
      17.1  Introduction   

 Quantifying individual differences and the pheno-
typic correlates of dispersal are of considerable inter-
est for obtaining a better understanding of the 
mechanisms of dispersal ( Bowler and Benton  2005  ; 
 Clobert  et al .  2009  ;  Morales  et al .  2010  ). The aim of 
this chapter is to present a new approach for model-
ling animal dispersal, based on net squared dis-
placement statistics combined with a non-linear 
hierarchical modelling framework. It allows effi cient 
construction of accurate population redistribution 
kernels, quantifi cation of individual differences in 
dispersal, and testing hypothesized correlates of the 
latter (Börger  et al . unpublished manuscript). 

 The chapter is organized as follows. Firstly, we 
explore the theoretical basis for using net squared 
displacement as a statistical modelling approach. 
This is followed by a simulation study to investi-
gate the data requirements and power of the pro-
posed method, ending with general conclusions.  

     17.2  Theoretical considerations   

     17.2.1  Net squared displacement as a synthetic 
measure of animal movement rate   

 Consider an organism, or in general any object, 
moving for a certain interval of time t . The straight-
line, or Euclidian, distance from the start to the end 
point is called the net displacement and the square 
of this value is the net squared displacement (NSD; 
 Turchin  1998  ). The NSD is a single time-dependent 
distance statistic which is fundamental for quanti-

fying movements of organisms or particles ( Codling 
et al .  2008  ;  Nouvellet  et al .  2009  ;  Skellam  1951  ; 
 Turchin  1998  ), and in general random processes 
( Uhlenbeck and Ornstein  1930  ). 

 The mean (i.e. expected) value of the NSD over 
time is called the mean net squared displacement 
(MSD). MSD estimates can be obtained as the aver-
age over multiple recording sessions, or as the aver-
age over a given time unit for single-trajectory data 
( Elliott  et al .  2011  ;  Turchin  1998  ). In the simplest case 
of a freely moving Brownian particle over longer 
timescales (the so-called diffusive regime) the MSD 
will increase linearly with time ( t ): 

   = 4MSD Dt   (Equation 17.1)   

 where  D  is the diffusion constant (multiplied by 
four for two-dimensional movements, by two for 
movements in one dimension) and t  denotes the 
time since start, whereas over very short timescales 
the value increases as a quadratic function of time 
due to inertial forces, called ballistic motion ( Einstein 
 1905  ;  Langevin  1908  ;  Li  et al .  2010  ;  Moorcroft and 
Lewis  2006  ;  Turchin  1998  ;  Uhlenbeck and Ornstein 
 1930  ). In general, the form of the MSD over time 
may deviate from a linear pattern due to movement 
constraints or external forces; thus a more general 
equation for the MSD over time is the power-law 
formulation ( Codling  et al .  2008  ;  Metzler and Klafter 
 2000  ;  Turchin  1998  ):

   MSD Dtα=   (Equation 17.2)   

 When α > 1 the motion is called super-diffusive, 
sub-diffusive if α < 1, and normal diffusion for α = 1. 
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The inferior limit to sub-diffusion occurs when 
movements are constrained by an external bound-
ary or when animals remain always in the same 
area, called the home range (reviewed in  Börger 
et al .  2008  ). In this case, it can be shown ( Turchin 
 1998  ) that the MSD initially will increase linearly 
over time as for diffusion (Equation 17.1), but the 
rate of increase will decrease over time and reach a 
steady-state constant value:
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 where  c  is an advection coeffi cient quantifying the 
strength of the tendency to return to the home range 
centre (the localizing tendency,  see Moorcroft and 
Lewis  2006  ;  Chapter  10  ). 

