal flooding scenario. The BRGM model is 

based on the Bruun rule equation that generates a tool capable of determining the coast-

line retreat in a coastal stretch. 

2. Materials and Methods 

2.1. Study Sites 

The models were applied and validated using a morphological dataset of the south-

ern Rio Grande do Sul, Brazil, and Aveiro region, Portugal, since both sites are sensitive 

areas to trigger events, e.g., storms and sea-level changes, and are well known by the au-

thors, that possibility easily identify possible errors in the created models: uncertainty 

Bathtub model (uBTM), and Bruun rule for GEE model (BRGM). 
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The Rio Grande do Sul coastal plain (RSCP) in the south of Brazil was chosen to val-

idate the uBTM (Figure 1a) because it is a large low-lying coast (200,000 km2) that becomes 

ideal to test the robustness of the model on a large-scale, and with about 3 million people 

living in this area [25]. Therefore, a new sea-level flooding analysis can give support for 

the policymakers of the region. The RSCP is characterized by an extensive NE-SW sandy 

barrier system of 620 km [26]. The coast is wave-dominated, and tides have a subordinated 

role in coastal hydrodynamics and present a mean amplitude of 0.5 m and a maximum of 

1.2 m. The wave climate is dominated by two-wave propagation patterns, one composed 

of S-SE swell waves of higher amplitude and longer periods; the second comprising lo-

cally generated waves, with shorter periods and a predominant E-SE direction. Swell 

waves have a mean significant wave height of 1.5 m and periods of 12 s. Sea waves are 

characterized by a mean significant wave height of 1 m and a mean period of 8 s [27]. 

The continental shelf is wide (100 to 200 km), shallow (100 to 140 m) and slightly 

sloping (0.02° to 0.08°) [26]. Differences in width, slope, and topographic features along 

the coastal region result from reworking action related to glacio-eustatic variations that 

occurred during the Quaternary [28]. The barrier system was formed in the last 7 Ka con-

trolled by both sediment supply along the coast and morphology; coastal embayment pro-

motes the development of regressive barriers and steeper coastal slopes are dominated by 

transgressive barriers [26]. 

Despite some erosional hotspots near the cities of Hermengildo [29], Rio Grande [30], 

Tramandaí [31], mainly due to human activities or extremes events occurrence, the 

coastline shows, in general, a stable or accretionary trend [29,32] (Figure 1a).  

To validate the BRGM, the second site considered is Aveiro region, located on the 

northwest coast of Portugal (Figure 1b). The coastal erosion in this area is a problem, and 

there are important investments to protect the coastline and study the evolution of the 

coastline in the near future. The stretch is situated south of the Aveiro lagoon entrance 

and is morphologically characterized by a sandy barrier extending in NNE–SSW direc-

tion. Nowadays, this area is highly vulnerable to erosion due to the very low and flat 

topography, combined with high wave conditions and a meso-tidal regime [33]. The sec-

tor considered, from Barra to Poço da Cruz beaches, is backed by a degraded foredune 

ridge partially destroyed by erosive processes and replaced by sand dykes. In general, the 

beaches show pronounced seasonal behavior, with a range of morphodynamical states. 

This variation reveals the important exchange of sediments between the upper and lower 

foreshore [34]. Despite this cross-shore transport, significant littoral drift causes major 

alongshore motion of sediments along the southwards direction [35]. However, the pres-

ence of several cross-shore structures (jetties and groins) contributes to changes in the 

sediment transport patterns. 

The coast is exposed to highly energetic waves from WNW–NNW [36]. In maritime 

summer (June to September) significant wave heights and mean periods are less than 3 m 

and 8 s, respectively. During winter and transitions periods, the mean significant wave 

heights and periods exceed 3 m (most common values of 3–4 m) and 8 s (most frequent 

mean periods of 8–9 s), with storms defined by a mean significant wave height greater 

than 5 m (often exceeding 7 m) and mean wave periods of 13 s, which can reach maximum 

18 s [37]. The average values for the spring and neap tidal ranges are 2.8 m and 1.2 m, 

respectively. 
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Figure 1. Study sites: (a) Rio Grande do Sul coastal plain, Brazil (coordinate system: SIRGAS 2000—UTM22). (b) South 

Aveiro lagoon entrance (Barra—Poço da Cruz coastal strecht), Portugal (coordinate system: ETRS 89 TM 06—Portugal). 

