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Abstract
Neurological diseases, such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis (ALS) and multiple 
sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at 
all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical 
picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut micro-
biota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and 
upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview 
of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, 
considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with 
intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss 
whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune 
system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative 
process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network 
could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays 
its own distinct clinical features.
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Introduction

Neurological disorders, such as Parkinson’s disease (PD), 
Alzheimer’s disease (AD), amyotrophic lateral sclerosis 
(ALS) and multiple sclerosis (MS), are often associated 
with functional gastrointestinal (GI) disorders, including 
infrequent bowel movements, abdominal distension and 
constipation, which impact negatively on patients’ quality 
of life, thus contributing to the morbidity of these diseases 

and complicating their clinical management [4, 66, 74]. Of 
note, GI disturbances in neurological disorders may occur 
at all stages of the neurodegenerative process, to such an 
extent that they are now considered as an integral part of 
their clinical picture [78].

Several lines of evidence support the contention that, in 
central neurodegenerative diseases, imbalances of the neuro-
immune brain–gut axis could lead to the occurrence of 
enteric neuroinflammatory conditions and GI dysfunctions 
[69, 70]. Others, in keeping with the Braak’s hypothesis on 
the pathogenesis of PD, claim that central neurodegenera-
tive diseases could start in the enteric nervous system (ENS) 
and spread upwards progressively to the central nervous sys-
tem (CNS), through the nerve pathways connecting the gut 
to the brain (i.e., the vagus nerve) [21]. In this regard, the 
accumulation of α-synuclein (α-syn, a hallmark of PD) in 
myenteric neurons represents one of the earliest signs of the 
disease, which could contribute to the development of GI 
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disturbances and to the subsequent upward spreading of PD 
pathology through a prion-like transmission among neurons 
[87, 100]. There is also increasing evidence suggesting that 
changes in gut microbiota composition may contribute to GI 
disturbances and to the pathogenesis of several neurodegen-
erative diseases [97]. Indeed, PD, AD, ALS and MS patients 
display different colonic bacterial composition than healthy 
controls, with a shift towards a pro-inflammatory profile [5, 
13, 26, 50, 101].

Based on the above background, the present review has 
been intended to provide a comprehensive overview of cur-
rent knowledge on the role played by enteric microbiota, 
mucosal immune system and ENS, considered as an inte-
grated network, in the pathophysiology of the main neu-
rological diseases, including PD, AD, ALS and MS and 
their associated intestinal disturbances. In addition, based 
on current human and pre-clinical evidence, our intent was 
to critically discuss whether changes in the dynamic inter-
play between gut microbiota, intestinal epithelial barrier and 
enteric neuro-immune system are a consequence of central 

neurodegeneration or represent the starting point of the neu-
rodegenerative process. Special attention has been paid also 
to discuss whether alterations of the enteric bacterial-neuro-
immune network could represent a common path driving the 
onset of the main neurodegenerative diseases, even though 
each disease displays distinct clinical features.

Role of interactions among gut microbiota, 
intestinal mucosal barrier and enteric 
neuro‑immune system in the maintenance 
of gastrointestinal homeostasis

A dynamic interplay among the gut microbiota, intestinal 
epithelial barrier and enteric neuro-immune system contrib-
utes to the maintenance of digestive homeostasis (Fig. 1) 
[58]. Indeed, abnormal changes in gut microbiota composi-
tion (dysbiosis), alterations of the intestinal epithelial bar-
rier, uncontrolled immune responses to pathogenic stimuli 
and adaptive changes in the ENS represent the main factors 
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Fig. 1  Diagram showing the physiological role of the interactions 
among gut microbiota, intestinal mucosal barrier and enteric neuro-
immune system. (1) Enteric bacteria and their metabolic products, 
mainly SCFAs, contribute to preserve the integrity of the intestinal 
epithelial barrier, through the regulation of epithelial cell growth and 
differentiation, tight junction protein expression and mucosal perme-
ability. (2) Gut microbiota interacts directly with the enteric immune 
system. In particular, bacterial products (e.g., MAMPs and SCFAs) 
contribute to maintain intestinal immune innate tolerance. In addition, 
enteric bacteria can influence the development and differentiation of 
CD4+ and CD8+ T cells as well as B cell activity and IgA produc-
tion. (3) Gut microflora influences the development and function of 
the ENS and EGCs. In particular, microbe-derived products through 
the activation of TLRs, expressed in myenteric neurons and EGCs, 
influence the development and organization of enteric neural net-

works and digestive motility. (4) EGCs, through the release of spe-
cific mediators (e.g. GDNF, TGF-β1 and 15dPGJ2 glial factor) are 
involved in the maintenance of both ENS and epithelial barrier integ-
rity. (5) Gut microbiota can also regulate directly the digestive motil-
ity by stimulating the release of 5-HT from enterochromaffin cells 
and influencing the interplay between enteric neurons and muscularis 
macrophages through a regulation of the release of both  CSF1 and 
BMP2. Abbreviation: ENS: enteric nervous system; EGCs: enteric 
glial cells; CSF1: colony stimulatory factor; GDNF: glial cell-derived 
neurotrophic factor; MMs: muscolaris macrophages; 5-HT: serotonin; 
SERT: serotonin-selective reuptake transporter; SCFAs: short chain 
fatty acids; BMP2: soluble growth factor bone morphogenetic pro-
tein; TLR: toll-like receptor; MAMPs: microbe-associated molecular 
patterns; 15dPGJ2: 15-deoxy-(12,14)-prostaglandin J2 glial factor; 
TGF-β1: transforming growth factor beta-1
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implicated in the pathogenesis of several bowel disorders 
(e.g., inflammatory bowel diseases, irritable bowel syn-
drome and other functional digestive disorders) [99, 114]. 
In this context, the gut microbiota is currently regarded as a 
key player, and through interactions with all the other com-
ponents, it regulates both the maintenance and breakdown 
of gut homeostasis [15, 114].

The gut microbiota consists of more than one trillion of 
microorganisms, including bacteria, viruses, fungi and pro-
tozoans. The dominant bacterial species in the GI tract are 
fairly stable and comprise four main phyla: Bacteroidetes, 
Firmicutes, Actinobacteria and Proteobacteria [80]. Enteric 
bacteria interact directly with the intestinal epithelium, 
which, together with the mucus layer, represents a barrier 
interposed between the luminal contents and the underly-
ing immune, neuronal and muscular compartments [3]. The 

intestinal epithelium consists of several subsets of epithe-
lial cells, which are tightly bound together by intercellular 
junctional complexes (e.g., tight junction proteins, such as 
occludin, zonulin-1 and claudins, gap junctions, adherent 
junctions, and desmosomes) that ensure the epithelial bar-
rier integrity and regulate the paracellular permeability [35]. 
Enteric bacteria (e.g. Faecalibacteria) and their metabolic 
products, mainly short chain fatty acids (SCFAs), contribute 
directly to preserve the integrity of the intestinal epithelial 
barrier, through the regulation of cell growth and differen-
tiation, tight junction protein expression and mucosal per-
meability [88]. Indeed, specific changes in gut microbiota 
composition can lead to a disruption of intestinal epithelial 
barrier and increase in mucosal permeability, with conse-
quent bacterial translocation into the mucosa and possible 
systemic dissemination [3] (Fig. 2).
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Fig. 2  Diagram showing the common pathophysiological intestinal 
paths to the main neurodegerative diseases, including PD, AD, ALS 
and MS. In particular, gut dysbiosis and an increased intestinal per-
meability can promote enteric neuro/inflammatory events that, 
besides the induction of bowel motor dysfunctions, could trigger, 
via gut-brain ascending pathways, neuroinflammation and neuro-
degeneration in CNS. In this setting, central neuroinflammation and 