 Given these results, we can also predict the broad-
scale pattern of the MSD over time for dispersal (see 
 Fryxell  et al .  2008   for a data-driven approach using 
GAM models). Specifi cally, dispersal is a three-stage 
multi-phase process ( sensu   Fryxell  et al .  2008  ;  Nathan 
et al .  2008  ); i.e. two stationary space use phases (the 
departure and settlement phases) separated by an 
exploratory transience phase ( Bowler and Benton 
 2005  ;  Clobert  et al .  2004  ;  Van Dyck and Baguette 
 2005  ). Thus, the MSD value will be close to zero 
during the pre-dispersal (or departure) phase, 
increase linearly over time during the transience 
phase, and converge to a stationary value at the set-
tlement phase, hence leading to a sigmoid shape for 
the expected MSD. Note that we consider here only 
large-scale patterns—for example, short-scale 
exploratory movements are often observed during 
the departure or the transience phases ( Clobert  et al.
 2009  ), yet are considered here as temporary devia-
tions from the long-term pattern;  see Turchin ( 1998  ) 
for the importance of focusing on the timescale of 
interest, whilst ignoring shorter time patterns. This 
approach can be extended to predict the MSD pat-
terns of migratory animals ( Kölzsch and Blasius 
 2008  ) by considering migration as a combination of 
two dispersal events, where the second ‘dispersal’ 
event returns the animal to the point of origin (and 
thus the MSD decreases again to zero, which leads 
to an expected double-sigmoid shape), as we con-
sider in detail elsewhere ( Börger  et al .  2011  ; 
 Bunnefeld  et al .  2011  ). 

 The NSD is thus a single time-dependent move-
ment statistic which encapsulates key statistical 

properties of movement processes, allowing to link 
empirical measures directly with theoretical 
 expectations of its mean (expected) value (the MSD). 
It circumvents several of the diffi culties of tradi-
tional random walk analysis based on modelling 
distributions of step length and turning angle 
( Nouvellet  et al.   2009  ). Importantly, it does not rely 
on equally spaced, regularly sampled locations, as 
displacement is modelled as a continuous function 
of time. Thus, NSD constitutes an ideal probe for 
assessing the support from the data for alternative 
movement models ( Moorcroft and Lewis  2006  ; 
 Nouvellet  et al.   2009  ;  Turchin  1998  ). In the following 
section we describe an effi cient inferential approach 
to link models to data, based on non-linear models.  

     17.2.2  Capturing the functional form of 
displacement patterns with non-linear models   

 Animal movements are best understood as lying on 
a continuum between the extremes of sedentarism 
and nomadism ( Börger  et al .  2011  ). In the previous 
section, we showed that the NSD effi ciently cap-
tures key statistical properties of movement proc-
esses and that the expected value of the displacement 
over time (MSD) can be derived from theory for dif-
ferent movement processes (e.g. Equations 17.1–
17.3). Here we show how a system of non-linear 
models can be used to link the theoretical expecta-
tions to movement data. 

 A key characteristic of nomadic animals is that 
they never remain in the same area for a long time. 
Over larger scales this will lead to a diffusive space 
use pattern, with a linear increase of the MSD over 
time (Equation 17.1) or, more generally, a power 
model (Equation 17.2). Obviously, at even larger 
scales, the movements may deviate from a linear 
pattern due to, for example, regional constraints to 
movements, but we do not consider such complica-
tions here. At the other extreme, for sedentary ani-
mals restricting their movements within a home 
range area the MSD value will initially increase lin-
early but eventually approach a steady-state value 
(Equation 17.3). Consequently, the change over time 
of the MSD can be modelled using a simple equa-
tion for asymptotic regression through the origin:

   1 2[1 exp( )]MSD t= -f f   (Equation 17.4)   
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 where  Φ1  is the asymptote at the steady-state equi-
librium, and Φ2  is the logarithm of the rate 
constant.

 Finally, the expected form of the MSD will be sig-
moid for dispersers (see previous section) and thus 
can be modelled using the equation for the logistic 
curve:

   
3

4

5

( )
1 exp

MSD
t

=
é ù-

+ ê ú
ë û

f
f

f
  (Equation 17.5)   

 where  Φ3  is the asymptote at the steady-state equi-
librium (settlement) and thus quantifi es dispersal 
distance; Φ4  is a parameter for the infl exion point, in 
units of time since start ( t ), and thus models the 
timing of the transience phase (note that MSD = 
Φ3 /2 at time t = Φ4 ; i.e. half the dispersal distance 
has been reached);  Φ5  is a scale parameter on the 
time axis governing the shape of the curve—given 
Φ3  and  Φ4  it determines the time elapsed between 
reaching half and approximately 3/4 of the asymp-
tote—and thus predicts how long dispersers stay in 
the transience phase. Specifi cally, 95% of the dis-
persal distance will be reached at the following set-
tlement time:

   4 53 .settlet φ φ= +   (Equation 17.6)   

 Thus,  tsettle  can be taken as a reasonable estimate of 
the start of the settlement phase (similarly for the 
start of the transience phase). 