2.2. Uncertainty Bathtub Model  

The model was entirely implemented on the GEE using the JavaScript API. The 

model analye the uncertainty of sea-level rise projections with vertical errors in the DEM, 

creating a frequency from 0 to 100%, which indicates the probability of a specific area to 

be affected by sea-level rise (Figure 2a). The model assumes the lowest vertical error of a 

DEM and the highest sea-level rise projection (Figure 2b). The areas that appear emerged 

are considered locals with a 0% of probability to be affected by sea-level rise flooding. On 

the other hand, a region has a 100% probability of being submerged when the maximum 

error of DEM elevation is compared with the lowest sea-level rise projection and the area 

appears submerged, even with optimistic settings (Figure 2c). 
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Figure 2. (a) Model inputs: Digital Elevation Model (DEM)/Digital Terrain Model (DTM) in raster Figure 0. named uBTM. 

(d) Filter process (optional) is applied a Kernel filter on uBTM creating a smoothed uBTM (uBTMs). 

The uBTM passed through a filtering process with different Kernel Filters, in order to 

choose the best option to smooth the data and to reduce both the pixelization and the 

image grain for a better delimitation of the waterline boundaries. All 3 × 3 Kernel Filters 

available on GEE (i.e., Cross, Plus, Gaussian, Diamond, Circle, Square, Octagon, Cheby-

shev, Euclidean, and Manhattan) were tested and compared. The geometric aspect of the 

circular Kernel Filter seems more adequate for the waterline shapes of the study area. How-

ever, this filter can be easily changed on the code and to be selected the one that is more 

appropriate to the coastal characteristics (for example, a square filter is reasonably proper 

in the case of rocky cliff coasts). The result of the uBTM combined with the filtering pro-

cess is called the uncertainty Bathtub Model smoothed (uBTMs) (Figure 2d). 

2.3. uBTM Validation 

The validation of the uBTM consists of performing a comparison between three sim-

ilar GIS models (i) simple Bathtub model (sBTM), (ii) enhanced Bathtub model (eBTM), 

and (iii) Terrset sea-level impact (tSLI), which are briefly described below. 

The sBTM is a user-defined static inundation water level that does not consider either 

the hydrological framework or physical barriers. 

The eBTM includes a surface roughness coefficient that acts as critical variable influ-

encing the water movement and the beach slope, to perform a more realistic representa-

tion of the area and coastal flooding conditions [38]. In the present case, the study region 

(RSCP) is mainly characterized by sandy substrate in the first meters above the surface 

[39–43] and according to [44] sands are characterized by a uniform roughness coefficient 

of 1. 

The tSLI yields the effect of a sea-level rise integrating both the uncertainties of the 

projection and the DEM, using a PCLASS algorithm, which produces a probability image 

where values are between zero and one [19]. 

The calculation of the area by itself is not a good indicator of the similarity between 

the models because it ignores the spatial distribution. For this reason, a different method-

ology was developed allowing the quantification of spatial differences to check spatial 

similarities between models. 

