Luca Pasquali

Luca Pasquali
Università degli Studi di Modena e Reggio Emilia | UNIMO · Department of Engineering "Enzo Ferrari"

Doctor of Philosophy

About

160
Publications
21,190
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,487
Citations
Citations since 2016
58 Research Items
1239 Citations
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200
2016201720182019202020212022050100150200

Publications

Publications (160)
Article
Full-text available
A simple first-principles approach is used to estimate the core level shifts observed in X-ray photoelectron spectroscopy for the 4f electrons of Hf, Ta, W, and Re; these elements were selected because their 4f levels are relatively close to the Fermi energy. The approach is first tested by modeling the surface core level shifts of low-index surfac...
Article
Full-text available
In this work, the infiltration of TiN powders by electrophoretic deposition (EPD) in aqueous media was considered as alternative method to reduce the size craters and the roughness of commercial porous Ti substrates. Ti substrates can be used as suitable supports for the deposition of dense hydrogen separation TiNx-based membranes by physical vapor...
Article
Full-text available
The precursors have significant influence on the catalytic activity of nonprecious electrocatalysts for effective water splitting. Herein, we report active electrocatalysts based on cobalt oxide (Co3O4) hierarchical nanostructures derived from four different precursors of cobalt (acetate, nitrate, chloride, and sulfate salts) using the low‐temperat...
Article
Full-text available
X-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create seconda...
Article
Full-text available
Today, despite considerable efforts undertaken by the scientific community, the mechanisms of carcinogenesis of mineral fibres remain poorly understood. A crucial role in disclosing the mechanisms of action of mineral fibres is played by in vitro and in vivo models. Such models require experimental design based on negative and positive controls. Co...
Article
Full-text available
The ongoing miniaturization of electronic devices has boosted the development of new post-silicon two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, one of the most prominent materials being molybdenum disulfide (MoS 2 ). A major obstacle for the industrial production of MoS 2 -based devices lies in the growth techniques...
Data
Supplementary Video 2 for Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging
Article
Full-text available
In this review, the technique of resonant soft X-ray reflectivity in the study of magnetic low-dimensional systems is discussed. This technique is particularly appealing in the study of magnetization at buried interfaces and to discriminate single elemental contributions to magnetism, even when this is ascribed to few atoms. The major fields of app...
Article
Today, cancer is one of the main health issues faced in the workplace, with asbestos an important carcinogen in the occupational environment. Among the asbestos minerals, chrysotile is the main species of socio-economic and industrial relevance. Although chrysotile asbestos is classified as a “carcinogenic substance” by the International Agency for...
Article
Full-text available
Nanocluster aggregation sources based on magnetron-sputtering represent precise and versatile means to deposit a controlled quantity of metal nanoparticles at selected interfaces. In this work, we exploit this methodology to produce Ag/MgO nanoparticles (NPs) and deposit them on a glass/FTO/TiO2 substrate, which constitutes the mesoscopic front ele...
Article
This Letter reports an original spin valve device that is based on a chiral templated nickel material. Chirality in Ni is induced by exploiting co-electrodeposition of an organic chiral template. In this specific case, the chiral templating is enantiopure tartaric acid (TA). Facile electrodeposition (co-deposition) in ambient conditions produces a...
Article
Full-text available
This scientific work aims to optimize the preparation of titanium nitride coatings for selective H2 separation using the Reactive High Power Impulse Magnetron Sputtering technology (RHiPIMS). Currently, nitride-based thin films are considered promising membranes for hydrogen. The first series of TiNx/Si test samples were developed while changing th...
Preprint
Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e. related to the interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular)...
Article
Full-text available
The presence of non-hexagonal rings in the honeycomb carbon arrangement of graphene produces rippled graphene layers with valuable chemical and physical properties. In principle, a bottom-up approach to introducing distortion from planarity of a graphene sheet can be achieved by careful insertion of curved polyaromatic hydrocarbons during the growt...
Article
Full-text available
Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n‐type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) si...
Article
Full-text available
X-ray-activated near-infrared luminescent nanoparticles are considered as new alternative optical probes due to being free of autofluorescence, while both their excitation and emission possess a high penetration efficacy in vivo. Herein, we report silicon carbide quantum dot sensitization of trivalent chromium-doped zinc gallate nanoparticles with...