 Having derived a set of non-linear MSD equa-
tions, maximum likelihood methods within a model 
selection framework can be used to identify the 
movement type and estimate model parameters 
from observational data (for an example applied to 
migration,  see Bunnefeld  et al .  2011  ; but see follow-
ing). In order to quantify also variation between 
individuals, an effi cient approach is to use non-lin-
ear mixed effects models, as we detail in the next 
section.   

     17.3  The modelling approach: 
hierarchical non-linear models   

     17.3.1  Non-linear mixed effects models   

 Non-linear mixed effects models, a form of hierar-
chical non-linear model, are an effi cient approach to 

estimate parameters and make inferences on fea-
tures underlying profi les of continuous, repeated 
measurements from a sample of individuals from a 
given population of interest ( Davidian and Giltinan 
 2003  ;  Pinheiro and Bates  2000  ). Of particular interest 
for observational data, such as most movement data, 
is that mixed effects models are robust to missing or 
unbalanced data, and that subject-specifi c estimates 
for individuals with limited data are improved by 
‘borrowing strength’ from information available for 
other individuals ( Pinheiro and Bates  2000  ). 

 Non-linear mixed effects models are an extension 
of linear mixed models and are usually viewed as 
two-stage ( Davidian and Giltinan  2003  ;  Pinheiro 
and Bates  2000  ): 

 Stage 1: Individual-level model. 

  ( , ) , 1, , , 1, ,ij ij ij ij iy f x i M j nε= + = ¼ = ¼F
 (Equation 17.7)   

 where  f  is a non-linear function of an individual-spe-
cifi c parameter vector  Φij  and of the covariate vector  xij , 
εij  is a normally distributed noise term, Equations 17.7 
and 17.8: M  is the number of individuals, and  ni  is the 
number of records for the  i  th individual. Note that the 
noise term may include the effects of measurement 
error as well as of deviations caused by other, short-
scale, movement processes. Specifi cally, the function  f
is non-linear in one or more components of the indi-
vidual-specifi c parameter vector  Φij , where the latter is 
modelled in the second stage as: 

 Stage 2: Population model.

  2, ~ (0, )ij ij ij i iA B b b N D= +F b s   (Equation 17.8)   

 where  β  is a vector of fi xed population parameters 
(fi xed effects ),  bi  is a  random effects  vector associated 
with the i th individual (and invariant with  j ),  Aij

and Bij  are design matrices for the fi xed and random 
effects, and σ2D  is a variance-covariance matrix 
(D  characterizes the magnitude of  natural  inter-
individual variation; i.e. variation in the elements of 
Φij  not accounted for by systematic association with 
the individual attributes in β , the fi xed effects vec-
tor). Both the matrices Aij  and  Bij  depend on the 
individual, and also on the values of some covari-
ates at the j th record (thus also time-varying covari-
ates can be included in the fi xed and random 
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effects). Observations on different individuals are 
assumed to be independent and the residuals are 
assumed to be normally distributed and independ-
ent of the random effects (but these assumptions 
can be relaxed,  see Pinheiro and Bates  2000  ;  Chapter  8  ). 
Two types of predictions are obtained: population 
predictions, corresponding to random effects equal 
to zero, and individual-specifi c predictions, 
obtained by adding the estimated random effects 
(which model subject-specifi c deviations from the 
population patterns). 

 Two important issues to consider are determin-
ing which effects should be modelled with an asso-
ciated random component and which should be 
entirely a fi xed effect, and how to use covariates to 
explain inter-individual parameter variability 
( Pinheiro and Bates  2000  ). Regarding the random 
effects, the preferred approach is to start with all 
parameters as mixed effects (i.e. allowing for indi-
vidual variation for all model parameters), then 
using AIC to compare alternative models. This may 
not always be possible, due to non-convergence of 
the full model, or one of the random effects may be 
very small compared to the others. In such cases, a 
common approximation is to choose a model with-
out an associated random effect for the component 
of concern, in order to achieve parsimony and 
numerical stability in fi tting ( Davidian and Giltinan 
 2003  ). For example, we found that in many instances 
the dispersal model (Equation 17.5) may be best fi t-
ted without including a random effect for the scale 
parameter ( f5 ), in order to avoid overfi tting. Once 
the most appropriate random effect structure has 
been determined, fi xed effects covariates are fi tted 
as linear models of the model parameters. 