Several algorithms, including artificial intelligence, use heatmaps and statistical anal-

yses to recognize objects and identify differences between images [45–47]. The method 

used to quantify the similarity of the spatial distribution consists of transforming the pix-

els values of the model into a density map and applying a correlation matrix to assess the 

similarities and their distribution. An ArcMap graphical model [8] was created to select 

only the impact using the Kernel Density tool to create a heatmap of pixel changes for each 

model (Appendix A). In the case of uBTM, uBTMs and tSLI—that show the impact from 

0% to 100–50% is the point that expresses the value of sea-level on DEM without the in-

fluence of vertical error and uncertainties of sea-level projections. The use of the same 

values for sBTM and eBTM allows comparing both models. 
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It was necessary to remove the effect of lagoon areas (in the case of RSCP) and un-

derstand the spatial distribution near the coastline. For this reason, the same procedure to 

create heatmaps was performed by creating a small sector through a buffer area of 500 m 

from the coastline vector. The final step applied was the Raster Correlations and Summary 

Statistics of SDM Toolbox v.2.4 [48], which creates a correlation matrix of the Kernel Density. 

The accuracy of the method was verified by using two accessible APIs for image com-

parison: (i) DeepAI—image similarity [49] which uses an artificial neural network algo-

rithm to identify the differences, (ii) Resemble.js based on the visual regression method 

[50]. The heatmap images of spatial distribution used for comparison were created by ex-

porting from ArcGIS 10.6 the Kernel Density images in a white background. In the end, the 

density points created on ArcGIS, the outcomes of the process of DeepAI and Resemble.js, 

and the results of the area differences calculation were correlated using pyplot library and 

GoogleColab [51]. Matplotlib is a library for producing visualizations (i.e., charts) in Python 

[52]. The GoogleColab platform allows writing and executing python code through the web 

browser in a cloud environment [53]. 

The DEM used to perform the analysis was the CoastalDEM free version (resolution 

of 90 m), a product created with a multilayer perceptron (MLP) artificial neural network 

to reduce the vertical error of shuttle radar topography missions (SRTM) to ca. 2.5 m [53]. 

The sea-level rise values were extracted from the regional data of special report on 

the ocean and cryosphere in a changing climate (SROCC) [5] under Representative Con-

centration Pathway-RCP 8.5. The value adopted is 0.68 m with uncertainties of 0.50 m to 

0.90 m, for the period 2081–2100. 

2.4. Bruun Rule implementation on Google Earth Engine 

The Bruun formula [21] uses the berm height, the horizontal length after the berm 

ridge towards the backshore, or the beach face [54]. If the profile does not have a berm, 

the dune foot is considered. The code developed on GEE requires the sea-level rise pro-

jection, DEM (raster format) of topography, and bathymetry (Figure 3a) to create the topo-

bathymetric profile, i.e., a line that allows obtaining the values of the berm height and 

depth of closure (Figure 3b). After that, Equation 1 was used with the values extracted 

from the created line. The displacement representation in the future is represented by us-

ing a simple buffer, with the extreme edge of the polygon being the final position of the 

coastline (Figure 3c). 

R = S(W/h + B) (1) 

Bruun’s classic equation where R is the coastline retreat, S is the predicted sea-level 

rise, W is the profile length; h is the depth of closure, and B the berm elevation. 

In the last years, modifications to the original Bruun equation were proposed by [55] 

to incorporate the landwards transport, and [56], that included the contributions of the 

cross and longshore sedimentary processes and the sediment budget (Appendix B). These 

variables were included in the code, but its precision was not evaluated in this study. 
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Figure 3. (a) Model inputs: DEM of topography and DEM of bathymetry, both in raster format, and the value number of 

sea-level rise projection. (b) Google Earth Engine: the rasters are merged and to calculate the slope. The depth of closure 

and beach berm values are extracted directly from GEE. (c) Numerical and graphical result, in the last case symbolized by 

a buffer. 

In this study, the classic Bruun equation (Equation (1)) was applied on Barra-Poço da 

Cruz coastal stretch (Aveiro region), using bathymetry and UAV photogrammetry DEM 

data (Figure 1b). The results were compared with [57]’s study, which performed a Bruun 

rule analysis in the same region. Profiles for the GEE Model (BRGM) were created with 

the values detailed in this study. However, there are some bathymetric and topographic 

differences between the profiles performed by [57] and the present analysis because it was 

necessary to adapt the length of some profiles to get similar values of height and depth. 