subsequent neurodegeneration could contribute to exacerbate enteric 
neuro-immune/inflammatory conditions via brain-gut descending 
pathways, in a sort of a positive loop that could drive the chronici-
zation of the ongoing neuroinflammatory process. ALS amyotrophic 
lateral sclerosis, AD Alzheimer’s disease, MS multiple sclerosis, PD 
Parkinson’s disease
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Besides the intestinal epithelium, gut microbiota interacts 
directly with the enteric immune system, contributing to the 
maintenance of immune tolerance and shaping the immune 
responses during inflammation [90].

Under eubiotic conditions, microbe-associated molecu-
lar patterns (MAMPs), expressed by gut microbiota, acti-
vate pattern recognition receptors, such as transmembrane 
surface or endosome toll-like receptors (TLRs), on innate 
immune cell surface, inducing the secretion of anti-inflam-
matory mediators, which contribute to maintain intestinal 
immune tolerance [58]. Conversely, upon pathogen inva-
sion, dysbiosis or barrier break, MAMPs stimulate mac-
rophages and dendritic cells to produce pro-inflammatory 
cytokines that, in turn, activate adaptive immune cells, thus 
contributing to the breakdown of immune homeostasis [58]. 
Besides innate immune cells, enteric bacteria can directly 
affect adaptive immune responses [8]. The main compo-
nents of the adaptive immune system are T cells, in particu-
lar CD4 + and CD8 + T cells [105]. Upon stimulation, naive 
CD4 + T cells can differentiate into seven subtypes: T helper 
1 (Th1), Th2, Th9, Th17, Th22, regulatory T cells (Treg) 
or T follicular helper (Tfh) cells, which express different 
arrays of transcription factors and cytokines [105]. The gut 
microbiota influences the development and differentiation of 
both CD4+ and CD8+ T cells. Indeed, germ-free (GF) mice 
display a marked decrease in the number of both CD4+ and 
CD8+ T cells, and treatment with SCFA mixtures is asso-
ciated with an increase in the density of T cells [91, 105]. 
Taken together, these findings suggest that the gut micro-
biota and the enteric immune system interact continuously 
to maintain a complex dynamic equilibrium supporting the 
intestinal homeostasis.

Emerging evidence suggests that the gut microflora influ-
ences the development and function of the ENS [67]. Indeed, 
changes in gut microbiota composition or a full ablation of 
enteric bacteria in mice are associated with a substantial 
decrease in the density of myenteric neurons and the occur-
rence of bowel motor dysfunctions, suggesting that enteric 
bacteria are significant determinants of ENS trophism [59]. 
The ENS, consisting of the myenteric (or Auerbach’s) and 
the submucosal (Meissner’s) plexus, is an intrinsic neuronal 
semiautonomous network, which regulates digestive func-
tions (e.g., motility and secretion) and cooperates with the 
CNS through sympathetic and parasympathetic pathways 
[32]. An important component of the ENS is represented by 
enteric glial cells (EGCs), which are associated with both 
submucosal and myenteric neurons [33]. EGCs are located 
also in proximity to epithelial cells and their terminal end-
feet processes run to the epithelial basement membrane and 
blood capillaries [111]. Of note, EGCs, through the release 
of specific mediators (e.g., glial cell-derived neurotrophic 
factor [GDNF], transforming growth factor [TGF] β1 and 
15-deoxy-(12,14)-prostaglandin J2 [15dPGJ2] glial factor) 

are pivotally involved in the maintenance of both ENS and 
epithelial barrier integrity [1, 64]. In addition, EGCs coordi-
nate signal propagation from and to myenteric neurons and 
epithelial cells, thus regulating the bowel motility as well 
as the secretory and absorptive functions of enteric epithe-
lium [111]. The gut microbiota is also able to regulate the 
initial colonization of EGCs in the intestinal mucosa [48]. 
Indeed, GF mice show a marked decrease in the density of 
mucosal EGCs [48]. The molecular mechanisms underlying 
the enteric bacteria-ENS interplay rely mainly on TLRs, in 
particular TLR-2 and -4, expressed in myenteric neurons 
and EGCs. Once activated by microbe-derived products, 
these receptors influence the development and organization 
of enteric neural networks as well as chloride secretion and 
digestive motility [10].

Overall, the interplay among gut microbiota, intestinal 
epithelial barrier, enteric immune system and ENS gives 
rise to a dynamic network aimed at coordinating the GI 
physiology and preserve the integrity of gut microenviron-
ment. Interestingly, over the last years, the enteric bacte-
ria-neuro-immune system has also emerged as a pivotal 
network involved in a plethora of physiological functions 
ranging from energy balance and metabolism to the mod-
ulation of adipose tissue, liver, skeletal muscle and brain 
functions [31, 36, 104]. In support of this view, gut dys-
biosis, morphofunctional alterations of the intestinal epi-
thelial barrier, activation of immune/inflammatory cells 
and neuroplastic changes in the ENS, besides representing 
main factors underlying intestinal inflammatory diseases, 
have been associated directly with the pathogenesis of sev-
eral extra-digestive diseases (e.g., obesity, type 2 diabetes, 
immune-mediated diseases and neurological disorders) [31, 
67, 92, 104]. Therefore, it is conceivable that the interac-
tions among gut microbiota, intestinal epithelial barrier and 
enteric neuro-immune system, besides preserving the integ-
rity of gut microenvironment, contribute also to coordinate 
several extra-digestive physiological processes of the host 
[31, 36, 104].

Role of the interactions among gut 
microbiota, intestinal mucosal barrier, 
immune system, enteric nervous system 
and vagus nerve in the maintenance of brain 
homeostasis

A growing body of evidence highlights the relevance of gut 
microbiota and its interactions with intestinal mucosal bar-
rier, immune system and ENS-vagus nerve pathways in the 
maintenance of brain homeostasis [30, 31]. Indeed, altera-
tions of enteric bacteria, besides determining the break-
down of intestinal homeostasis, have been found to affect 
several brain biological processes (e.g., development and 
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neurogenesis) and behavior (e.g., anxiety, depression, learn-
ing and memory) [26, 55, 60, 97]. In this regard, a number 
of exhaustive review articles have provided already well-
integrated overviews about the role of gut microbiota and 
its interactions with endocrine-neuro-immune pathways in 
the maintenance of brain homeostasis [20, 31, 57, 96, 97]. 
Therefore, in this section, we discuss briefly the most promi-
nent data about the role of gut microbiota in the regulation of 
several physiological processes in the CNS, and provide an 
overview of the main hypothesized mechanisms underlying 
the microbiota gut–brain (MGB) communications.

