Luca Faes

Luca Faes
Università degli Studi di Palermo | UNIPA · Dipartimento di Energia, Ingegneria dell'Informazione e Modelli Matematici (DEIM)

PhD

About

304
Publications
33,685
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,189
Citations
Additional affiliations
May 2007 - July 2007
Stony Brook University
Position
  • Visiting Scientist
January 2003 - present
Università degli Studi di Trento
Position
  • Researcher

Publications

Publications (304)
Article
Full-text available
Keeping up with the shift towards personalized neuroscience essentially requires the derivation of meaningful insights from individual brain signal recordings by analyzing the descriptive indexes of physio-pathological states through statistical methods that prioritize subject-specific differences under varying experimental conditions. Within this...
Article
Full-text available
Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to...
Article
Full-text available
Objective: Brain-heart interactions involve bidirectional effects produced by bottom-up input at each heartbeat , and top-down neural regulatory responses of the brain. While the cortical processing of the heartbeat is usually investigated through the analysis of the Heartbeat Evoked Potential, in this study we propose an alternative approach based...
Preprint
Full-text available
Concepts of Granger causality (GC) and Granger autonomy (GA) are central to assess the dynamics of coupled physiologic processes. While causality measures have been already proposed and applied in time and frequency domains, measures quantifying self-dependencies are still limited to the time-domain formulation and lack of a clear spectral represen...
Article
Full-text available
The properties of cardio-respiratory coupling (CRC) are affected by various pathological conditions related to the cardiovascular and/or respiratory systems. In heart failure, one of the most common cardiac pathological conditions, the degree of CRC changes primarily depend on the type of heart-rhythm alterations. In this work, we investigated CRC...
Article
Full-text available
The evaluation of propensity to postural syncope necessitates the concomitant characterization of the cardiovascular and cerebrovascular controls and a method capable of disentangling closed loop relationships and decomposing causal links in the frequency domain. We applied Geweke spectral causality (GSC) to assess cardiovascular control from heart...
Article
Full-text available
Odorant processing presents multiple parallels across animal species, and insects became relevant models for the study of olfactory coding because of the tractability of the underlying neural circuits. Within the insect brain, odorants are received by olfactory sensory neurons and processed by the antennal lobe network. Such a network comprises mul...
Preprint
Full-text available
Objective Brain-heart interactions involve bidirectional effects produced by bottom-up input at each heartbeat, and top-down neural regulatory responses of the brain. While the cortical processing of the heartbeat is usually investigated through the analysis of the Heartbeat Evoked Potential, in this study we propose an alternative approach based o...
Article
Full-text available
The increasing interest in innovative solutions for health and physiological monitoring has recently fostered the development of smaller biomedical devices. These devices are capable of recording an increasingly large number of biosignals simultaneously, while maximizing the user’s comfort. In this study, we have designed and realized a novel weara...
Article
Full-text available
Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two...
Article
Full-text available
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spati...
Article
The baroreflex (BR) is an important physiological regulatory mechanism which reacts to blood pressure perturbations with reflex changes of target variables such as the heart period (electrocardiogram derived RR interval) or the peripheral vascular resistance (PVR). Evaluation of cardiac chronotropic (RR as a target variable) and vascular resistance...
Article
This work presents a comparison between different approaches for the model-free estimation of information-theoretic measures of the dynamic coupling between short realizations of random processes. The measures considered are the mutual information rate (MIR) between two random processes [Formula: see text] and [Formula: see text] and the terms of i...
Article
Full-text available
O-information is an information-theoretic metric that captures the overall balance between redundant and synergistic information shared by groups of three or more variables. To complement the global assessment provided by this metric, here we propose the gradients of the O-information as low-order descriptors that can characterize how high-order ef...
Chapter
Recent advances in information theory have provided several tools to characterize high-order interactions (HOIs) in complex systems. Among them, the so-called O-information is emerging as particularly useful in practical analysis thanks to its ability to capture the overall balance between redundant and synergistic HOIs. While the O-information is...
Article
Full-text available
Heart Rate Variability (HRV) and Blood Pressure Variability (BPV) are widely employed tools for characterizing the complex behavior of cardiovascular dynamics. Usually, HRV and BPV analyses are carried out through short-term (ST) measurements, which exploit ~five-minute-long recordings. Recent research efforts are focused on reducing the time serie...
Preprint
Full-text available
Odorant processing presents multiple parallels across animal species, and insects became relevant models for the study of olfactory coding because of the tractability of the underlying neural circuits. Within the insect brain, odorants are received by olfactory sensory neurons and processed by the antennal lobe network. Such a network comprises mul...
