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Abstract. Akamai o�ers the largest Content Delivery Network (CDN)
service in the world. Building upon its CDN, it recently started to of-
fer High De�nition (HD) video distribution using HTTP-based adaptive
video streaming. In this paper we experimentally investigate the perfor-
mance of this new Akamai service aiming at measuring how fast the video
quality tracks the Internet available bandwidth and to what extent the
service is able to ensure continuous video distribution in the presence of
abrupt changes of available bandwidth. Moreover, we provide details on
the client-server protocol employed by Akamai to implement the quality
adaptation algorithm. Main results are: 1) any video is encoded at �ve
di�erent bit rates and each level is stored at the server; 2) the video
client computes the available bandwidth and sends a feedback signal to
the server that selects the video at the bitrate that matches the avail-
able bandwidth; 3) the video bitrate matches the available bandwidth
in roughly 150 seconds; 4) a feedback control law is employed to ensure
that the player bu�er length tracks a desired bu�er length; 5) when an
abrupt variation of the available bandwidth occurs, the suitable video
level is selected after roughly 14 seconds and the video reproduction is
a�ected by short interruptions.

1 Introduction and related works

Nowadays the Internet, that was originally designed to transport delay-insensitive
data tra�c, is becoming the most important platform to deliver audio/video
delay-sensitive tra�c. Important applications that feed this trend are YouTube,
which delivers user-generated video content, and Skype audio/video conference
over IP. In this paper we focus on adaptive (live) streaming that represents an
advancement wrt classic progressive download streaming such as the one em-
ployed by YouTube. With download streaming, the video is a static �le that is
delivered as any data �le using greedy TCP connections. The receiver employs a
player bu�er that allows the �le to be stored in advance wrt the playing time in
order to mitigate video interruptions. With adaptive streaming, the video source
is adapted on-the-�y to the network available bandwidth. This represents a key
advancement wrt classic download streaming for the following reasons: 1) live
video content can be delivered in real-time; 2) the video quality can be con-
tinuously adapted to the network available bandwidth so that users can watch



videos at the maximum bit rate that is allowed by the time-varying available
bandwidth.

In [8] the authors develop analytic performance models to assess the per-
formance of TCP when used to transport video streaming. The results suggest
that in order to achieve good performance, TCP requires a network bandwidth
that is two times the video bit rate. This bandwidth over provisioning would
systematically waste half of the available bandwidth.

In a recent paper [6] the authors provide an evaluation of TCP streaming
using an adaptive encoding based on H.264/SVC. In particular, the authors pro-
pose to throttle the GOP length in order to adapt the bitrate of the encoder
to the network available bandwidth. Three di�erent rate-control algorithms for
adaptive video encoding are investigated. The results indicate that the consid-
ered algorithms perform well in terms of video quality and timely delivery both
in the case of under-provisioned links and in the case of competing TCP �ows.

In this paper we investigate the adaptive streaming service provided by Aka-
mai, which is the worldwide leading Content Delivery Network (CDN). The
service is called High De�nition Video Streaming and aims at delivering HD
videos over Internet connections using the Akamai CDN. The Akamai system is
based on the stream-switching technique: the server encodes the video content
at di�erent bit rates and it switches from one video version to another based
on client feedbacks such as the measured available bandwidth. It can be said
that the Akamai approach is the leading commercial one since, as we will see
shortly, it is employed by the Apple HTTP-based streaming, the Microsoft IIS
server, the Adobe Dynamic Streaming, and Move Networks. By encoding the
same video at di�erent bitrates it is possible to overcome the scalability issues
due to the processing resources required to perform multiple on-the-�y encoding
at the price of increasing storage resources. HTTP-based streaming is cheaper to
deploy since it employs standard HTTP servers and does not require specialized
servers at each node.

In the following we summarize the main features of the leading adaptive
streaming commercial products available in the market.