Most of current evidence, supporting the influence of 
enteric bacteria on CNS functions, comes from preclini-
cal studies on GF mice [55]. In a recent study, Erny et al. 
[25] observed that GF mice displayed an altered density, 
morphology and maturity of microglia, the most abundant 
resident immune cells in the brain, involved in neurodevel-
opment, phagocytosis, antigen presentation, cytokine pro-
duction and activation of inflammatory responses [63]. In 
particular, microglial cells in GF mice were characterized 
by longer processes and branching as well as an increased 
expression of colony-stimulating factor 1 (CSF1) receptor, 
F4/80 and CD31, all these factors being known to undergo 
a decrease in their expression throughout the development 
of the brain toward an adult-stage phenotype. Moreover, the 
authors observed that treatment with a SCFA mixture in 
GF mice restored the density and morphology of microglia, 
thus suggesting that gut microbiota can influence both the 
development and functions of CNS immune cells [25]. Other 
pioneering studies have shown that GF mice are character-
ized by a decreased expression of brain-derived neurotrophic 
factor (BDNF), a neurotrophin involved in neurogenesis, 
neuronal survival, differentiation, growth, and synaptic 
plasticity, in the cortex, amygdala and hippocampus [34, 
68, 94]. Braniste et al. [7] reported that GF animals display 
a decreased occludin and claudin-5 tight junction protein 
expression in the frontal cortex, striatum and hippocampus 
as well as an increased permeability of the blood–brain bar-
rier (BBB). Moreover, they observed that the subsequent 
mono-colonization of GF mice with Clostridium tyrobutyri-
cum or Bacteroides thetaiotaomicron or their treatment with 
butyrate increased the expression of tight junction proteins 
and restored paracellular permeability, thus indicating that 
enteric bacteria contribute to preserve the BBB integrity 
[7]. Taken together, these findings suggest that gut micro-
biota influences significantly several physiological processes 
in the CNS, including development, neurogenesis, neuro-
transmission and immune cell activity, thus contributing to 
the maintenance of brain homeostasis. In this context, the 
MGB axis, including enteric bacteria as well as endocrine, 
neuronal and immune pathways, is currently regarded as the 
key player in the regulation of mutual signaling between gut 
microflora and CNS [31, 55, 77, 96].

The current hypothesized mechanisms underlying MGB 
communications rely mainly on interactions of the gut micro-
flora with intestinal mucosal barrier, immune system and/or 
ENS-vagus nerve pathways. In particular, the enteric bacteria 
and their metabolites (e.g., SCFAs) can stimulate directly the 
enterochromaffin cells to produce several neuropeptides (e.g., 
peptide YY, neuropeptide Y, cholecystokinin, glucagon-like 
peptide-1 and -2, and substance P) or neurotransmitters (e.g., 
serotonin), which, in turn, can diffuse into the blood stream, 
reach the brain and influence directly CNS functions [12]. In 
addition, the intestinal epithelium regulates the translocation 
of specific bacterial products (e.g., SCFAs, vitamins or neu-
rotransmitters, such as acetylcholine, dopamine, noradrena-
line, gamma-aminobutyric acid or serotonin) into the blood 
stream, which, in turn, through the circulatory system, can 
spread upwards to the CNS [31, 82, 103]. Therefore, it appears 
that circulating microbiota-derived metabolites, neuropeptides 
and neurotransmitters can enter the CNS and influence directly 
its neurobiology. Intestinal bacteria and their products can acti-
vate also intestinal and circulating innate and adaptive immune 
cells, which, in turn, migrate to the CNS and influence brain 
functions, via the brain lymphatic network, thus suggesting 
that the immune system contributes to communications across 
the MGB axis [54, 81]. However, the mechanisms through 
which immune cells coordinate the gut–brain axis remain still 
poorly understood and deserve extensive future investigations.

Of note, gut microbiota has been found to interact with 
ENS-vagus nerve pathways [32]. In particular, bacterial 
derived-neurotransmitters and neuropeptides can activate 
directly myenteric neurons, which, through vagal nerve 
ascending fibers, deliver nerve inputs to the brain [43]. In 
support of this view, vagotomy prevented the anxiolytic and 
antidepressant effects of Lactobacillus rhamnosus in wild-type 
mice [9]. However, the mechanisms underlying gut microbi-
ota-ENS-vagus nerve interaction remain to be clarified. In 
addition, there is a lack of data about the possible role of sym-
pathetic nerve pathways connecting the gut to the brain.

Overall, the gut microbiota and its interactions with the 
intestinal mucosal barrier, the immune system and the ENS-
vagus nerve pathways give rise to a dynamic network deputed 
to the coordination of brain physiology. However, future inves-
tigations are required to clarify in detail the molecular and 
cellular mechanisms underlying the bacteria-neuro-immune 
pathways connecting the gut to the brain both in health and 
under pathological conditions.
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Pathophysiological role of the interactions 
among gut microbiota, intestinal mucosal 
barrier and enteric neuro‑immune system 
in neurodegenerative diseases

Recent experimental and clinical investigations have been 
focused on the putative role of gut microbiota, intestinal 
immune system or ENS, regarded as distinct determi-
nants, in the pathophysiology of central neurodegenerative 

diseases and related GI dysfunctions. However, it is being 
increasingly appreciated that, in this setting, gut micro-
biota, mucosal barrier and enteric neuro-immune system 
should be considered as an integrated mutually interacting 
network. The most prominent data on the alterations of the 
interplay among gut microbiota, intestinal mucosal barrier 
and enteric neuro-immune system in the most common 
neurological diseases are addressed in the following sec-
tions and summarized in Tables 1 and 2.

Table 1  Summary of intestinal alterations in patients with central neurodegenerative diseases

PD Parkinson’s disease, AD Alzheimer’s disease, MS multiple sclerosis, ALS amyotrophic lateral sclerosis, SCFAs short chain fat acids, TNF 
tumor necrosis factor, IF-γ interferon gamma, IL-6 interleukin-6, IL-1β interleukin-1 beta, GFAP glial fibrillary acidic protein, ZO-1 zonilun-1, 
LPS lipopolysaccharides

Neuro-
logical 
disorder

Main changes in gut microbiota com-
position

Morphofunctional alterations of intesti-
nal epithelial barrier

Intestinal neuro/immune inflammatory 
responses

Refs.

