About
1,262
Publications
480,273
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
182,714
Citations
Publications
Publications (1,262)
We introduce an approach to enhance the novel view synthesis from images taken from a freely moving camera. The introduced approach focuses on outdoor scenes where recovering accurate geometric scaffold and camera pose is challenging, leading to inferior results using the state-of-the-art stable view synthesis (SVS) method. SVS and related methods...
This draft accompanies the main paper [7]. It provides additional experimental results showing the suitability of our proposed approach. Furthermore, the draft discusses the graph neural network-based multiple rotation averaging, our software implementation details, and possible future direction.
Boundaries are among the primary visual cues used by human and computer vision systems. One of the key problems in boundary detection is the label representation , which typically leads to class imbalance and, as a consequence, to thick boundaries that require non-differential post-processing steps to be thinned. In this paper, we re-interpret boun...
Interactive Pixel Based file formats have been produced over the course of the last two decades by many stakeholders active in the Heritage sector. It is a global story. Its use has facilitated research and dissemination strategies for vast numbers of artefacts, conservation interactions and scientific studies. The technology has been explored and...
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem. For training models to solve the problem, existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both. However, in practice, it is challenging to procure both of this information...
We propose the first practical multitask image enhancement network, that is able to learn one-to-many and many-to-one image mappings. We show that our model outperforms the current state of the art in learning a single enhancement mapping, while having significantly fewer parameters than its competitors. Furthermore, the model achieves even higher...
This work addresses the problem of semantic scene understanding under fog. Although marked progress has been made in semantic scene understanding, it is mainly concentrated on clear-weather scenes. Extending semantic segmentation methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel...
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios. To this aim, we make three main contributions. The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps. The method e...
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leve...
Recent advances in image generation gave rise to powerful tools for semantic image editing. However, existing approaches can either operate on a single image or require an abundance of additional information. They are not capable of handling the complete set of editing operations, that is addition, manipulation or removal of semantic concepts. To a...
In this work, we shed light on different data augmentation techniques commonly used in Light Detection and Ranging (LiDAR) based 3D Object Detection. We, therefore, utilize a state of the art voxel-based 3D Object Detection pipeline called PointPillars and carry out our experiments on the well established KITTI dataset. We investigate a variety of...
Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on convolutional neural networks (CNNs) demonstrated impressive progress in 3D reconstruction, even when using a single 2D image as input. H...
Multi-light, single-camera imaging techniques like Reflectance Transformation Imaging (RTI, including PTM, HSH, and PCA-RBF) and the Portable Light Dome (PLD) have been used by cultural heritage scholars and collection curators extensively because of the extra interactive visual information that can be revealed on artefacts when compared to standar...
Network pruning has been the driving force for the efficient inference of neural networks and the alleviation of model storage and transmission burden. Traditional network pruning methods focus on the per-filter influence on the network accuracy by analyzing the filter distribution. With the advent of AutoML and neural architecture search (NAS), pr...
Visual tracking is fundamentally the problem of regressing the state of the target in each video frame. While significant progress has been achieved, trackers are still prone to failures and inaccuracies. It is therefore crucial to represent the uncertainty in the target estimation. Although current prominent paradigms rely on estimating a state-de...
Video object segmentation (VOS) is a highly challenging problem, since the target object is only defined during inference with a given first-frame reference mask. The problem of how to capture and utilize this limited target information remains a fundamental research question. We address this by introducing an end-to-end trainable VOS architecture...
Current state-of-the-art trackers only rely on a target appearance model in order to localize the object in each frame. Such approaches are however prone to fail in case of e.g. fast appearance changes or presence of distractor objects, where a target appearance model alone is insufficient for robust tracking. Having the knowledge about the presenc...
Learning-based single image super-resolution (SISR) methods are continuously showing superior effectiveness and efficiency over traditional model-based methods, largely due to the end-to-end training. However, different from model-based methods that can handle the SISR problem with different scale factors, blur kernels and noise levels under a unif...