IIS Smooth Streaming [9] is a live adaptive streaming service provided by
Microsoft. The streaming technology is o�ered as a web-based solution requir-
ing the installation of a plug-in that is available for Windows and iPhone OS
3.0. The streaming technology is codec agnostic. IIS Smooth Streaming employs
stream-switching approach with di�erent versions encoded with con�gurable bi-
trates and video resolutions up to 1080p. In the default con�guration IIS Smooth
Streaming encodes the video stream in seven layers that range from 300 kbps
up to 2.4 Mbps.

Adobe Dynamic Streaming [4] is a web-based adaptive streaming service de-
veloped by Adobe that is available to all devices running a browser with Adobe
Flash plug-in. The server stores di�erent streams of varying quality and size
and switches among them during the playback, adapting to user bandwidth and
CPU. The service is provided using the RTMP streaming protocol [5]. The sup-
ported video codecs are H.264 and VP6 which are included in the Adobe Flash



plug-in. The advantage of Adobe's solution is represented by the wide availability
of Adobe Flash plug-in at the client side.

Apple has recently released a client-side HTTP Adaptive Live Streaming so-
lution [7]. The server segments the video content into several pieces with con-
�gurable duration and video quality. The server exposes a playlist (.m3u8) con-
taining all the available video segments. The client downloads consecutive video
segments and it dynamically chooses the video quality employing an undisclosed
proprietary algorithm. Apple HTTP Live Streaming employs H.264 codec using
a MPEG-2 TS container and it is available on any device running iPhone OS 3.0
or later (including iPad), or any computer with QuickTime X or later installed.

Move Networks provides live adaptive streaming service [2] to several TV
networks such as ABC, FOX, Televisa, ESPN and others. A plug-in, available
for the most used web browsers for Windows and Mac OS X, has to be installed
to access the service. Move Networks employs VP7, a video codec developed by
On2, a company that has been recently acquired by Google. Adaptivity to avail-
able bandwidth is provided using the stream-switching approach. Five di�erent
versions of the same video are available at the server with bitrates ranging from
100 kbps up to 2200 kbps.

The rest of the paper is organized as follows: Section 2 describes the testbed
employed in the experimental evaluation; in Section 3 we show the main features
of the client-server protocol used by Akamai in order to implement the quality
adaptation algorithm; Section 4 provides a discussion of the obtained results
along with an investigation of the dynamics of the quality adaptation algorithm;
�nally, Section 5 draws the conclusions of the paper.

2 Testbed and experimental scenarios

The experimental evaluation of Akamai HD video server has been carried out by
employing the testbed shown in Figure 1. Akamai HD Video Server provides a
number of videos made available through a demo website [1]. In the experiments
we have employed the video sequence �Elephant's Dream� since its duration
is long enough for a careful experimental evaluation. The receiving host is an
Ubuntu Linux machine running 2.6.32 kernel equipped with NetEm, a kernel
module that, along with the tra�c control tools available on Linux kernels, allows
downlink channel bandwidth and delays to be set. In order to perform tra�c
shaping on the downlink we used the Intermediate Functional Block pseudo-
device IFB1.

The receiving host was connected to the Internet through our campus wired
connection. It is worth to notice that before each experiment we carefully checked
that the available bandwidth was well above 5 Mbps that is the maximum value
of the bandwidth we set in the tra�c shaper. The measured RTT between our
client and the Akamai server is of the order of 10 ms. All the measurements we
report in the paper have been performed after the tra�c shaper (as shown in

1 http://www.linuxfoundation.org/collaborate/workgroups/networking/ifb



Figure 1) and collected by dumping the tra�c on the receiving host employing
tcpdump. The dump �les have been post-processed and parsed using a Python
script in order to obtain the �gures shown in Section 4.