PD Bacteroidetes (conflicting evidence)
= Firmicutes (conflicting evidence)
Blautia, Coprococcus, Roseburia, 
Escherichia coli, Akkermansia, Bifido-
bacterium, Flavonifractor and Lacto-
bacillus, Christensenella, Catabacter, 
Oscillospira, Christensenella minuta, 
Catabacter hongkongensis, Lactoba-
cillus mucosae, Ruminococcus bromii, 
and Papillibacter cinnamivorans
Ralstonia, Faecalibacterium praus-
nitzii, Clostridium coccoides and 
Bacteroides fragilis, Dorea, Bac-
teroides, Bacteroides massiliensis, 
Stoquefichus massiliensis, Bacteroides 
coprocola, Blautia, glucerasea, Dorea 
longicatena, Bacteroides dorei, Bacte-
roides pebeus, Coprococcus eutactus, 
Ruminococcus callidus
Enterobacteriaceae, Lachnospiraceae 
Lactobacillaceae, Verrucomicrobi-
aceae
Prevotellaceae (Prevotella copri), 
Erysipelotrichaceae (Eubacterium 
biforme), Barnesiellaceae and Entero-
coccacea
Fecal SCFAs levels (butyrate, acetate, 
propionate)

No functional alterations of intestinal 
permeability
Occludin expression

No changes in ZO-1 expression
LPS serum levels

Nitrotyrosine
Pro-inflammatory cytokines (TNF, 
IF-γ, IL-6, IL-1β)

Enteric glia activation ( GFAP, Sox-
10, S100-beta)

[52]
[91]
[106]
[29]
[43]
[44]
[90]
[3]
[46]
[76]
[17]
[18]
[25]
[31]

AD Bacteroides and Blautia
SMB53 and Dialister

n.a Colonic CD68 macrophages
Fecal calprotectin levels

[109]
[54]
[80]

ALS  Firmicutes/Bacteroidetes ratio
 Oscillibacter, Anaerostipes, Lachno-

spiraceae

n.a n.a [28]

MS Bacteroides (Bacteroides stercoris, 
Bacteroides coprocola, and Bacte-
roides coprophilus)
Pseudomonas, Mycoplana, Haemophi-
lus, Blautia, and Dorea genera

Intestinal permeability ( Urinary man-
nitol concentration)

ENS nerve fiber disintegration
Enteric gliosis

[15]
[64]
[12]
[116]
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Parkinson’s disease

GI dysfunctions represent the most common non-motor clin-
ical manifestations of PD and, most importantly, it has been 
acknowledged that such GI disturbances represent one of the 
earliest signs of the disease [22]. In this context, intensive 
research efforts have been made to achieve an integrated 
view about the role of gut microbiota, intestinal mucosal 
barrier and enteric neuro-immune system in the pathophysi-
ology of PD and related GI disturbances.

Clinical evidence, generated through the analysis of fecal 
and mucosal colonic microbiota, indicates that PD patients 
are characterized by relevant changes in enteric bacteria 
composition [50, 85, 98]. Some authors found that PD 
patients display an expansion of Bacteroidetes along with a 
reduced relative abundance of Firmicutes, thus suggesting a 
pattern of “pro-inflammatory” dysbiosis, characterized by a 
decrease in “anti-inflammatory” SCFA butyrate-producing 
bacteria, belonging to the genera Blautia, Coprococcus and 
Roseburia, and an increase in “pro-inflammatory” bacteria 

Table 2  Summary of intestinal alterations in animal models of neurodegenerative disorders

PD Parkinson’s disease, AD Alzheimer’s disease, MS multiple sclerosis, ALS amyotrophic lateral sclerosis, SCFAs short chain fat acids, TNF 
tumor necrosis factor, IF-γ interferon gamma, IL-6 interleukin-6, IL-1β interleukin-1 beta, GFAP glial fibrillary acidic protein, ZO-1 zonilun-1, 
MyD88 Myeloid differentiation primary response 88, NF-kB nuclear factor kB, iNOS inducible nitric oxide synthase, LPS lipopolysaccharide, 
α-syn α-synuclein, MPTP l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine, TH tyrosine hydroxylase, COX-2 cyclooxygenase, TIMP-1 tissue inhibi-
tor of metalloproteinases 1, Na-F Sodium fluorescein, BACE-1 proteolytic enzyme beta-site amyloid precursor protein cleaving enzyme 1, FITC 
fluorescein isothiocyanate, GI gastrointestinal

Experimental models Gut microbiota, intestinal epithelial barrier, and enteric neuro-immune 
system alterations

Refs.

PD
Rotenone-induced central dopaminergic neurodegeneration Firmicutes/Bacteroidetes ratio

α-syn in myenteric neurons
Colonic inflammation ( MyD88, NF-kB, TLR-2,IL-6, TNF, iNOS)

[117]

LPS-induced central dopaminergic neurodegeneration Intestinal permeability ( lactulose/mannitol ratio and sucralose levels)
α-syn in myenteric neurons

[51]

MPTP-induced central dopaminergic neurodegeneration Activation of intestinal MyD88/NF-kB pro-inflammatory signaling
Enteric neuronal loss
Enteric TH expression

[19]
[20]

AD
APP/PS1 mouse (genetic model of AD) Fecal SCFAs levels

Aβ protein precursor, Aβ protein, BACE-1 and p-Tau
Intestinal inflammation ( luminal IgA levels, COX-2 and TIMP-1)
Intestinal CD68 macrophages
Neuronal nitric oxide synthase (nNOS) and choline acetyltransferase 
(ChAT)

[30]
[40]

TgCRND8 mice (genetic models of AD) Aβ protein precursor in myenteric neurons
Intestinal inflammation ( TLR-4)
Enteric glial activation ( GFAP, nestin)
Enteric neuronal loss
Smooth muscle cell atrophy

[92]

5xFAD mice (transgenic model of AD) Firmicutes/Bacteroidetes ratio
AβPP accumulation

[7]

ALS
G93A mice (genetic model of ALS)  Butyrivibrio Fibrisolvens, Escherichia coli, and Firmicutes

 Intestinal permeability ( FITC plasma levels and ZO-1 and e-cadherin 
expression)

 Abnormal Paneth cells
 Intestinal inflammation ( IL-17 pro-inflammatory cytokine levels)

[115]
[123]

MS
Experimental autoimmune encephalomyelitis (EAE) Abnormal intestinal permeability ( plasma Na-F and FITC levels and ZO-1 

expression)
Crypt depth and thickness of submucosal and muscular layers
Pro-inflammatory Th1/Th17 cells in the intestinal lamina propria

Enteric glial activation and neuronal loss
Abnormal GI motility

[69]
[116]
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of the genus Ralstonia and Faecalibacterium [50, 85]. Con-
versely, others observed a reduced relative abundance of 
Bacteroidetes without significant variations of Firmicutes, 
when comparing PD patients with healthy controls [98]. The 
same authors reported also a significant decrease in fecal 
SCFA levels, including butyrate, propionate and acetate in 
PD patients [98]. Felice et al. [26] showed a decrease in 
SCFA-producing Faecalibacterium prausnitzii, along with 
an increase in the abundance of Enterobacteriaceae in PD 
patients [27]. Others reported that PD patients displayed an 
increased abundance of Akkermansia, Lactobacillus, Bifi-
dobacterium and Flavonifractor, along with a decrease in 
SCFA-producing bacteria, including Lachnospiraceae [41, 
42, 84, 98]. In addition, two recent studies displayed an 
expansion of Verrucomicrobiaceae and Lactobacillaceae, 
along with a reduced relative abundance of Barnesiellaceae, 
Enterococcaceae, Prevotellaceae and Erysipelotrichaceae in 
PD patients [2, 44]. Of note, Petrov et al. [72] have recently 
provided an integrated overview about the main alterations 
of gut microbiota in PD. In particular, they documented 
that gut dysbiosis in PD patients is mainly characterized 
by a reduced abundance of Dorea, Bacteroides, Prevotella, 
Faecalibacterium, Bacteroides massiliensis, Stoquefichus 
massiliensis, Bacteroides coprocola, Blautia glucerasea, 
Dorea longicatena, Bacteroides dorei, Bacteroides ple-
beus, Prevotella copri, Coprococcus eutactus, and Rumi-
nococcus callidus, along with an increased abundance of 
Christensenella, Catabacter, Lactobacillus, Oscillospira, 
Bifidobacterium, Christensenella minuta, Catabacter 
hongkongensis, Lactobacillus mucosae, Ruminococcus 
bromii, and Papillibacter cinnamivorans [72]. These dif-
ferent patterns of changes in gut microbiota composition 
in PD patients could depend on different methodological 
approaches as well as different geographical and/or clinical 
background of the investigated subjects (e.g., differences 
in mean age, disease duration and medication status). Nev-
ertheless, these findings suggest that gut dysbiosis in PD 
patients is associated with a significant decrease in SCFA 
levels, which, being regarded as beneficial anti-inflammatory 
metabolic compounds produced by gut bacteria, might com-
promise the intestinal epithelial barrier, facilitate immune/
inflammatory responses and alter the enteric neuronal net-
work with consequent dysregulation of intestinal motility 
[98]. In support of this view, morphological alterations of 
intestinal epithelial barrier and enteric inflammation, char-
acterized by an increase in pro-inflammatory cytokine levels 
and EGC activation, have been documented in PD patients 
[16, 17, 23]. In particular, the activation of EGCs, referred 
as astrocytes in the ENS, could contribute to shape enteric 
immune/inflammatory responses, which, besides determin-
ing intestinal motor dysfunctions, can contribute, through 
the neuro-immune gut–brain axis, to neuroinflammation 
and consequent neurodegeneration in the CNS [16, 23]. 