Article
Full-text available
We present here a method for the quantitative prediction of the spectroscopic specular reflectivity line-shape in anisotropic layered media. The method is based on a 4 × 4 matrix formalism and on the simulation from the first principles (through density functional theory—DFT) of the anisotropic absorption cross-section. The approach was used to sim...
Article
In article number 2000617, Claudio Fontanesi and co‐workers study the camphor sulfonic acid induction of chirality on the supermolecular structure of electropolymerized aniline. The emergence of chirality is also associated to spin filtering properties of the chiral polymer, revealed by conducting probe atomic force microscopy in the presence of a...
Article
The focus of this paper is on the intermolecular interaction active between polyaniline (PANI) and 10‐camphorsulfonic acid (10CSA). Enantiopure 10CSA, present in the electropolymerization solution, promotes chiral induction in the supramolecular polyaniline polymer (cPANI). Tight integration of experimental data (circular dichroism, CD, near edge X...
Article
Full-text available
The self‐assembly of electroactive organic molecules on transparent conductive oxides is a versatile strategy to engineer the interfacial energy‐level alignment and to enhance charge carrier injection in optoelectronic devices. Via chemical grafting of an aromatic oligothiophene molecule by changing the position of the phosphonic acid anchoring gro...
Article
Full-text available
The self‐assembly of electroactive organic molecules on transparent conductive oxides is a versatile strategy to engineer the interfacial energy‐level alignment and to enhance charge carrier injection in optoelectronic devices. Via chemical grafting of an aromatic oligothiophene molecule by changing the position of the phosphonic acid anchoring gro...
Article
We have probed the structural and magnetic properties of a ferromagnetic/organic interface constituted by a polycrystalline Co layer deposited on a fullerene thin film through resonant soft X-ray reflectivity measurements. The fitting analysis of the reflectivity indicates the formation of a sharp interface with limited intermixing and a null reman...
Preprint
Full-text available
We examine the charge density wave (CDW) properties of 1T-VSe2 crystals grown by chemical vapour transport (CVT) under varying conditions. Specifically, we find that by lowering the growth temperature (Tg < 630C), there is a significant increase in both the CDW transition temperature and the residual resistance ratio (RRR) obtained from electrical...
Article
We examine the charge density wave (CDW) properties of 1T-VSe2 crystals grown by chemical vapour transport (CVT) under varying conditions. Specifically, we find that by lowering the growth temperature (Tg < 630C), there is a significant increase in both the CDW transition temperature and the residual resistance ratio (RRR) obtained from electrical...
Preprint
Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both intrinsic and extrinsic, especially for n-type materials. Intrinsic dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids...
Article
Ultrathin layers of gold, from 2 to 25 nm of nominal coverage, have been deposited on sodium-alginate biopolymer foils applying two alternative approaches: low power sputtering and thermal evaporation. The morphology of the deposited layers was obtained by means of atomic force microscopy. In the early stages of growth, thermal evaporation gives ri...
Article
In California, the metamorphic blueschist occurrences within the Franciscan Complex are commonly composed of glaucophane, which can be found with a fibrous habit. Fibrous glaucophane's potential toxicity/pathogenicity has never been determined and it has not been considered by the International Agency for Research on Cancer (IARC) as a potential ca...
Article
Full-text available
Asbestos is a commercial term indicating six natural silicates with asbestiform crystal habit. Of these, five are double-chain silicates (amphibole) and one (serpentine asbestos or chrysotile) is a layer silicate. Although all species are classified as human carcinogens, their degree of toxicity is still matter of debate. Amphibole asbestos species...
Article
Full-text available
Electroactive self-assembled monolayers (SAMs) bearing a ferrocene (Fc) redox couple were chemically assembled on H-terminated semiconducting degenerate-doped n-type Si(111) substrate. This allows to create a Si(111)|organic-spacer|Fc hybrid interface, where the ferrocene moiety is covalently immobilized on the silicon, via two alkyl molecular spac...
Article
Resonant soft x-ray absorption was applied at the S L2,3 (2p) edges of thin films of 1,4-benzenedimethanethiol (BDMT) on gold and of sexithiophene (6 T) on flat and patterned CaF2 surfaces. Linear dichroism effects were clearly observed depending on the orientation of the electric field vector of the incoming radiation. They were related to the org...
Article
Resonant soft X-ray reflectivity at the carbon K-edge was applied to a trigonal tetracene single crystal. The angular resolved reflectivity was quantitatively simulated describing the tetracene crystal in terms of its dielectric tensor, which was derived from the anisotropic absorption cross section of the single molecule, as calculated by density...