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system. Specifically, the original image is first decomposed into the lossy reconstruction obtained after compressing it with BPG and the corresponding residual. We then model the distribution of the residual with a convolutional neural network-base...
Vision-based localization of an agent in a map is an important problem in robotics and computer vision. In that context, localization by learning matchable image features is gaining popularity due to recent advances in machine learning. Features that uniquely describe the visual contents of images have a wide range of applications, including image...
In this paper, we analyze two popular network compression techniques, i.e. filter pruning and low-rank decomposition, in a unified sense. By simply changing the way the sparsity regularization is enforced, filter pruning and low-rank decomposition can be derived accordingly. This provides another flexible choice for network compression because the...
Automatic discovery of category-specific 3D keypoints from a collection of objects of some category is a challenging problem. One reason is that not all objects in a category necessarily have the same semantic parts. The level of difficulty adds up further when objects are represented by 3D point clouds, with variations in shape and unknown coordin...
Humans can robustly recognize and localize objects by integrating visual and auditory cues. While machines are able to do the same now with images, less work has been done with sounds. This work develops an approach for dense semantic labelling of sound-making objects, purely based on binaural sounds. We propose a novel sensor setup and record a ne...
The recent years have witnessed the great potential of deep learning for video compression. In this paper, we propose the Hierarchical Learned Video Compression (HLVC) approach with three hierarchical quality layers and recurrent enhancement. To be specific, the frames in the first layer are compressed by image compression method with the highest q...
As the popularity of mobile photography is growing constantly, lots of efforts are being invested now into building complex hand-crafted camera ISP solutions. In this work, we demonstrate that even the most sophisticated ISP pipelines can be replaced with a single end-to-end deep learning model trained without any prior knowledge about the sensor a...
Vision-based localization of an agent in a map is an important problem in robotics and computer vision. In that context, localization by learning matchable image features is gaining popularity due to recent advances in machine learning. Features that uniquely describe the visual contents of images have a wide range of applications, including image...
In this paper, we highlight the importance of considering task interactions at multiple scales when distilling task information in a multi-task learning setup. In contrast to common belief, we show that tasks with high pattern affinity at a certain scale are not guaranteed to retain this behaviour at other scales, and vice versa. We propose a novel...
Autonomous cars need continuously updated depth information. Thus far, the depth is mostly estimated independently for a single frame at a time, even if the method starts from video input. Our method produces a time series of depth maps, which makes it an ideal candidate for online learning approaches. In particular, we put three different types of...
This paper tackles the problem of real-time semantic segmentation of high definition videos using a hybrid GPU / CPU approach. We propose an Efficient Video Segmentation(EVS) pipeline that combines: (i) On the CPU, a very fast optical flow method, that is used to exploit the temporal aspect of the video and propagate semantic information from one f...
The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth. In recent years, both optimization-based and learning-based approaches have been propose...
Nowadays, the increasingly growing number of mobile and computing devices has led to a demand for safer user authentication systems. Face anti-spoofing is a measure towards this direction for bio-metric user authentication, and in particular face recognition, that tries to prevent spoof attacks. The state-of-the-art anti-spoofing techniques leverag...
Generic object counting in natural scenes is a challenging computer vision problem. Existing approaches either rely on instance-level supervision or absolute count information to train a generic object counter. We introduce a partially supervised setting that significantly reduces the supervision level required for generic object counting. We propo...
We present a self-supervised learning framework to estimate the individual object motion and monocular depth from video. We model the object motion as a 6 degree-of-freedom rigid-body transformation. The instance segmentation mask is leveraged to introduce the information of object. Compared with methods which predict pixel-wise optical flow map to...
This paper introduces a divide-and-conquer inspired adversarial learning (DACAL) approach for photo enhancement. The key idea is to decompose the photo enhancement process into hierarchically multiple sub-problems, which can be better conquered from bottom to up. On the top level, we propose a perception-based division to learn additive and multipl...