The topographic and bathymetric data used have two sources, the COSMO Program [58] 

(topography) with 1 m of spatial resolution and the Portuguese Hydrographic Institute 

[59] (bathymetry) with 82.4 m of spatial resolution. Subsequently, a Spearman correlation 

analysis between the GEE Bruun rule results and the previous study [57] was performed. 

After the validation process, was tested for the area a scenario of sea-level rise of 1.21 m, 

considering the contribution of the Antarctic Ice Sheet (AIS) melting process (AIS = 60 cm) 

[60]. 

3. Results 

The results section is divided in two subsections: (i) the validation process of the un-

certainty Bathub model (uBTM) and (ii) Bruun rule validation for Google Earth Engine 

model (BRGM) through Spearman correlation analysis and the example of the application 

of the BRGM under a climate change scenario. 

3.1. uBTM Validation 

The subsection presents the results of the comparison of the areas between the dif-

ferent models, and those obtained with the spatial similarity using Kernel Density and ma-

chine learning APIs. 

In Figure 4, the red color shows the areas with more than 50% of probability to be 

affected by a climate change scenario (RCP 8.5). The results are very similar in all the 

models performed, which means the outcomes of uBTM and uBTMs are coherent (Figure 

4a,b). The regions in red color correspond to the total results of eBTM and sBTM (Figure 

4d,e). Additionally, it is possible to observe the result of the Kernel filter smooth effect by 

using the uBTMs (Figure 4b, small frame). Besides, the Terrset Sea-level Impact (tSLI) 

showed the different spatial distribution of areas from 0 to 40% of impact (Figure 4c). 
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Figure 4. Rio Grande coastal plain impact results. (a) Uncertainty Bathtub model (uBTM). (b) Uncertainty Bathtub Model 

smoothed (uBTMs). (c) Terrset Sea-Level Impact (tSLI). (d) Enhanced Bathtub Model (eBTM) in red. (e) Simple Bathub 

Model (sBTM) in red. 

The tSLI yields the most significant area affected, but the difference between tSLI and 

uBTM represents only 0.63% of the total area of Rio Grande do Sul coastal plain (RSCP) 

and 2.99% of the coastal stretch or section (CS). Furthermore, the total areas obtained by 

the uBTM and sBTM are similar (Figure 5). In the coast section, the eBTM, uBTM, and 

sBTM show also similar results. 
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Figure 5. Calculated areas representing the results of the models on Rio Grande do Sul coastal area 

(RSCP) and coastal section (units in Km2). 

3.1.1. Spatial Similarity Analysis: Rio Grande do Sul Coastal Plain (RSCP) 

The visual distribution of the impacts obtained by Kernel Density filter shows com-

parable patterns of clusters points regarding the lagoon margins and the coastline. Only 

in eBTM the spatial distribution is quite different due to the model characteristics. The 

hydrological features do not include the water bodies without connection to the ocean 

(Figure 6d). 

 

Figure 6. Spatial distribution through Kernel Density for the totally of Rio Grande do Sul coastal plain. (a) Uncertainty 

Bathtub model (uBTM). (b) Uncertainty Bathtub model smoothed (uBTMs). (c) Terrset sea-level impact (tSLI). (d) En-

hanced Bathtub model (eBTM). (e) Simple Bathub model (sBTM). 
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The correlation matrix of Kernel Density results is presented in Table 1. The uBTM 

model shows a correlation of 0.99 and 1 with tSLI and sBTM, respectively. Moreover, the 

uBTMs display 0.97 of correlation with tSLI and sBTM. The low correlation values with 

eBTM were expected since the eBTM excluded water bodies that are not connected with 

the sea. 