Preprint
Full-text available
Heart Rate Variability (HRV) and Blood Pressure Variability (BPV) are widely employed tools for characterizing the complex behavior of cardiovascular dynamics. Usually, HRV and BPV analyses are carried out through short-term (ST) measurements, which exploit ~5 minute-long recordings. Recent research efforts are focused on reducing the time series l...
Article
Background and objective Recently, various algorithms have been introduced using wrist-worn photoplethysmography (PPG) to provide high accuracy of instantaneous heart rate (HR) estimation, including during high-intensity exercise. Most studies focus on using acceleration and/or gyroscope signals for the motion artifact (MA) reference, which attenua...
Article
We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrov...
Article
Full-text available
Objective: In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations. Approach: We consider physiological time series m...
Conference Paper
Isolated effective coherence (iCoh) is a measure of neural causal functional connectivity from EEG signals that was proven to overperform the Generalized Partial Directed Coherence (gPDC). However, iCoh sensitivity in the identification of reliable functional neural connections with respect to random links was not investigated. This study aims to c...
Conference Paper
Quantification of the cardiorespiratory and cerebrovascular couplings is a relevant clinical issue given that their changes are considered signs of pathological status. The inherent nonlinearity of mechanisms underlying cardiorespiratory and cerebrovascular links requires nonlinear tools for their reliable evaluation. In the present study we compar...
Article
Objective: While it is well-known that epilepsy has a clear impact on the activity of both the central nervous system (CNS) and the autonomic nervous system (ANS), its role on the complex interplay between CNS and ANS has not been fully elucidated yet. In this work, pairwise and higher-order predictability measures based on the concepts of Granger...
Article
Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the...
Preprint
Full-text available
O-information is an information-theoretic metric that captures the overall balance between redundant and synergistic information shared by groups of three or more variables. To complement the global assessment provided by this metric, here we propose the gradients of the O-information as low-order descriptors that can characterise how high-order ef...
Article
Full-text available
This work investigates the temporal statistical structure of time series of electric field (EF) intensity recorded with the aim of exploring the dynamical patterns associated with periods with different human activity in urban areas. The analyzed time series were obtained from a sensor of the EMF RATEL monitoring system installed in the campus area...
Preprint
Full-text available
Heart rate variability results from the combined activity of several physiological systems, including the cardiac, vascular, and respiratory systems which have their own internal regulation, but also interact with each other to preserve the homeostatic function. These control mechanisms operate across multiple temporal scales, resulting in the simu...
Article
Full-text available
Brain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the...
Preprint
Full-text available
While the standard network description of complex systems is based on quantifying links between pairs of system units, higher-order interactions (HOIs) involving three or more units play a major role in governing the collective network behavior. This work introduces an approach to quantify pairwise and HOIs for multivariate rhythmic processes inter...
Article
Full-text available
The amount of information exchanged per unit of time between two dynamic processes is an important concept for the analysis of complex systems. Theoretical formulations and data-efficient estimators have been recently introduced for this quantity, known as the mutual information rate (MIR), allowing its continuous-time computation for event-based d...
Chapter
Resting state brain networks have reached a strong popularity in recent scientific endeavors due to their feasibility to characterize the metabolic mechanisms at the basis of neural control when the brain is not engaged in any task. The evaluation of these states, consisting in complex physiological processes employing a large amount of energy, is...
Article
Full-text available
While the standard network description of complex systems is based on quantifying the link between pairs of system units, higher-order interactions (HOIs) involving three or more units often play a major role in governing the collective network behavior. This work introduces a new approach to quantify pairwise and HOIs for multivariate rhythmic pro...
Article
Full-text available
Dynamical system theory has recently shown promise for uncovering causality and directionality in complex systems, particularly using the method of convergent cross mapping (CCM). In spite of its success in the literature, the presence of process noise raises concern about CCM's ability to uncover coupling direction. Furthermore, CCM's capacity to...
Article
Objective: Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. Methods: Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding...
Article
Full-text available
Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes which cannot be described using pairwise links. Wh...
Article
Three approaches to the assessment of cerebrovascular autoregulation (CA) via the computation of the autoregulation index (ARI) from spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV) were applied: 1) a time domain method (TDM); 2) a nonparametric method (nonPM); 3) a parametric method (PM). Perfor...