 Model parameters can be estimated using several 
methods ( Pinheiro and Bates  2000  ). We used the 
likelihood-based methods implemented in the nlme 
package ( Pinheiro  et al .  2011  ) for R ( R Development 
Core Team  2011  , version 2.12.2), based on maximum 
log-likelihood.

 Given the availability of theoretical models for 
the expected NSD relationships ( Section  17.2  ), and 
an effi cient modelling approach to estimate time-
related variation for each individual, an important 
consideration can be raised. Traditional approaches 
focus on MSD patterns, i.e. values averaged over 
time or between repeated recording sessions in 

order to obtain the broad-scale patterns, while aver-
aging out shorter-scale variation due to other 
sources. For many animal movement studies, how-
ever, suffi cient data to calculate MSD values are not 
available, due to logistical constraints. Yet once a 
model for a theoretical expectation is available, non-
linear mixed models offer an effi cient approach to 
identifying the relevant signal even with highly 
noisy and unbalanced data. This suggests that simi-
lar inferences may be obtained by applying the 
approach to the observed, non-averaged NSD data 
directly derived from each individual trajectory. In 
 Section  17.4   we investigate this suggestion using a 
simulation study.  

     17.3.2  The model selection approach   

 Given the set of  a priori  models derived from theory 
linking different movement behaviours to the 
expected squared displacement patterns ( Section  17.2  ) 
it would appear that information-theoretic criteria, 
such as AIC ( Burnham and Anderson  2002  ), could 
be used to identify the most likely movement type 
used by the animals under study. However, given 
that non-linear mixed models make predictions at 
the population and individual levels, the situation 
is considerably more complex, and global measures 
of goodness-of-fi t (GOF) at the population level, as 
AIC or also R 2 , may be insuffi cient or even grossly 
misleading in determining the GOF of fi tted models 
( Huang  et al.   2009  ). For example, often a sample of 
individual location data may contain both seden-
tary and dispersing individuals and thus it is cru-
cial to assess GOF for individual subjects.  Huang 
et al.  ( 2009  ) developed formulae for non-linear 
mixed models, highlighting especially the advan-
tages of using the concordance correlation (CC) 
coeffi cient calculated at the subject-specifi c level 
(see equation 7 in  Huang  et al.   2009  , p.2421):

    
( )

( ) ( ) ( )

2

1

2 22

1 1

ˆ

1
ˆ ˆ ˆ

i

i i

n

ij ij
j

i n n

ij ij i
j j

y y

CC
y y y y n y y

=

= =

-
= -

- + - + -

å

å å
.

 (Equation 17.9)   

 where      y    ̄      and      ŷ̄      are the means of the observed ( yij ) 
and predicted (ŷij ) values for individual  i  and n i  is 
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the subject-specifi c number of locations. The con-
cordance criterion measures the level of agreement 
between the observed and predicted values, and is 
a combined measure of the degree of accuracy and 
precision of pairs of values of y i  and ŷi  on the iden-
tity line (the concordance line or the 45° line 
through the origin) and any CC £ 0 indicates lack of 
fi t ( Huang  et al.   2009  ). To evaluate the GOF of the 
model, it is important to investigate individual-
specifi c GOF measures and their frequency distri-
bution ( Huang  et al.   2009  ). Using simulations, we 
evaluate the adequacy of the different approaches 
in  Section  17.4  .  

     17.3.3  Deriving dispersal kernels from net 
squared displacement models   

 The estimated NSD distances are a prediction of the 
average location of an individual over time. Thus, 
an effi cient way to obtain an equation for dispersal 
kernels that takes into account the observed indi-
vidual variability in movements is to estimate the 
distribution of parameter values for Equation 17.5 
that captures the population distribution. Given 
that in most populations the distribution of disper-
sal distances is typically characterized by a long tail 
of large distance values, a robust approach is to cal-
culate the quartiles of the predicted individual dis-
placement distances for each time step and to fi t 
separate non-linear models to each. The obtained 
parameter estimates are the values predicting where 
50% and 100% of the population will be found at 
each time step.   