The receiving host runs an iperf server (TCP Receiver) in order to receive
TCP greedy �ows sent by an iperf client (TCP Sender).
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Fig. 1: Testbed employed in the experimental evaluation

Three di�erent scenarios have been considered in order to investigate the
dynamic behaviour of Akamai quality adaptation algorithm:

1. Akamai video �ow over a bottleneck link whose bandwidth capacity changes
following a step function with minimum value 400 kbps and maximum value
4000 kbps;

2. Akamai video �ow over a bottleneck link whose bandwidth capacity varies
as a square wave with a period of 200 s, a minimum value of 400 kbps and
a maximum value of 4000 kbps;

3. Akamai video �ow sharing a bottleneck, whose capacity is �xed to 4000 kbps,
with one concurrent TCP �ow.

In scenarios 1 and 2 abrupt variations of the available bandwidth occur: even
though we acknowledge that such abrupt variations are not frequent in real-
world scenarios, we stress that step-like variations of the input signal are often
employed in control theory to evaluate the key features of a dynamic system re-
sponse to an external input [3]. The third scenario is a common use-case designed
to evaluate the dynamic behaviour of an Akamai video �ow when it shares the
bottleneck with a greedy TCP �ow, such as in the case of a �le download. In
particular, we are interested in assessing if Akamai is able to grab the fair share
in such scenarios.

3 Client-server Quality Adaptation Protocol

Before discussing the dynamic behaviour of the quality adaptation algorithm
employed by Akamai, we focus on the client-server protocol used in order to
implement this algorithm.



To this purpose, we analyzed the dump �le captured with tcpdump and we
observed two main facts: 1) The Akamai server employs TCP in order to trans-
port the video �ows and 2) a number of HTTP requests are sent from the client
to the server throughout all the duration of the video streaming. Figure 2 shows
the time sequence graph of the HTTP requests sent from the client to the Akamai
server reconstructed from the dump �le.
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Fig. 2: Client-server time sequence graph: thick lines represent video data trans-
fer, thin lines represent HTTP requests sent from client to server

At �rst, the client connects to the server [1], then a Flash application is
loaded and a number of videos are made available. When the user clicks on
the thumbnail (1) of the video he is willing to play, a GET HTTP request is
sent to the server pointing to a Synchronized Multimedia Integration Language
2.0 (SMIL) compliant �le2. The SMIL �le provides the base URL of the video
(httpBase), the available levels, and the corresponding encoding bit-rates. An
excerpt of this �le is shown in Figure 3.

Then, the client parses the SMIL �le (2) so that it can easily reconstruct the
complete URLs of the available video levels and it can select the corresponding
video level based on the quality adaptation algorithm. All the videos available
on the demo website are encoded at �ve di�erent bitrates (see Figure 3). In
particular, the video level bitrate l(t) can assume values in the set of available

2 http://www.w3.org/TR/2005/REC-SMIL2-20050107/



<head>

<meta name="title" content="Elephants Dream" />

<meta name="httpBase"

content="http://efvod-hdnetwork.akamai.com.edgesuite.net/"/>

<meta name="rtmpAuthBase" content="" />

</head>

<body>

<switch id="Elephants Dream">

<video src="ElephantsDream2_h264_3500@14411" system-bitrate="3500000"/>

<video src="ElephantsDream2_h264_2500@14411" system-bitrate="2500000"/>

<video src="ElephantsDream2_h264_1500@14411" system-bitrate="1500000"/>

<video src="ElephantsDream2_h264_700@14411" system-bitrate="700000"/>

<video src="ElephantsDream2_h264_300@14411" system-bitrate="300000"/>

</switch>

</body>

Fig. 3: Excerpt of the SMIL �le

video levels L = {l0, . . . , l4} at any given time instant t. Video levels are encoded
at 30 frames per second (fps) using H.264 codec with a group of picture (GOP)
of length 12. The audio is encoded with Advanced Audio Coding (AAC) at 128
kbps bitrate.