Table 1. Correlation matrix of models in Rio Grande do Sul coastal plain (RSCP). 

 uBTM uBTMs tSLI eBTM sBTM 

uBTM 1 0.97 0.99 0.78 1 

uBTMs 0.97 1 0.97 0.79 0.97 

tSLI 0.99 0.97 1 0.74 0.99 

eBTM 0.78 0.79 0.74 1 0.78 

sBTM 1 0.97 0.99 0.78 1 

The correlation matrix of the area differences, density correlation, Deep AI, and Re-

semble.js recognized the eBTM singularity. The method also identified similar values for 

the other models (Figure 7a–d). 

 

Figure 7. Correlation matrix in RSCP. (a) Area differences. (b) Kernel Density correlation matrix. (c) 

Deep AI image similarity API. (d) Resemble.js image similarity API. The values of correlation are 

included in the squares. 

3.1.2. Spatial Similarity Analysis: Coast Section 

In the coastal stretch, the differences between models are more evident, especially in 

uBTMs and tSLI models, which show different spatial distributions of density points (Fig-

ure 8). The uBTMs smooth process deleted the loose pixels that influenced the Kernel Den-

sity results (Figure 8e). 
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Figure 8. Spatial distribution with Kernel Density on coastal section. (a) Uncertainty Bathtub model (uBTM). (b) Uncer-

tainty Bathtub model smoothed (uBTMs). (c) Terrset sea-level impact (tSLI). (d) Enhanced Bathtub model (eBTM). (e) 

Simple Bathub model (sBTM). 

The uBTM and sBTM has a correlation factor of 1 while with tSLI the correlation 

value is 0.77. The eBTM presents high correlation values (0.99) with both uBTM and sBTM 

models (Table 2). 

Table 2. Correlation matrix of models on the coast section. 

 uBTM uBTMs tSLI eBTM sBTM 

uBTM 1 0.75 0.77 0.99 1 

uBTMs 0.75 1 0.70 0.73 0.75 

tSLI 0.77 0.70 1 0.75 0.77 

eBTM 0.99 073 0.75 1 0.99 

sBTM 1 0.75 0.77 0.99 1 

The singularities of uBTMs and tSLI on the coastal section are evident on Image Sim-

ilarity APIs as well. The Deep AI and Resemble.js also recognized the uBTM, eBTM, and 

sBTM spatial similarities (Figure 9c,d). This situation makes it clear that the area differ-

ences analysis on its own cannot accurately distinguish the spatial distribution between 

models as reached by the density correlation method and image similarity APIs.  
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Figure 9. Correlation matrix of the coast section. (a) Area differences; (b) Kernel Density correlation 

matrix. (c) Deep AI image similarity API. (d) Resemble.js image similarity. The values of correlation 

are included in the squares. 

3.2. BRGM Validation 

The results presented in Table 3 compare the numeric characteristics of the profiles 

(i.e., berm high, profile length, depth of closure profile, and coastline retreat) obtained by 

[57] and Bruun rule for GEE model (BRGM). The results of the BRGM with the projection 

for 2100 (RCP 8.5, 1.21 m) points to a maximum coastline retreat of about 146.6 m close to 

the south jetty (Profile 1) and a minimum of 78.5 m (Profile 8) (Figure 1a) (Table 3). 

Table 3. Values of morphological variables obtained by [57] and in the present work. The coastline 

retreat results (CRR) in both situations are calculated using a sea-level rise (SLR) of 0.50 m. The 

2100 RCP 8.5 AIS uses an SLR of 1.21 m. The units of the berm, profile length (W), and depth of 

closure are in meters (m). 