Article
Pre‐formed Ag nanoparticles (NPs) and Ag@CaF2 core–shell NPs are physically synthesized using DC magnetron‐based NP source and deposited on Si‐SiOx wafers. The samples are prepared by co‐depositing Ag nanoparticles and CaF2 produced by an evaporation source, or by sequential deposition method, i.e., by depositing in a sequence a CaF2 buffer layer,...
Article
Full-text available
We have clarified the origin of a magnetically dead interface layer formed in yttrium iron garnet (YIG) films grown at above 700 °C onto a gadolinium gallium garnet (GGG) substrate by means of laser molecular beam epitaxy. The diffusion-assisted formation of a Ga-rich region at the YIG/GGG interface is demonstrated by means of composition depth pro...
Article
Full-text available
Transition metal dichalcogenides, such as molybdenum disulfide (MoS2), show peculiar chemical/physical properties that enables their use in applications ranging from micro- and nano-optoelectronics to surface catalysis, gas and light detection and energy harvesting/production. One main limitation to fully harness the potential of MoS2 is given by t...
Article
Spin-Dependent Electrochemistry (SDE) is a new paradigm in electrochemistry where the electrochemical response of a chiral electrode|solution interface is studied as a function of spin-polarized current. In this work, the SDE concept is further developed exploring the use of the “chiral imprinting” concept, which is implemented in two different, co...
Article
Full-text available
Fibrous erionite is classified by the International Agency for Research on Cancer (IARC) as carcinogenic substance to humans (Group 1). In the areas where it is present in the bedrock, it may cause environmental exposure, and both professional and environmental exposures are possible when the bedrock is used for industrial applications (e.g., build...
Article
In this work we propose a realistic model of nanometer-thick SiC/SiOx core/shell nanowires (NWs) using a combined first-principles and experimental approach. SiC/SiOx core/shell NWs were first synthesised by a low-cost carbothermal method and their chemical-physical experimental analysis was accomplished by recording X-ray absorption near-edge spec...
Article
Weathering of photocatalytic TiO2 coatings represents an important issue for the successful application of TiO2-based self-cleaning materials. Photocatalytic efficiency of the as-prepared materials is crucial for commercialization; however, changes in the coating performance due to weathering become a critical factor for practical applications. Mor...
Article
Full-text available
Vertical cross-bar devices based on manganite and cobalt injecting electrodes and metal-quinoline molecular transport layer are known to manifest both magnetoresistance and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the magnetoresistance and magnetic modulation of...
Article
Full-text available
We present a study of the functionalization of a monocrystalline ZnO surface using aromatic dithiols. The aim is to obtain a sulfur terminated self-assembled monolayer (SAM), which is then used for creation of further molecular superstructures with intercalated metal atoms. These metal-molecule self-assembled structures are characterized by high re...
Article
Herein, we describe the use of soft X-ray reflectivity at the carbon K-edge to study the molecular organization (orientation, structure, and morphology) of pentacene active films in a top-contact transistor geometry. This technique is not affected by sample charging, and it can be applied in the case of insulating substrates. In addition, the sampl...
Article
A new oligothienyl-based metallopolymer including Co(terpyridine)2 complex units is synthesised by electrochemical oxidation of the relevant monomer. The chemical structure of the polymer chains and the electronic interaction between the organic portions and the metal centres are investigated by spectroscopic (X-rays photoelectron spectroscopy incl...
Article
We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pul...
Article
Self-assembly of dithiol molecules is of interest because these can be used as linkers between metallic or semiconductor entities and thus employed in molecular electronics and plasmonic applications, or for building complex heterostructures. Here we focus on dithiol self-assembly by evaporation in vacuum, a method that could circumvent the dithiol...
Article
Full-text available
Correction for ‘Functionalization of SiC/SiOx nanowires with a porphyrin derivative: a hybrid nanosystem for X-ray induced singlet oxygen generation’ by R. Tatti et al., Mol. Syst. Des. Eng., 2017, DOI: 10.1039/c7me00005g.
Article
Singlet oxygen has attracted great attention in physical, chemical, as well as biological studies, mainly due to its high reactivity and strong oxidising properties. In this context, hybrid nanosystems comprised of (inorganic) X-ray absorbing nanostructures and (organic) light-sensitive material (photosensitizers) can potentially overcome the limit...