Table 1: Video levels details
Video Bitrate Resolution
level (kbps) (width×height)
l0 300 320x180

l1 700 640x360

l2 1500 640x360

l3 2500 1280x720

l4 3500 1280x720

Table 1 shows the video resolution for each of the �ve video levels li, that
ranges from 320× 180 up to high de�nition 1280× 720.

It is worth to notice that each video level can be downloaded individually
issuing a HTTP GET request using the information available in the SMIL �le.
This suggests that the server does not segment the video as in the case of the
Apple HTTP adaptive streaming, but it encodes the original raw video source
into N di�erent �les, one for each available level.

After the SMIL �le gets parsed, at time t = t0 (3), the client issues the �rst
POST request specifying �ve parameters, two of which will be discussed in detail
here3. The �rst POST parameter is cmd and, as its name suggests, it speci�es a

3 The remaining three parameters are not of particular importance. The parameter v
reports the HDCore Library of the client, the parameter g is �xed throughout all



command the client issues on the server. The second parameter is lvl1 and it
speci�es a number of feedback variables that we will discuss later.

At time t = t0, the quality adaptation algorithm starts. For a generic time
instant ti > t0 the client issues commands via HTTP POST requests to the server
in order to select the suitable video level. It is worth to notice that the commands
are issued on a separate TCP connection that is established at time t = t0. We
will focus on the dynamics of the quality adaptation algorithm employed by
Akamai in the next section.

3.1 The cmd parameter

Let us now focus on the commands the client issues to the server via the cmd

parameter.

Table 2: Commands issued by the client to the streaming server via cmd param-
eter

Command Number of arguments Occurrence (%)

c1 throttle 1 ~80%

c2 rtt-test 0 ~15%

c3 SWITCH_UP 5 ~2%

c4 BUFFER_FAILURE 7 ~2%

c5 log 2 ~1%

Table 2 reports the values that the cmd parameter can assume along with the
number of command arguments and the occurrence percentage.

We describe now the basic tasks of each command, and leave a more detailed
discussion to Section 4.

The �rst two commands, i.e. throttle and rtt-test, are issued periodically,
whereas the other three commands are issued when a particular event occurs.
The periodicity of throttle and rtt-test commands can be inferred by looking at
Figure 4 that shows the cumulative distribution functions of the interdeparture
times of two consecutive throttle or rtt-test commands. The Figure shows
that throttle commands are issued with a median interdeparture time of about
2 seconds, whereas rtt-test commands are issued with a median interdeparture
time of about 11 seconds.

throttle is the most frequently issued command and it speci�es a single
argument, i.e. the throttle percentage T (t). In the next Section we will show
that:

T (t) =
r(t)

l(t)
100 (1)

the connection, whereas the parameter r is a variable 5 letters string that seems to
be encrypted.
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Fig. 4: Cumulative distribution functions of interdeparture time between two
consecutive throttle or rtt-test commands

where r(t) is the maximum sending rate at which the server can send the video
level l(t). Thus, when T (t) > 100% the server is sending the video at a rate that
is greater than the video level encoding rate l(t). It is important to stress that in
the case of live streaming it is not possible for the server to supply a video at a
rate that is above the encoding bitrate since the video source is not pre-encoded.
A tra�c shaping algorithm can be employed to bound the sending rate to r(t).
We will see in detail in Section 4 that this command plays a fundamental role
in controlling the receiver bu�er length.

The rtt-test command is issued to ask the server to send data in greedy
mode. We conjecture that this command is periodically issued in order to actively
estimate the end-to-end available bandwidth.

The SWITCH_UP command is issued to ask the server to switch from the
current video level lj to a video level lk characterized with an higher encoding
bitrate, i.e. k > j. We were able to identify four out of the �ve parameters
supplied to the server: 1) the estimated bandwidth b(t); 2) the bitrate lk of the
video level the client wants to switch up; 3) the video level identi�er k the client
wants to switch up; 4) the �lename of the video level lj that is currently playing.