The performance of mobile AI accelerators has been evolving rapidly in the past two years, nearly doubling with each new generation of SoCs. The current 4th generation of mobile NPUs is already approaching the results of CUDA-compatible Nvidia graphics cards presented not long ago, which together with the increased capabilities of mobile deep learn...
This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important fo...
Autonomous driving models often consider the goal as fixed at the start of the ride. Yet, in practice, passengers will still want to influence the route, e.g. to pick up something along the way. In order to keep such inputs intuitive, we provide automatic way finding in cities based on verbal navigational instructions and street-view images. Our fi...
This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important fo...
In this paper, we formulate a generic non-minimal solver using the existing tools of Polynomials Optimization Problems (POP) from computational algebraic geometry. The proposed method exploits the well known Shor's or Lasserre's relaxations, whose theoretical aspects are also discussed. Notably, we further exploit the POP formulation of non-minimal...
A long-term goal of artificial intelligence is to have an agent execute commands communicated through natural language. In many cases the commands are grounded in a visual environment shared by the human who gives the command and the agent. Execution of the command then requires mapping the command into the physical visual space, after which the ap...
Recent advances in generative models and adversarial training have led to a flourishing image-to-image (I2I) translation literature. The current I2I translation approaches require training images from the two domains that are either all paired (supervised) or all unpaired (unsupervised). In practice, obtaining paired training data in sufficient qua...
Comprehensive semantic segmentation is one of the key components for robust scene understanding and a requirement to enable autonomous driving. Driven by large scale datasets, convolutional neural networks show impressive results on this task. However, a segmentation algorithm generalizing to various scenes and conditions would require an enormousl...
Convolutional neural networks (CNNs) based solutions have achieved state-of-the-art performances for many computer vision tasks, including classification and super-resolution of images. Usually the success of these methods comes with a cost of millions of parameters due to stacking deep convolutional layers. Moreover, quite a large number of filter...
We present a method for recovering the dense 3D surface of the hand by regressing the vertex coordinates of a mesh model from a single depth map. To this end, we use a two-stage 2D fully convolutional network architecture. In the first stage, the network estimates a dense correspondence field for every pixel on the depth map or image grid to the me...
Up to 17% of all motorcycle accidents occur when the rider is maneuvering through a curve and the main cause of curve accidents can be attributed to inappropriate speed and wrong intra-lane position of the motorcycle. Existing curve warning systems lack crucial state estimation components and do not scale well. We propose a new type of road curvatu...
Current state-of-the-art instance segmentation methods are not suited for real-time applications like autonomous driving, which require fast execution times at high accuracy. Although the currently dominant proposal-based methods have high accuracy, they are slow and generate masks at a fixed and low resolution. Proposal-free methods, by contrast,...
State-of-the-art approaches for semantic segmentation rely on deep convolutional neural networks trained on fully annotated datasets, that have been shown to be notoriously expensive to collect, both in terms of time and money. To remedy this situation, weakly supervised methods leverage other forms of supervision that require substantially less an...
We tackle the problem of retrieving high-resolution (HR) texture maps of objects that are captured from multiple view points. In the multi-view case, model-based super-resolution (SR) methods have been recently proved to recover high quality texture maps. On the other hand, the advent of deep learning-based methods has already a significant impact...
This work addresses the task of multi-person tracking in crowded street scenes, where long-term occlusions pose a major challenge. One popular way to address this challenge is to re-identify people before and after occlusions using Convolutional Neural Networks (CNNs). To achieve good performance, CNNs require a large amount of training data, which...
Human thermal comfort measurement plays a critical role in giving feedback signals for building energy efficiency. A contactless measuring method based on subtleness magnification and deep learning (NIDL) was designed to achieve a comfortable, energy efficient built environment. The method relies on skin feature data, e.g., subtle motion and textur...