However, these data, obtained in different clinical studies, 
do not allow to establish a direct and mutual relationship 
between gut dysbiosis, impaired intestinal barrier and enteric 
inflammation.

At present, only two studies have evaluated in the same 
cohort of PD patients putative correlations between gut dys-
biosis, altered intestinal permeability and enteric inflamma-
tory/neurogenic responses. The first study, by Forsyth et al. 
[29], showed that, in patients with early PD, the increase in 
intestinal permeability correlated with the staining of intes-
tinal mucosa for Escherichia coli, tissue oxidative stress, 
and enteric α-syn accumulation. However, this study had 
some limitations, since it was performed in a small cohort of 
PD patients and, most importantly, the increase in intestinal 
permeability was fairly modest. Therefore, further inves-
tigations are needed to better clarify putative correlations 
between abnormal intestinal permeability, enteric inflam-
mation and α-syn accumulation in PD. In the second study, 
Hasegawa et al. [41] observed that in PD patients the gut 
dysbiosis, characterized by an increase in the number of 
Lactobacillus and a decreased abundance of Clostridium 
coccoides and Bacteroides fragilis, was associated with an 
increase in intestinal permeability [29, 41]. Taken together, 
these findings allow to hypothesize that, in PD, changes 
in gut microbiota composition, mainly the loss of SCFA-
producing bacteria, along with an increase in intestinal 
permeability, could shape enteric inflammatory/neurogenic 
responses and promote α-syn accumulation in myenteric 
neurons that, besides the putative induction of bowel motor 
dysfunctions, could promote a condition of chronic periph-
eral inflammation, and contribute to neuroinflammation 
and neurodegeneration in the CNS [76]. However, current 
clinical evidence does not allow to firmly establish whether 
the alterations of enteric bacteria-neuro-immune network 
contribute to the pathophysiology of PD, or whether they 
occur rather as a mere consequence of the initiation of cen-
tral neurodegenerative processes. To better understand the 
pathophysiological role of enteric bacteria-neuro-immune 
network in intestinal dysfunctions and in the onset of cen-
tral dopaminergic neurodegeneration, several research 
efforts have been made in animal models of PD [70]. In a 
recent study, Yang et al. [109] observed that, in mice with 
rotenone-induced PD, gut dysbiosis, characterized by an 
increase in Firmicutes/Bacteroidetes ratio, enteric α-syn 
accumulation and colonic inflammation, occurred before the 
onset of motor deficiencies, central neurodegeneration and 
formation of α-syn inclusions in the CNS, thus suggesting 
that alterations of the enteric bacteria-immune network rep-
resent one of the earliest signs of PD that could contribute 
to CNS pathology. In support of this view, Sampson et al. 
[83] reported that fecal transplantation from PD patients 
to Thy1-α-syn mice (a genetic model of PD) enhanced gut 
dysfunctions, motor impairment, microglia activation and 
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α-syn accumulation in the CNS, as compared to microbiota 
transplantation from healthy controls. Moreover, under GF 
conditions, or after bacterial depletion with antibiotics, or 
following treatment with SCFA mixture, Thy1-α-syn ani-
mals displayed a reduced microglia activation, a decrease 
in α-syn inclusions, and an improvement of motor deficits 
[83]. These observations suggest that changes in gut micro-
biota contribute to central PD pathology and related motor 
and GI dysfunctions and, most importantly, that treatment 
with antibiotics or SCFAs can promote an improvement of 
central and peripheral symptoms of the disease. However, 
the authors did not evaluate whether, besides enteric bac-
teria, alterations of intestinal epithelial barrier or enteric 
inflammatory/neurogenic responses could contribute to CNS 
pathology and related motor and intestinal symptoms. In this 
regard, it is noteworthy that animals with experimental PD 
induced by systemic administration of lipopolysaccharide 
(LPS) developed an abnormal intestinal permeability in the 
early phases of the disease, before α-syn accumulation in the 
ENS and the development of central nigrostriatal neurode-
generation [49]. In addition, Cote et al. [19] reported that, 
in mice with l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine 
(MPTP)-induced PD, the activation of myeloid differentia-
tion primary response 88 (MyD88)/nuclear factor kB (NF-
kB) pro-inflammatory signaling in intestinal innate immune 
cells contributed to enteric and central neurodegeneration as 
well as microglia activation in the CNS. Indeed, peripheral 
MPTP injection to MyD88 knock-out mice was not followed 
by enteric and central neuronal loss, indicating a pivotal role 
of innate immune cells in the progression of ENS and CNS 
neurodegeneration elicited by MPTP [18]. Moreover, a par-
tial depletion of abdominal pro-inflammatory  M1 monocytes 
in MPTP mice, through intravenous injections of clodronate-
encapsulated liposome, counteracted the decrease in tyrosine 
hydroxylase (TH) expression in ENS, while it did not affect 
microglial activation and TH neuronal loss in the CNS [19]. 
Taken together, these pre-clinical findings, although gener-
ated in different animal models of PD, suggest that changes 
in gut microbiota, an impairment of intestinal permeability 
and enteric inflammation represent the earliest events in PD, 
occurring before the onset of central neurodegeneration and 
formation of α-syn inclusion in the CNS.

Overall, current data from human and pre-clinical stud-
ies allow to hypothesize that changes in enteric bacteria-
neuro-immune network, besides determining intestinal dys-
functions, could contribute to the onset and progression of 
central dopaminergic neurodegeneration. However, current 
evidence does not allow to establish a clear causal relation-
ship between gut dysbiosis, altered permeability, enteric 
inflammation and PD pathology. In addition, there is a lack 
of data about the pathophysiological mechanisms through 
which alterations of enteric bacteria-neuro-immune network 
contribute to the onset of central neurodegeneration. In this 

context, a number of issues remain pending and deserve 
much attention. For instance, do alterations of intestinal 
permeability contribute to intestinal dysbiosis in PD? Can 
enteric inflammatory responses trigger inflammation in the 
CNS? Thus, future research efforts should be dedicated to 
better clarify the pathophysiological role of enteric bacteria-
neuro-immune network in animal models of PD as well as 
in patients with GI dysfunctions at different stages of the 
disease.