The BUFFER_FAIL command is issued to ask the server to switch from the
current video level lj to a video level lk with a lower encoding bitrate, i.e. k < j.
We identi�ed four out of the seven parameters supplied with this command: 1)
the video level identi�er k the client wants to switch down; 2) the bitrate lk of
the video level the client wants to switch down; 3) the estimated bandwidth b(t);
4) the �lename of the video level lj that is currently playing.

The last command is log and it takes two arguments. Since this command
is rarely issued, we are not able to explain its function.



3.2 The lvl1 parameter

The lvl1 parameter is a string made of 12 feedback variables separated by
commas. We have identi�ed 8 out of the 12 variables as follows:

1. Receiver Bu�er size q(t): it represents the number of seconds stored in
the client bu�er. A key goal of the quality adaptation algorithm is to ensure
that this bu�er never gets empty.

2. Receiver bu�er target qT (t): it represents the desired size of the receiver
bu�er size measured in seconds. As we will see in the next Section the value
of this parameter is in the range [7, 20]s.

3. unidenti�ed parameter
4. Received video frame rate f(t): it is the frame rate, measured in frames

per second, at which the receiver decodes the video stream.
5. unidenti�ed parameter
6. unidenti�ed parameter
7. Estimated bandwidth b(t): it is measured in kilobits per second.
8. Received goodput r(t): it is the received rate measured at the client, in

kilobits per second.
9. Current video level identi�er: it represents the identi�er of the video

level that is currently received by the client. This variable assumes values in
the set {0, 1, 2, 3, 4}.

10. Current video level bitrate l(t): it is the video level bitrate measured
in kilobits per second that is currently received by the client. This variable
assumes values in the set L = {l0, l1, l2, l3, l4} (see Table 1).

11. unidenti�ed parameter
12. Timestamp ti: it represents the Unix timestamp of the client.

4 The quality adaptation algorithm

In this Section we discuss the results obtained in each of the considered scenarios.
Goodput measured at the receiver and several feedback variables speci�ed in the
lvl1 parameters will be reported. It is worth to notice that we do not employ
any particular video quality metric (such as PSNR or other QoE indices). The
evaluation of the QoE can be directly inferred by the instantaneous video level
received by the client. In particular, the higher the received video level l(t) the
higher the quality perceived by the user. For this reason we employ the received
video level l(t) as the key performance index of the system.

In order to assess the e�ciency η of the quality adaptation algorithm we
propose to use the following metric:

η =
l̂

lmax
(2)

where l̂ is the average value of the received video level and lmax ∈ L is the
maximum video level that is below the bottleneck capacity. The index is 1 when



the average value of the received video level is equal to lmax, i.e. when the video
quality is the best possible with the given bottleneck capacity.

An important index to assess the Quality of Control (QoC) of the adaptation
algorithm is the transient time required for the video level l(t) to match the
available bandwidth b(t).

In the following we will investigate the quality adaptation control law em-
ployed by Akamai HD network in order to adapt the video level to the available
bandwidth variations.

4.1 The case of a step-like change of the bottleneck capacity

We start by investigating the dynamic behaviour of the quality adaptation algo-
rithm when the bottleneck bandwidth capacity increases at time t = 50 s from a
value of Am = 500 kbps to a value of AM = 4000 kbps. It is worth to notice that
Am > l0 and that AM > l4 so that we should be able to test the complete dy-
namics of the l(t) signal. Since for t > 50s the available bandwidth is well above
the encoding bitrate of the maximum video level l4 we expect the steady state
video level l(t) to be equal to l4. The aim of this experiment is to investigate the
features of the quality adaptation control. In particular we are interested in the
dynamics of the received video level l(t) and of the receiver bu�er length q(t).
Moreover, we are interested to validate the command features described in the
previous Section.