Conference Paper
Heart Period (H) results from the activity of several coexisting control mechanisms, involving Systolic Arterial Pressure (S) and Respiration (R), which operate across multiple time scales encompassing not only short-term dynamics but also long-range correlations. In this work, multiscale representation of Transfer Entropy (TE) and of its decomposi...
Conference Paper
Extensive efforts have been recently devoted to implement fast and reliable algorithms capable of assessing the physiological response of the organism to physiological stress. In this study, we propose the comparison between model-free and linear parametric methods as regards their ability to detect alterations in the dynamics and in the complexity...
Conference Paper
We present the implementation to cardiovascular variability of a method for the information-theoretic estimation of the directed interactions between event-based data. The method allows to compute the transfer entropy rate (TER) from a source to a target point process in continuous time, thus overcoming the severe limitations associated with time d...
Conference Paper
Different information-theoretic measures are available in the literature for the study of pairwise and higher-order interactions in multivariate dynamical systems. While these measures operate in the time domain, several physiological and non-physiological systems exhibit a rich oscillatory content that is typically analyzed in the frequency domain...
Article
Full-text available
Assessing Granger causality (GC) intended as the influence, in terms of reduction of variance of surprise, that a driver variable exerts on a given target, requires a suitable treatment of ‘instantaneous’ effects, i.e. influences due to interactions whose time scale is much faster than the time resolution of the measurements, due to unobserved conf...
Article
Full-text available
While cross-spectral and information-theoretic approaches are widely used for the multivariate analysis of physiological time series, their combined utilization is far less developed in the literature. This study introduces a framework for the spectral decomposition of multivariate information measures, which provides frequency-specific quantificat...
Article
Full-text available
Recent developments in computational physiology have successfully exploited advanced signal processing and artificial intelligence tools for predicting or uncovering characteristic features of physiological and pathological states in humans. While these advanced tools have demonstrated excellent diagnostic capabilities, the high complexity of these...
Article
Full-text available
Multiple methods have been developed in an attempt to quantify stimulus-induced neural coordination and to understand internal coordination of neuronal responses by examining the synchronization phenomena in neural discharge patterns. In this work we propose a novel approach to estimate the degree of concomitant firing between two neural units, bas...
Article
The objective of this study is to present a new method to assess in the frequency domain the directed interactions between the spontaneous variability of systolic arterial pressure (SAP) and heart period (HP) from their linear model representation, and to apply it for studying the baroreflex control of arterial pressure in healthy physiological sta...
Article
Full-text available
Apnea and other breathing-related disorders have been linked to the development of hypertension or impairments of the cardiovascular, cognitive or metabolic systems. The combined assessment of multiple physiological signals acquired during sleep is of fundamental importance for providing additional insights about breathing disorder events and the a...
Article
Full-text available
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow b...
Article
Objective: While understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience, existing methods either do not consider the inherent point-process nature of spike trains or are based on parametric assumptions. This work presents an information-theoretic framework fo...
Article
Full-text available
Mental stress is a physiological condition that has a strong negative impact on the quality of life, affecting both the physical and the mental health. For such a reason, accurate measurements of stress level can be helpful to provide mechanisms for prevention and treatment. This paper proposes a procedure for the classification of different mental...
Article
Heartbeat regulation is achieved through different routes originating from central autonomic network sources, as well as peripheral control mechanisms. While previous studies successfully characterized cardiovascular regulatory mechanisms during a single stressor, to the best of our knowledge, a combination of multiple concurrent elicitations leadi...
Article
Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the local...
Article
Full-text available
jats:p>physiology to probe dynamic interactions between organ systems in the human body. To this end, we define different correlation-based measures of the multivariate interaction (MI) within and between the brain and body subnetworks of the human physiological network, represented, respectively, by the time series of δ, θ, α, and β electroencepha...
Preprint
Full-text available
Multiple methods have been developed in an attempt to quantify stimulus-induced neural coordination and to understand internal coordination of neuronal responses by examining the synchronization phenomena in neural discharge patterns. In this work we propose a novel approach to estimate the degree of concomitant firing between two neural units, bas...
Preprint
Full-text available
Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametr...
Preprint
Full-text available
Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger cau...