     17.4  Simulation study: evaluating data 
requirements and power   

 We used simulations to test whether individual-
level dispersal parameters can be estimated using 
the proposed NSD approach, even in the presence 
of substantial individual variability. To do so, we 
simulated daily movements of 140 dispersers over 
three years, using the adehabitat library in R 
 (Calenge  2006  , version 1.8.4). Sedentary space-use 
patterns during the pre-dispersal and settlement 
phases were modelled using a Ornstein-Uhlenbeck 
process  (Blackwell  1997  ), as implemented in the 

sim.mou  function, which simulates the movements 
of an individual moving randomly but constantly 
attracted to a central location ( Börger  et al.   2008  ). 
Movements during the transience phase were simu-
lated using a correlated random walk as imple-
mented in the sim.crw  function. The start of the 
transience phase was randomly selected for each 
individual between 30 and 515 days after start. The 
transience phase lasted between 30 and 90 days, 
selected randomly for each individual and inde-
pendently from the timing of the transience phase. 
The last location of the transience phase became the 
attraction point of the settlement phase Ornstein-
Uhlenbeck function and the distance of this location 
from the start point was taken as the true dispersal 
distance.

 For each simulated movement path we calculated 
the NSD after start for each location. To investigate 
the sensitivity of our approach to different meas-
ures of MSD, we calculated MSDs over intervals of 
three, seven, 14, 30, and 90 days (with each value 
attributed to the mid-time point) and repeated all 
analyses for each. Similarly, to test if NSD values 
can be used directly (see Section 3.1) and evaluate 
the impact of sampling frequency, we also simu-
lated fi ve different sampling regimes (one location 
every three, seven, 14, 30, and 90 days). We fi tted 
the dispersal model (Equation 17.5) and extracted 
the estimated individual-level dispersal parameters 
(using Equation 17.6 for obtaining the estimates of 
the end and start of dispersal). We repeated this 
procedure 100 times, for a total 14 000 simulated 
movement paths and 140 000 models fi tted to the 
ten different MSD and NSD measures. 

 True simulated dispersal distances varied over 
two orders of magnitude and the samples contained 
both individuals dispersing over the fi rst as well the 
second year after start. Results were clear ( Figure 
 17.1  )—the true values of distance and timing of dis-
persal were always recovered with high effi ciency 
(r > 0.95), with no difference between using NSD or 
MSD values (e.g. for estimating dispersal distances, 
it made no difference to use one location every 90 
days or one location every three days). Only esti-
mates of the departure and settlement times become 
inaccurate when the sampling interval is coarser 
then the true process—see the estimates for the 30- 
and 90-days sampling regime in  Figure  17.1  . For 
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similar problems associated with too infrequently 
sampled location data, see Mysterud  et al . ( 2011 ); 
the impact of these problems will, however, be 
markedly reduced by using the hierarchical model-
ling approach (combined with the CC statistic) that 
we present here (see results following), as compared 
to the individual-fi t approach we presented else-
where for migration ( Bunnefeld  et al .  2011  ) and 
adopted by Mysterud  et al . ( 2011 ).   

 In order to test the ability to identify the correct 
movement process, we fi tted to the data also the 
models for sedentary and nomadic animals 
(Equations 17.1–17.4) and compared all models 
using both global measures of goodness-of-fi t (AIC/
BIC, R 2 , and global CC statistics) as well as individ-
ual-level measures (individual-level CC i ). In all 
cases, the dispersal model unambiguously received 
the highest support, but only the individual-level 
CC statistics highlighted poor model fi t (CC < = 0) 
for a small set of simulated data. An inspection of 
the associated movement paths indicated that the 
simulated movement paths were peculiar; e.g. the 
correlated random walk during the transience 
phase had initially moved far from the start loca-
tion, but by chance had returned to the departure 
location before the start of the settlement phase. 