Figure 5 shows the results of this experiment. Let us focus on Figure 5 (a)
that shows the dynamics of the video level l(t) and the estimated bandwidth b(t)
reported by the lvl1 parameter. In order to show their e�ect on the dynamics
of l(t), Figure 5 (a) reports also the time instants at which BUFFER_FAIL and
SWITCH_UP commands are issued.

The video level is initialized at l0 that is the lowest available version of
the video. Nevertheless, at time t = 0 the estimated bandwidth is erroneously
overestimated to a value above 3000 kbps. Thus, a SWITCH_UP command is sent
to the server. The e�ect of this command occurs after a delay of 7.16 s when
the channel level is increased to l3 = 2500 kbps that is video level closest to
the estimated bandwidth initialized at t = 0. By setting the video level to l3,
which is above the channel bandwidth Am = 500 kbps, the received bu�er length
q(t) starts to decrease and it eventually goes to zero at t = 17.5 s. Figure 5 (e)
shows that the playback frame rate is zero, meaning that the video is paused,
in the time interval [17.5, 20.8] s. At time t = 18.32 s, a BUFFER_FAIL command
is �nally sent to the server. After a delay of about 16 s the server switches
the video level to l0 = 300 kbps that is below the available bandwidth Am.
We carefully examined each BUFFER_FAIL and SWITCH_UP command and we
have found that to each BUFFER_FAIL command corresponds a decrease in the
video level l(t). On the other hand, when a SWITCH_UP command is issued the
video level is increased. Moreover, we evaluated the delays incurring each time
such commands are issued. We found that the average value of the delay for
SWITCH_UP is τsu ' 14 s, whereas for what concerns the BUFFER_FAIL command
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Fig. 5: Akamai adaptive video streaming response to a step change of available
bandwidth at t = 50s



the average value is τsd ' 7 s. These delays pose a remarkable limitation to the
responsiveness of the quality adaptation algorithm.

By considering the dynamics of the received frame rate, shown in Figure 5
(e), we can infer that the quality adaptation algorithm does not throttle the
frame rate to shrink the video sending rate. We can conclude that the video
level l(t) is the only variable used to adapt the video content to the network
available bandwidth.

Let us now focus on the dynamics of the estimated bandwidth b(t). When
the bottleneck capacity increases to AM = 4000 kbps, b(t) slowly increases and,
after a transient time of 75 s, it correctly estimates the bottleneck capacity AM .
Figure 5 (a) shows that SWITCH_UP commands are sent to select level li when
the estimated bandwidth b(t) becomes su�ciently greater than li. Due to the
large transient time of b(t), and to the delay τsu, the transient time required for
l(t) to reach the maximum video level l4 is around 150 s. Even though we are
not able to identify the algorithm that Akamai employs to adapt l(t), it is clear
that, as we expected, the dynamics of the estimated bandwidth plays a key role
in controlling l(t). Finally, to assess the performance of the quality adaptation
algorithm, we evaluated the e�ciency η by using equation (2), �nding a value
of 0.676 and the average absolute error |qT (t)− q(t)| that is equal to 3.4 s.

Another important feature of Akamai streaming server can be inferred by
looking at Figure 5 (c) that shows the throttle signal T (t) and time instants at
which rtt-test commands are issued. The �gure clearly shows that each time
a rtt-test command is sent, the throttle signal is set to 500%. By comparing
Figure 5 (b) and Figure 5 (c) we can infer that when a rtt-test command is
sent the received video rate shows a peak which is close to the channel capacity,
in agreement with (1). Thus, we can state that when the throttle signal is 500%
the video �ow acts as a greedy TCP �ow. For this reason, we conjecture that
the purpose of such commands is to actively probe for the available bandwidth.

In order to validate equation (1), Figure 6 compares the measured received
video rate with the maximum sending rate that can be evaluated as r(t) =
T (t)
100 l(t). The �gure shows that equation (1) is able to model quite accurately
the maximum rate at which the server can send the video. Nevertheless, it is
important to stress that the measured received rate is bounded by the available
bandwidth and its dynamics depends on the TCP congestion control algorithm.