Article
Full-text available
Singlet oxygen has attracted great attention in physical, chemical, as well as biological studies, mainly due to its high reactivity and strong oxidising properties. In this context, hybrid nanosystems comprised of (inorganic) X-ray absorbing nanostructures and (organic) light-sensitive material (photosensitizers) can potentially overcome the limit...
Article
In multiphase/multilayer solid electrolytes, the composition, reactivity, and structure of interfaces between materials and phases play a fundamental role for fast ion-conduction. Here, the properties of buried interfaces in prototypical fast ion-conducting LaF3/SrF2 epitaxial multilayers are investigated. Photoelectron spectroscopy-both with soft-...
Article
α-Sexithiophene (6T) ultrathin films have been grown on CaF2(111)/Si(111) planar surfaces and on CaF2(110)/Si(001) ridged surfaces by molecular beam epitaxy. The growth mode has been studied by means of Atomic Force Microscopy (AFM), photoemission and near edge X-ray absorption fine structure (NEXAFS). AFM reveals a substantial difference in the fi...
Article
The unoccupied electronic structure of thick films of tetraphenylporphyrin and tetrakis(pentafluorophenyl)porphyrin Cu(ii) complexes (hereafter, CuTPP and CuTPP(F)) deposited on Au(111) has been studied by combining the outcomes of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with those of spin-unrestricted time-dependent density...
Article
Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing t...
Article
Singlet oxygen has attracted great attention in physical, chemical, as well as biological studies, mainly due to its high reactivity and strong oxidising properties. In this context, hybrid nanosystems comprised of (inorganic) X-ray absorbing nanostructures and (organic) light-sensitive material (photosensitizers) can potentially overcome the limit...
Article
Full-text available
This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption...
Article
Full-text available
Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur...
Article
A combination of ultraviolet and X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and first principle calculations was used to study the electronic structure at the interface between the strong molecular acceptor 1,3,4,5,7,8-hexafluorotetracyano-napththoquinodimethane (F6TCNNQ) and a graphene layer supported on either a quartz or a c...
Article
Full-text available
This article reports on a facile and fast strategy for the self-assembled monolayer (SAM) functionalization of nickel surfaces, employing cyclic voltammetry (CV) cycling of a suitable tailored solution containing the species to be adsorbed. Results are presented for ultrathin films formed on Ni by 1-hexadecanethiol (C16), L-cysteine (L-cys), and th...
Article
Full-text available
Ag and Ag@MgO core-shell nanoparticles (NPs) with a diameter of d = 3-10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiO x (Si/SiO x ). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diff...
Article
Four linear terarylene molecules (i) 4-nitro-terphenyl-4''-methanethiol (NTM), (ii) 4-nitro-terphenyl-3'',5''-dimethanethiol (NTD), (iii) ([1,1';4',1''] terphenyl-3,5-diyl)methanethiol (TM) and (iv) ([1,1';4',1''] terphenyl-3,5-diyl)dimethanethiol (TD) have been synthesized and their self-assembled monolayers (SAMs) have been obtained on polycrysta...
Article
Full-text available
The unoccupied electronic structure of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin thick films deposited on SiO2/Si(100) native oxide surfaces has been thoroughly studied by combining the outcomes of near-edge X-ray absorption fine structure spectroscopy at the C, N, and F K-edges with those of scalar relativistic zeroth order regul...
Article
In this work we study systematically the evaporative adsorption in high vacuum conditions, of 1,4 benzenedimethanethiol (BDMT) onto different metal surfaces: Ag(111), Au(110), Cu(100), and Cu(111). The study is carried out by photoemission using synchrotron radiation. In case of Ag(111) and Au(110), at low exposures, a lying down BDMT phase is form...
Article
In the case of reactive metals, on adsorption of organic chalcogenide molecules like thiols, chalcogenide-C bond scission can occur. Thus, the high reactivity of Pd leads to initial thiol dissociation and formation of a complex PdS interface layer on which thereafter thiol self-assembled monolayers (SAM) can form. In this context we investigate in...
Article
Full-text available
This paper explores the crystal chemical features of the bulk and the outermost (001) surface layers of two trioctahedral Li-rich mica-1M (space group C2) polytypes, i.e., a polylithionite (MLG-114) from Li-mica granitic pegmatite at St. Austell (SW England) and a Fe2+-rich polylithionite (Ch-140) from a rhyolite at Profitis Ilias, Chios Island, Gr...