 To investigate the ability of the approach to sepa-
rate dispersal from other large-scale movement pat-
terns, we simulated datasets with individuals 

moving according to three different movement 
types: 120 were modelled as dispersers as described, 
ten always remained within a home range (mod-
elled using an Ornstein-Uhlenbeck process), and 
ten were nomadic over the whole time period (mod-
elled with a correlated random walk). We also eval-
uated an alternative model selection approach, by 
separately fi tting the alternative models to each 
individual location set and evaluating the adequacy 
of the competing models using the CC, R2, and 
AIC weight statistics calculated for each individ-
ual movement path. We repeated this procedure 
100 times. Results were clear—classifi cation success 
using the hierarchical approach combined with the 
individual-level CC statistic was markedly higher 
compared to fi tting alternative models separately to 
each single movement path (overall 81% correct 
space use modes identifi ed; 88% for dispersers, with 
up to 100% accuracy for single simulations consist-
ing of a set of 140 simulated movement paths). 

 We lastly evaluated the power of the approach 
to correctly estimate population-level differences 
such as sex differences: we simulated a sample of 
140 individuals coming from two groups with dif-
ferent mean dispersal distances, timing of dispersal, 
or both, by modelling individual model parameters 
for the logistic curve (Equation 17.5) using normal 
distributions with different means. We simulated 
three scenarios, with groups differing in mean 
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    Figure 17.1  Distribution of estimated and true simulated individual-level dispersal parameters (100 simulations of a set of 140 movement paths). Models 
were fi tted to simulated data using fi ve different types of mean net squared displacement statistics (MSD; calculated by averaging the simulated daily net 
squared displacement values over fi ve different time periods, ranging from three (‘MSD3d)’ to 90 days (‘MSD90d’) or non-averaged net squared 
displacement values (NSD) obtained from fi ve different simulated sampling regimes (from one location every three days (‘NSD3d’) to one locations every 90 
days (‘NSD90d’). See text for further details.     
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 dispersal distance (mean = 60 km versus 39 km or 
versus 55 km, variance = 300 km 2 ) or/and also tim-
ing of dispersal (mean = 100 versus 110 days after 
start, variance = 10, with 60 km versus 55 km mean 
dispersal distance, respectively). The scale parame-
ter was always sampled from a normal distribution 
with mean = 6 and variance = 1. Each simulation 
consisted of 140 movement paths with equal or 
unequal sample size between the groups (in the lat-
ter case, 130 versus 10 or 135 versus fi ve individu-
als). We used the individual model parameters to 
generate the true NSD curves over three years, to 
which we added two error sources, taken from nor-
mal distributions with mean zero and standard 
deviations of 14 km or 1.7 km, respectively, to simu-
late stochasticity caused by other movement types 
and by location error. We calculated NSD/MSD 
 values with different sampling regimes, fi tted the 
dispersal model and extracted the fi xed effects 
 population predictions and associated p-values. 
For each scenario we repeated the simulations 
1000 times, for a total of 140 000 simulated NSD 
patterns.

 Results were clear ( Figure  17.2  ). The difference in 
true mean dispersal distance could be recovered 
with near certainty even in the most restrictive sce-
nario (fi ve versus 135 individuals) with no appreci-
able difference even when using only one location 
every 90 days (and p < 0.05 in 99% of the 1000 simu-
lations). Similarly, differences in the timing of dis-
persal could be detected, except when using too 
sparsely sampled locations (one location every 30 
and, especially, 90 days;  Figure  17.2  ), in accordance 
with previous simulations. The statistical power, 
however, was lower, as a signifi cant p-value was 
obtained only in 58% of the simulations (27% for the 
90-days sampling regime). The power increased 
with better sample sizes between the two groups.    

     17.5  Conclusions   

 A problem highlighted by current research is to 
develop methods to account for the typically high 
degree of individual variability in dispersal behav-
iour, in order to develop dispersal kernels of 
improved predictive ability. We demonstrated that 
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by modelling NSD patterns within a non-linear 
mixed effects modelling framework, highly accu-
rate dispersal kernels can be estimated and deter-
minants of individual differences can be tested 
within the same framework. By including a general 
theoretical framework for movement studies, we 
demonstrated how to objectively separate dispers-
ers from non-dispersing individuals. The method 
works also on sparsely sampled movement data, 
without requiring equal sampling intervals between 
locations, and thus might prove applicable for a 
wide range of taxa.   
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