The last feature we investigate in this scenario is the way the throttle signal
T (t) is controlled. In �rst instance, we conjecture that T (t) is the output of a
feedback control law whose goal is to make the di�erence between the target
bu�er length qT (t) and the bu�er length q(t) as small as possible. Based on the
experiments we run, we conjecture the following control law:

T (t) = max

(
(1 +

qT (t)− q(t)
qT (t)

)100, 10

)
(3)

The throttle signal is 100%, meaning that r(t) = l(t), when the bu�er length
matches the bu�er length target, i.e. when qT (t) = q(t). When the error qT (t)−
q(t) increases, T (t) increases accordingly in order to allow the maximum sending
rate r(t) to increase so that the bu�er can be �lled.
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Figure 7 compares the measured throttle signal with the dynamics obtained
by using the conjectured control law (3). Apart from the behaviour of the throt-
tle signal in correspondence of the rtt-test commands that we have already
commented above, equation (3) recovers with a small error the measured throttle
signal.

To summarize, the main results of this experiment are the following: 1) the
only variable used to adapt the video source to the available bandwidth is the
video level l(t); 2) the video level l(t) takes around 150 s to match the available
bandwidth; 3) when a BUFFER_FAIL command is sent to switch the video level
down, the server takes τsd ' 7 s to actuate this command; 4) when a SWITCH_UP
command is sent to switch the video level up, the server takes τsu ' 14 s to
actuate the command; 5) when a rtt-test command is issued the throttle signal
is set to 500% allowing the video �ow to act as a greedy TCP �ow to actively
probe for the available bandwidth; 6) a feedback control law is employed to
ensure that the player bu�er length q(t) tracks the desired bu�er length qT (t).

4.2 The case of a square-wave varying bottleneck capacity

In this experiment we show how the quality adaptation algorithm reacts in re-
sponse to abrupt drops/increases of the bottleneck capacity. Towards this end,
we let the bottleneck capacity to vary as a square-wave with a period of 200 s,
a minimum value Am = 400 kbps and a maximum value AM = 4000 kbps. The
aim of this experiment is to assess if Akamai adaptive video streaming is able to
quickly shrink the video level when an abrupt drop of the bottleneck capacity
occurs in order to guarantee continuous reproduction of the video content.

Figure 8 shows the results of this experiment. Let us �rst focus on Figure 8
(a): when the �rst bandwidth drop occurs at time t ' 208 s, a BUFFER_FAIL is
sent to the server after a delay of roughly 7 s in order to switch down the video
level from l3 to l0. After that, a switch-down delay τsd of 7 s occurs and the
video level l(t) is �nally switched to l0. Thus, the total delay spent to correctly
set the video level l(t) to match the new value of the available bandwidth is 14 s.
Because of this large delay an interruption in the video reproduction occurs 13 s
after the bandwidth drop as it can be inferred by looking at Figure 8 (d) and
Figure 8 (e). The same situation occurs when the second bandwidth drop occurs.
In this case, the total delay spent to correctly set the video level is 16 s. Again,
13 s after the second bandwidth drop, an interruption in the video reproduction
occurs. We found an e�ciency η = 1 when the bandwidth is Am = 400 kbps, i.e.
the quality adaptation algorithm delivers the best possible quality to the client.
On the contrary, during the time intervals with bandwidth AM = 4000 kbps,
the e�ciency is roughly 0.5. Finally, in this scenario the average absolute error
|qT (t)− q(t)| is equal to 3.87 s.