Alzheimer’s disease

Increasing evidence supports the contention that alterations 
of enteric bacteria-neuro-immune network may contribute 
to the pathogenesis of AD [45, 46, 106]. In particular, it has 
been postulated that changes in gut microbiota composition 
can promote enteric β amyloid (Aβ) protein accumulation 
(a hallmark of AD), which, in turn, could shape enteric and 
peripheral neurogenic/inflammatory responses and con-
tribute to neuroinflammation and neurodegeneration in the 
CNS [56]. In addition, Aβ protein, regarded also as a prion-
like proteinaceous nucleating particle, could move through 
myenteric neurons and spread to the CNS, via the neuronal 
gut–brain axis, contributing directly to the pathogenesis of 
AD [73, 116]. In support of this view, a pioneering study 
showed that, in AD patients, changes in gut microbiota com-
position, mainly characterized by an expansion of Bacte-
roides and Blautia and a reduced relative abundance of the 
genera SMB53 and Dialister, correlated with an increase in 
cerebrospinal fluid of chitinase-3-like protein 1 and phos-
phorylated Tau (p-Tau) levels, along with a decreased Aβ42/
Aβ40 ratio, all these AD biomarkers indicating a greater 
disease severity and amyloid burden in the brain [101]. Leb-
lhuber et al. [52] observed signs of enteric inflammation, 
characterized by an increase in fecal calprotectin levels in 
AD patients. With regard for the deposition of Aβ protein, 
Aβ protein precursor (AβPP) and p-Tau in the gut, clinical 
evidence is scarce and conflicting, since only two studies 
have documented their presence in intestinal tissues from 
AD patients. Joachim et al. [47] showed the presence of Aβ 
protein deposition in rectal tissues from two AD patients. 
However, this protein was also detected in one of two aged 
normal subjects. More recently, Puig et al. [75] observed an 
increased colonic Aβ protein, AβPP and p-Tau immunoreac-
tivity in eleven AD patients. In particular, all these patients 
displayed the presence of Aβ protein, while the immunoreac-
tivity for AβPP and p-Tau was detected only in five subjects 
[75]. Nevertheless, the lack of data concerning the patterns 
of Aβ protein expression in the gut of control subjects does 
not allow to conclude that increments of Aβ protein, AβPP 
and p-Tau deposition occur in the enteric tissues of AD 
patients. In this respect, specific investigations should be 
implemented to better clarify the presence of Aβ, AβPP and 
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p-Tau proteins in both AD patients and matched healthy con-
trols. In addition, the above findings, obtained in different 
clinical studies, do not allow to establish a direct relationship 
between gut dysbiosis, intestinal Aβ and p-Tau accumulation 
and enteric inflammation and, most importantly, they fail to 
generate direct evidence that such alterations represent one 
of the earliest signs of AD that could contribute to neuroin-
flammation and neurodegeneration in the CNS.

Several research efforts, aimed at elucidating the role of 
enteric bacteria-neuro-immune network as well as intestinal 
Aβ protein or p-Tau accumulation in the onset of central 
neuroinflammation, have been made in pre-clinical models 
of AD. In a recent study, Brandscheid et al. [6] observed 
that 5xFAD mice (a transgenetic model of AD) displayed 
changes in the gut microbiota composition, mainly charac-
terized by an increase in Firmicutes/Bacteroidetes ratio, and 
intestinal AβPP accumulation since the earliest stages of 
the diseases. In a subsequent study, Shen et al. [89] showed 
that gut dysbiosis in APP/PS1 mice (a genetic model of 
AD) correlated with an increase in Aβ protein levels in the 
CNS and relevant behavioral alterations. In addition, Harach 
et al. [39] reported that the depletion of enteric bacteria in 
AβAPP mice (a genetic model of AD) was associated with 
a decrease in central Aβ protein levels, and the subsequent 
transplantation with microbiota from AD mice enhanced the 
amyloid burden in the brain, thus suggesting that alterations 
of enteric bacteria in AD contribute to the accumulation 
of Aβ protein in the CNS. However, these authors did not 
evaluate whether, besides alterations of enteric bacteria and 
increased enteric AβPP expression, AD animals were char-
acterized by intestinal Aβ and p-Tau accumulation and/or 
enteric neurogenic/inflammatory responses that could con-
tribute to CNS pathology. In this regard, it has been reported 
that TgCRND8 mice (a genetic model of AD) displayed an 
increased enteric Aβ protein expression, activation of intes-
tinal inflammatory pathways, neuronal loss and enteric glial 
activation in the early stages of the disease before the onset 
of neuroinflammation in the CNS, thus supporting the view 
that intestinal Aβ protein accumulation and enteric neuro-
genic/inflammatory responses represent one of the earliest 
events in AD [86]. In addition, two recent studies reported 
that APP/PS1 mice displayed an increased enteric Aβ and 
p-Tau protein expression, intestinal immune/inflammatory 
cell activation and rearrangements of enteric neuronal cod-
ing, characterized by a decrease in neuronal nitric oxide syn-
thase (nNOS) and choline acetyltransferase (ChAT), thus 
supporting the hypothesis that, in AD, intestinal Aβ and 
p-Tau protein accumulation could shape enteric and periph-
eral neurogenic/inflammatory responses and contribute to 
neuroinflammation and neurodegeneration in the CNS [28, 
38].

Overall, current data from human and pre-clinical stud-
ies allow to hypothesize that changes in gut microbiota and 

the Aβ and p-Tau protein accumulation in intestinal tis-
sues promote enteric neurogenic/inflammatory responses 
and contribute to CNS pathology. However, current evidence 
does not allow to establish a causal relationship between 
gut dysbiosis, intestinal Aβ and p-Tau accumulation, enteric 
inflammation and AD pathology. In addition, there is a lack 
of data on possible morphofunctional alterations of intestinal 
epithelial barrier in AD, which could contribute to bacterial 
translocation into the lamina propria with consequent activa-
tion of immune/inflammatory pathways. Therefore, exten-
sive investigations based on integrated/holistic approaches, 
are awaited for understanding the relationship between gut 
dysbiosis, intestinal Aβ and p-Tau protein accumulation 
and enteric neurogenic/inflammatory responses in the early 
stages of AD, as well as for clarifying how such alterations 
could contribute to neuroinflammation and neurodegenera-
tion in the CNS.

Amyotrophic lateral sclerosis

ALS patients experience GI symptoms including dyspha-
gia, delayed gastric emptying and impaired colonic transit 
[62, 95]. However, unlike the other neurological disorders, 
human and preclinical evidence about the role of enteric 
bacteria-neuro-immune network in the pathophysiology of 
ALS and related GI dysfunctions is scanty.