Profiles Berm  W  Depth of Closure CRR 2100  

 [57] BRGM [57] BRGM [57] BRGM [57] BRGM RCP 8.5 

1 5.6 5.9 2240 2291 –12.1 –12.8 63.3 61.2 146.6 

2 4 4.5 1440 1404 –12.1 –11.8 44.7 43.2 105.8 

3 1.5 0.1 1440 1412 –12.1 –12.3 52.9 56.8 135.5 

4 1.9 2.1 1483 1494 –12.1 –12.2 53.0 52.2 124.7 

5 4 4.0 1450 1514 –12.1 –12.2 45.0 46.7 112.0 

6 2.4 2.6 1483 1435 –12.1 –12.1 51.1 48.9 116.5 

7 3.2 3.2 1333 1251 –12.1 –11.8 43.6 41.6 99.5 

8 8.2 9.0 1434 1387 –12.1 –12.1 35.3 32.9 78.5 

9 4.8 4.2 1420 1454 –12.1 –12.6 42.0 43.2 105.5 

According to projections for 2100 under the RCP 8.5 scenario, the coastline might 

suffer a total retreat of about 100 m (Figure 10). 
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Figure 10. Results of Bruun rule by the year 2100 with the projection RCP 8.5 AIS 60 cm (1.21 m). 

Table 2018. and the red line the expected position in 2100. 

The nine profiles used to estimate the coastline retreat with BRGM are compared 

with those of [57]’s study. There is a strong correlation between them (r = 0.97), showing 

a coefficient of determination (R2) of 0.93, t-test (9.49), and p-value equals zero, which in-

dicates a very-high coherence between the results of both studies (Figure 11). 
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Figure 11. Spearman correlation coefficient between coastline retreat along the profiles of GEE 

model and [57] study (R2 = 0.93, r = 0.97). 

4. Discussion 

The two models presented in this paper (uBTM and BRGM) may correctly operate 

and were positively validated with other well-known GIS-based models and previous 

studies. It is suitable to affirm that both models can produce appropriate outcomes ac-

cording to their objectives. 

The uBTM and uBTMs can be defined as being a hybrid between sBTM and tSLI. The 

uBTM has the advantage of representing the sBTM in a probabilistic form related to un-

certainties and reducing the computational complexity. The main difference between tSLI 

and the remaining models is due to the PCLASS algorithm used by Terrset that operates 

with a different reclassification, which calculates the area under a normal curve defined 

by the threshold value using the uncertainties as standard deviation [19]. The Circle Kernel 

filter applied to the uBTMs model reduced the scarce pixels and improved the delimita-

tion of the Rio Grande do Sul coastal plain (RSCP) coastline contour. Furthermore, the 

pixels removed reduced the correlation with the sBTM in the coast stretch but when the 

total of the RSCP is considered the uBTMs presents 0.97 of correlation. Zones of high vul-

nerability like salt marshes [61], low altitude and flat areas [62], and places prior recog-

nized as a priority for coastal management [63,64] were coherently recognized by all the 

models as areas with a high risk in flood situations caused by sea-level rise. Furthermore, 

a recent study [65] performed at Cassino beach (Figure 1a) with the bathtub model dis-

closed areas quite similar than the obtained in the present study if the uBTM doesn’t con-

sider the uncertainties. The uBTM and uBTMs works data with uncertainties, due to this, 

if the DEM/DTM is obtained through from unoccupied aerial vehicle (UAV) and Light 

Detection and Ranging (LiDAR) with high vertical resolution accuracy the changes due to 

uncertainties will not be visible. For the aforementioned reason, the uBtM and uBTMs are 

recommended only for medium or low-resolution data, such as AW3D30 [66], SRTM [67], 

CoastalDEM [53], or other products that requires an uncertainty analysis. 

Combining the correlation matrix results with the Kernel Density and the image sim-

ilarities APIs, it is possible to recognize the spatial patterns of eBTM and tSLI and similar-

ities to other models in general. The inclusion of artificial intelligence as a tool to compare 

images and recognize spatial designs and trends can bring useful algorithms to the exist-

ing GIS software available nowadays. Additionally, it is essential to highlight that the 

eBTM results reveal the hydrological connectivity of the lagoons with success. In this case, 

as in uBTMs, the low correlations do not necessarily determine inferior quality results. 