To summarize, this experiment has shown that short interruptions a�ect the
video reproduction when abrupt changes in the available bandwidth occur. The
main cause of this issue is that the video level is switched down with a delay of
roughly 14 s after the bandwidth drop occurs.
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Fig. 8: Akamai adaptive video streaming response to a square-wave available
bandwidth with period 200 s



4.3 The case of one concurrent greedy TCP �ow

This experiment investigates the quality adaptation algorithm dynamics when
one Akamai video streaming �ow shares the bottleneck capacity with one greedy
TCP �ow. The bottleneck capacity has been set to 4000 kbps, a video streaming
session has been started at t = 0 and a greedy TCP �ow has been injected at
time t = 150 s and stopped at time t = 360 s.

Figure 9 (a) shows the video level dynamics l(t) and the estimated bandwidth
b(t). Vertical dashed lines divide the experiment in three parts.

During the �rst part of the experiment, i.e. for t < 150 s, apart from a short
time interval [6.18, 21.93] s during which l(t) is equal to l4 = 3500 kbps, the video
level is set to l3 = 2500 kbps. The e�ciency η in this part of the experiment is
0.74.

When the second part of the experiment begins (t = 150 s), the TCP �ow
joins the bottleneck grabbing the fair bandwidth share of 2000 kbps. Neverthe-
less, the estimated bandwidth b(t) decreases to the correct value after 9 s. After
an additional delay of 8 s, at t = 167 s, a BUFFER_FAIL command is sent (see
Figure 9 (a)). The video level is shrunk to the suitable value l2 = 1500 kbps
after a total delay of 24 s. In this case, this actuation delay does not a�ect the
video reproduction as we can see by looking at the frame rate dynamics shown
in Figure 9 (e). At time t = 182 s a second BUFFER_FAIL command is set and
the video level is shrunk after the usual delay τsd ' 7 s at time t = 189 s. At
time t = 193 s an rtt-test command is issued so that for a short amount of
time the video �ow becomes greedy (see Subsection 4.1). At time t = 196 s the
bandwidth is estimated to 2200 kbps so that a SWITCH_UP command is sent and
at t = 212 s the video level is switched up to the suitable value of l2 = 1500 kbps.
The e�ciency η in this part of the experiment is 1, i.e. the best video quality
has been provided.

Finally, when the TCP �ow leaves the bottleneck at time t = 360 s, the
level is switched up to l3 = 2500 kbps with a delay of 26 s. In this part of the
experiment the e�ciency is 0.69.

To summarize, this experiment has shown that the Akamai video streaming
�ow correctly adapt the video level when sharing the bottleneck with a greedy
TCP �ow.

5 Conclusions

In this paper we have shown the results of an experimental evaluation of Akamai
adaptive streaming. The contribution of this paper is twofold: �rstly, we have
analyzed the client-server protocol employed in order to actuate the quality
adaptation algorithm; secondly, we have evaluated the dynamics of the quality
adaptation algorithm in three di�erent scenarios.

For what concerns the �rst issue, we have identi�ed the POST messages that
the client sends to the server to manage the quality adaptation. We have shown
that each video is encoded in �ve versions at di�erent bitrates and stored in
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Fig. 9: Akamai adaptive video streaming when sharing the bottleneck with a
greedy TCP �ow



separate �les. Moreover, we identi�ed the feedback variables sent from the client
to the server by parsing the parameters of the POST messages. We have found
that the client sends commands to the server with an average interdeparture time
of about 2 s, i.e. the control algorithm is executed on average each 2 seconds.

Regarding the second issue, the experiments carried out in the three consid-
ered scenarios let us conclude that Akamai uses only the video level to adapt
the video source to the available bandwidth, whereas the frame rate of the video
is kept constant. Moreover, we have shown that when a sudden increase of the
available bandwidth occurs, the transient time to match the new bandwidth is
roughly 150 seconds. Furthermore, when a sudden drop in the available band-
width occurs, short interruptions of the video playback can occur due to the a
large actuation delay. Finally, when sharing the bottleneck with a TCP �ow, no
particular issues have been found and the video level is correctly set to match
the fair bandwidth share.
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