At present, only one clinical study has reported that ALS 
patients are characterized by changes in enteric bacteria 
composition. In particular, ALS patients display a signifi-
cant decrease in Firmicutes/Bacteroidetes ratio along with 
a reduced relative abundance of Oscillibacter, Anaerostipes 
and Lachnospiraceae, thus suggesting a pro-inflammatory 
dysbiosis that could compromise the intestinal epithelial 
barrier and promote immune/inflammatory responses with 
consequent alterations of bowel motility [26]. However, the 
authors did not evaluate whether, besides enteric bacteria, 
ALS patients were characterized by alterations of intestinal 
epithelial barrier and/or immune/inflammatory cell activa-
tion. In this context, two pioneering pre-clinical studies, car-
ried out in G93A animals (a genetic model of ALS), have 
investigated a correlation between gut dysbiosis, altered 
intestinal permeability and enteric inflammatory/neurogenic 
responses. The first study by Wu et al. [107] showed that, in 
ALS mice in the early stages of the disease, gut dysbiosis, 
characterized by a reduced abundance of Butyrivibrio fibri-
solvens, Escherichia coli and Firmicutes, correlated with 
a decreased tight and adherens junction protein expression 
(ZO-1 and e-cadherin, respectively) and an increased in vivo 
intestinal permeability. In addition, ALS mice displayed an 
increase in the number of abnormal Paneth cells and pro-
inflammatory IL-17 cytokine levels both in intestinal tis-
sues and blood [107]. Likewise, Zhang et al. [115] reported 
a correlation between gut dysbiosis and morphofunctional 
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alterations of intestinal permeability in G93A animals, since 
the earliest stages of the disease. Moreover, they observed 
that, following treatment with butyrate, G93A mice dis-
played a restored gut microbiota homeostasis and intestinal 
epithelial barrier integrity, as well as an improvement of 
central and peripheral symptoms of the disease [115].

Current pre-clinical findings suggest that changes in gut 
microbiota, impaired intestinal permeability and enteric 
inflammation represent one of the earliest events in ALS, 
and that the treatments with SCFAs can restore the intestinal 
homeostasis and counteract the progression of the disease. 
However, these pioneristic findings do not allow to firmly 
establish whether the alterations of the enteric bacteria-
neuro-immune network contribute to the pathophysiology of 
ALS, or whether they occur as a consequence of the central 
neurodegenerative processes. Therefore, further investiga-
tions should be implemented to better clarify the role of 
enteric bacteria-neuro-immune network in animal models 
as well as in ALS patients, since the earlier stages of the 
disease.

Multiple sclerosis

Chronic constipation or fecal incontinence represent the 
main bowel disturbances in patients with MS. Such disor-
ders may occur both in the early and advanced stages of the 
disease, with a prevalence ranging from 60 to 70% [102]. 
In this context, several research efforts are currently being 
focused on unraveling the role of enteric bacteria-neuro-
immune network in the pathogenesis of MS and related 
bowel disturbances.

Current evidence indicates that MS patients are charac-
terized by relevant changes in enteric bacteria composition. 
In particular, MS and relapsing–remitting MS (RRMS) 
patients display a significant decrease in the percentage of 
several Bacteroides, including Bacteroides stercoris, Bac-
teroides coprocola, and Bacteroides coprophilus, along 
with an increased relative abundance of the Pseudomonas, 
Mycoplana, Haemophilus, Blautia and Dorea genera, thus 
suggesting a pro-inflammatory dysbiosis that could compro-
mise the intestinal epithelial barrier and facilitate immune/
inflammatory responses with consequent alterations of 
bowel motility [14, 61]. In support of this view, alterations 
of intestinal permeability and signs of systemic inflamma-
tion have been documented in MS patients, and these pat-
terns appear to be correlated with the disability status of the 
disease [11]. In addition, a recent paper by Wunsch et al. 
[108] reported ENS nerve fiber disintegration and EGC 
activation in two of three MS patients. However, despite 
these interesting observations, it remains unclear whether 
gut dysbiosis, altered intestinal permeability and immune/
inflammatory responses contribute to neuroinflammation 
and neurodegeneration in the CNS, or whether they occur 

as a consequence of the initiation of the central neurode-
generative process. In this context, pioneering evidence, 
showing the relevance of enteric bacteria-neuro-immune 
network in the pathophysiology of MS, comes from pre-
clinical studies on animals with experimental autoimmune 
encephalomyelitis (EAE), a murine model that reproduces 
many of the features of MS [93]. In a previous study, Yokote 
et al. [110] observed that the pharmacological modulation 
of gut microbiota with an antibiotic cocktail in mice, 1 week 
before EAE induction, slowed down the development of the 
disease. Lee et al. [53] observed that antibiotic administra-
tion to EAE mice reduced the systemic pro-inflammatory 
cytokine levels, decreased the number of mesenteric Th17 
pro-inflammatory cells and attenuated the severity of the 
disease. Conversely, EAE GF animals, harboring pathogenic 
segmented filamentous bacteria, displayed an increase in 
pro-inflammatory IL-17A-producing CD4 + T cells both in 
the gut and CNS, and a greater disease severity [53]. In addi-
tion, two recent studies reported that treatment with a SCFA 
mixture or probiotics to EAE mice increased the density of 
anti-inflammatory Treg cells and reduced inflammatory cell 
infiltration and demyelination in the CNS [37, 51]. These 
findings suggest that changes in gut microbiota may con-
tribute to MS pathology, and that treatment with antibiot-
ics, SCFAs or probiotics might counteract peripheral and 
central inflammation as well as the CNS demyelination pro-
cess. However, the authors did not evaluate whether, besides 
enteric bacteria, alterations of intestinal epithelial barrier 
and enteric inflammatory/neurogenic responses could con-
tribute to CNS pathology and related intestinal symptoms. 
In this regard, it has been reported that EAE mice displayed 
an abnormal intestinal permeability, an increased infiltration 
of Th1/Th17 pro-inflammatory cells and a decreased number 
of Treg cells in the early stages of the disease, before the 
onset of neurological symptoms and the phase of paraly-
sis [65]. Moreover, Wunsch et al. [108] observed that EAE 
animals displayed enteric glial activation, neuronal loss and 
abnormal GI motility before the onset of CNS lesions and 
neurological deficiencies. These findings represent a major 
point of novelty, since they support the view that abnormal 
intestinal permeability, neurogenic/inflammatory cell activa-
tion and altered intestinal motility may represent one of the 
earliest steps of MS, preceding the onset of neurological and 
peripheral symptoms.

Taken together, current data from human and pre-clinical 
studies expand further the available knowledge about the 
role of enteric bacteria-neuro-immune network in the patho-
physiology of MS. Indeed, it appears that changes in gut 
microbiota composition, abnormal intestinal permeability 
and enteric inflammation in the early stages of the disease, 
besides determining intestinal motor dysfunctions, could 
promote a condition of peripheral inflammation and con-
tribute to neuroinflammation and neurodegeneration in the 
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CNS. However, current evidence does not allow to establish 
a causal relationship between gut dysbiosis, altered intestinal 
permeability, enteric inflammation and MS pathology. In 
this respect, some important issues remain to be addressed. 
For instance, even though it is well acknowledged that intes-
tinal dysbiosis can compromise intestinal epithelial barrier, 
it is not clear, in the setting of MS, what specific alterations 
of enteric bacteria could contribute to alter the intestinal per-
meability. In addition, it remains to be established what are 
the mechanisms through which gut microbiota induce innate 
and adaptive immune responses in the early stages of MS. To 
clarify these points, research efforts should be dedicated to 
elucidate the role of enteric bacteria-neuro-immune network 
in MS and related intestinal symptoms both in EAE animals 
and MS patients, since the earliest stages of the disease.