Regarding the BRGM, the high correlation of 0.97 with [57] results proves that this 

model can perform the Bruun rule on Google Earth Engine with success. The correlation 
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value is not one since challeging to set the same values of profile length, closure of depth, 

and berm heigh using different topo-bathymetric data utilized by [57]. 

Recently, [68] published a study using the Bruun rule, and [69] criticized the authors 

for using the Bruun rule without considering the offshore sediment transport. However, 

a recent study used Bruun rule to evaluate the sea-level rise impact on tourism [70]. The 

study was conducted in São Jacinto beach, north of Aveiro harbour (Figure 1b), and the 

results for 2050 are similar with the half-value for 2100 prediction of BRGM. Overall, it is 

always essential to remember that the analysis may not be conclusive because the original 

equation ignores some factors such as the overwash events and changes in sediment sup-

ply due to natural and antropogenic operations (such as dredging and nourishment oper-

ations [71] that might continue being performed in the area). Nevertheless, the implemen-

tation of the original Bruun rule in GEE can turn easier to apply, helping to understand 

the formula better and providing a new environment in GIS that can encourage the crea-

tion of more realistic modifications of the Bruun rule itself. 

The models should be used with caution due to their inherent simplicity it is suffi-

cient to conclude about sea-level impact by using these analyses alone. Though, these 

same simplicity of operations of both models avoid GEE limitation to handle functions 

that involve long-running iterative processes, such as finite element analysis, agent-based 

models, and machine learning models [12]. Furthermore, these methodologies take few 

minutes to run and are useful for an initial assessment of sea-level impact enhancing 

coastal management, to be supported by more detailed studies combined with other mod-

els and including more variables. The models eBTM and tSLI also took few minutes to 

run, otherwise, the uBTM does not need any software installations and can be run directly 

in the web browser. 

The future work consist of implementing the models as GEE application, integrating 

the eBTM in uBTM, and performing the validation of the other Bruun rule variations of 

[55,56] equations already included in the code. Both methods, uBTM and BRGM can be 

found to download in the references [18,20]. 

5. Conclusions 

This work presents and validates two models for the assessment of sea-level rise cre-

ated on Google Earth Engine (GEE). The GEE has shown to be a useful analytical platform 

to develop models that can be performed in different studies of coastal dynamics. Both 

models bring advantages for the coastal management in GEE cloud-based platform. Other 

highlight of this study includes the application of artificial intelligence which was tested 

with success to validate the spatial distribution.The Uncertainty Bathtub Model (uBTM) 

reveals high similarities and correlations with tested models. This proved uBTM as a rea-

sonable option to represent the impact of the sea-level flood. Likewise, the Bruun Rule for 

GEE Model (BRGM) validation allowed a high degree of confidence that guarantee the 

model is well adjusted. Due to GEE’s characteristics, this model can now run efficiently in 

a cloud-based GIS environment, promoting Bruun Rule improvements by calibrations, 

modifications, and enhancing its base formulation. The uBTM and BRGM codes are in 

open access for the scientific community [18,20], and thus, they can make updates and 

adapt the code to its applications and scientific investigations. 
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Appendix A 

Graphical model for the validation process in ArcGIS (version 10.6). Blue circles are 

the inputs; yellow rectangles are the tools; green circles are the outputs. 

 

Appendix B 

Other equations included in the BRGM: 

The Bruun equation can be re-written as:  

R = S/(tan(β)) 

Where β is the average beach slope between the berm ridge or dune foot and the 

depth of closure. 

Ref. [55] to extend landwards transport that adds the variant 𝑉𝐷 that represents the 

deposited sand volume; 

R = S (W + VD/S)/(h + B) 
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Additional modifications in [56] add contributions of the cross and longshore sedi-

mentary processes, and the sediment budget was also included. 

R = S/tan(β) + fcross + flong 

𝑓𝑐𝑟𝑜𝑠𝑠 and 𝑓𝑙𝑜𝑛𝑔 are the contributions of processes causing losses or gains of sedi-

ments in the active beach profile. 
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