Conclusions and future perspectives

Current data from human studies suggest that gut dysbiosis 
and enteric inflammation might represent a common path 
to neurodegerative diseases. Indeed, even though each dis-
ease displays distinct clinical, neuropathological and genetic 
features, patients with PD, AD and MS are characterized 
by significant changes in gut microbiota composition and 
signs of enteric inflammation since the earliest stages of 
the disease. Besides the induction of bowel motor dysfunc-
tions, these changes could promote conditions of chronic 
peripheral inflammation and contribute to neuroinflamma-
tion and neurodegeneration in the CNS. In support of this 
view, alterations of intestinal bacteria and enteric neuro-
genic/inflammatory responses in PD, AD and MS patients 
have been found to correlate with the severity of the disease. 
In addition, PD and MS patients display an altered intes-
tinal permeability that seems to contribute to the onset of 
enteric inflammation. However, human studies do not allow 
to establish a causal and mutual relationship between gut 
dysbiosis, altered intestinal permeability and enteric inflam-
mation. Moreover, it remains unclear whether alterations of 
the enteric bacteria-neuro-immune network precede, follow 
or both the occurrence of central neurodegeneration. In this 
regard, the development of experimental models of neuro-
degenerative diseases, including PD, AD, MS and ALS, has 
allowed to better understand the pathophysiological role of 
enteric bacteria-neuro-immune network in the onset of cen-
tral neurodegeneration. Indeed, even though each experi-
mental model displays distinct pathophysiological features 
for each disease, gut dysbiosis, altered intestinal permeabil-
ity and enteric neurogenic/inflammatory responses occur as 
early events in PD, AD, MS and ALS. Moreover, these pro-
cesses, besides determining intestinal dysfunctions, appear 
to contribute to neuroinflammation and neurodegeneration 
in the CNS. In support of this view, the pharmacological 

manipulation or target-depletion of gut microbiota in PD, 
AD, MS and ALS animals has been found to counteract the 
progression of central neurodegeneration as well as intesti-
nal and peripheral symptoms.

Based on the above considerations and pooling together 
the available pre-clinical and human evidence from litera-
ture, it is conceivable that, in the very early stages of the 
disease, patients with neurological disorders are character-
ized by abnormal interactions among gut microbiota, intes-
tinal barrier and the enteric neuro-immune system, leading 
to enteric inflammatory activation. In the subsequent stages 
of the disease, the enteric/immune inflammatory activation 
likely triggers events of inflammation and neurodegeneration 
in the CNS through the gut–brain ascending pathways. In 
this setting, central neuroinflammation and subsequent neu-
rodegeneration could contribute to exacerbate enteric neuro-
immune/inflammatory responses, via brain-gut descending 
pathways, thus generating a sort of positive loop that could 
drive the chronicization of the ongoing central and periph-
eral neuroinflammatory and neurodegenerative processes. 
However, the molecular mechanisms underlying the altera-
tions of enteric bacteria-neuro-immune network in neuro-
logical disorders as well as its role in the pathophysiology of 
central neurodegeneration remain poorly understood.

Considerable gaps in our knowledge concern whether 
gender, the genetic background and/or environmental fac-
tors, such as diet, could influence the interactions among 
gut microbiota, intestinal barrier and the enteric neuro-
immune system both under physiological conditions and in 
the presence of neurological disorders. For instance, despite 
consistent evidence that males and females display gender-
specific differences in the immune system and gut micro-
biota composition [40, 112], and that gender differences 
are prominent in neurological disorders, including PD, AD, 
ALS and MS [113], the influence of gender in the enteric 
bacteria-neuro-immune interplay remains fairly unclear. In 
addition, there is a lack of data about possible relationships 
among gender, enteric bacteria-neuro-immune network and 
CNS pathology.

Increasing evidence supports associations of the human 
genetic background with enteric bacteria, immune/inflam-
matory responses and neurological disorders [24]. For 
instance, genetic variants, linked to familial and spo-
radic PD, were found to shape gut immune/inflammatory 
responses [24]. However, knowledge of data about the 
possible influence of the genetic variants associated with 
PD, AD and MS on the abnormal interactions among gut 
microbiota, intestinal mucosal barrier and enteric neuro-
immune system is lacking. As far as environmental fac-
tors are concerned, several lines of evidence support the 
contention that diet can change the composition of gut 
microbiota, with consequent alterations of intestinal per-
meability and immune/inflammatory cell activation that, 
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in turn, could trigger events of inflammation and neuro-
degeneration in the CNS through the gut–brain ascending 
pathways [71, 73, 79]. However, an integrated view about 
the impact of diet in the alterations of enteric bacteria-
neuro-immune network, gut dysfunctions and the main 
neurological diseases, including PD, AD, ALS and MS, 
is missing and requires investigations.

In conclusion, based on current knowledge, some 
important issues remain to be addressed: (1) what is the 
actual role of intestinal epithelial barrier in the enteric 
immune/inflammatory activation in the early stages of 
neurodegenerative diseases? (2) Does it represent the 
crossroad between changes in gut microbiota and enteric/
immune inflammatory activation? (3) how can intestinal 
immune/inflammatory cell activation trigger events of neu-
roinflammation and neurodegeneration in the CNS? (4) 
What is the role of bacteria-neuro-immune gut–brain axis 
in the onset of neuroinflammation and neurodegeneration 
in the CNS? (5) Can the alterations of enteric bacteria-
neuro-immune network represent an early biomarker of 
the main neurodegenerative diseases? (6) Can the phar-
macological targeting of enteric microbiota, intestinal 
mucosal barrier and/or enteric immune system confer any 
benefit on central neurodegenerative diseases, in terms of 
prevention, cure or maintenance of remission? (7) What 
is the relationship among gender, gut microbiota, intes-
tinal mucosal barrier and enteric neuro-immune system 
interplay and neurodegenerative disorders? (8) Can the 
genetic background of PD, AD and MS patients influence 
the gut microbiota, intestinal mucosal barrier and enteric 
neuro-immune system interplay? (9) What is the impact 
of environmental factors, such as diet, in the alterations 
of enteric-bacteria-neuro-immune network, gut dysfunc-
tions and neurodegenerative diseases? To clarify these 
points, research efforts should be addressed to investi-
gate, by means of holistic approaches, the alterations of 
gut microbiota, intestinal epithelial barrier and enteric 
neuro-immune system interplay both in genetic and toxin-
induced animal models since the earliest stages of dis-
ease. In addition, translational studies on male and female 
patients at very early stages of the diseases as well as in 
subjects with GI dysfunctions and genetic susceptibility 
to develop neurodegenerative diseases should be imple-
mented. Unraveling these aspects could pave the way to a 
Copernican revolution for both the prevention and clinical 
management of main neurological disorders and related 
intestinal dysfunctions.
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