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Abstract
Over 30 receptor-like kinases contain a guanylate cyclase (GC) catalytic centre embedded within the C-
terminal region of their kinase domain in the model plant Arabidopsis. A number of the kinase GCs contain
both functional kinase and GC activity in vitro and the natural ligands of these receptors stimulate increases in
cGMP within isolated protoplasts. The GC activity could be described as a minor or moonlighting activity. We
have also identified mammalian proteins that contain the novel GC centre embedded within kinase domains.
One example is the interleukin 1 receptor-associated kinase 3 (IRAK3). We compare the GC functionality of the
mammalian protein IRAK3 with the cytoplasmic domain of the plant prototype molecule, the phytosulfokine
receptor 1 (PSKR1). We have developed homology models of these molecules and have undertaken in vitro
experiments to compare their functionality and structural features. Recombinant IRAK3 produces cGMP at
levels comparable to those produced by PSKR1, suggesting that IRAK3 contains GC activity. Our findings
raise the possibility that kinase-GCs may switch between downstream kinase-mediated or cGMP-mediated
signalling cascades to elicit desired outputs to particular stimuli. The challenge now lies in understanding
the interaction between the GC and kinase domains and how these molecules utilize their dual functionality
within cells.

Background
cGMP is a key signalling intermediate in eukaryotes and
is formed from the enzymatic cyclization and subsequent
hydrolysis of GTP catalysed by members of the guanylate
cyclase (GC) family. cGMP and GCs are well characterized
in vertebrates, invertebrates and lower eukaryotes such as
amoeba [1]. In vertebrates and invertebrates, cGMP is a
transitory molecule that directly activates its degradation
via specific phosphodiesterases and also regulates cyclic
nucleotide-gated ion channels and protein kinases [1–3]. The
amoeba Dictyostelium also uses cGMP as a chemoattractant
[1,2]. However defining the roles of cGMP in bacteria,
fungi and plants has been controversial [1,4–6] although
cyanobacteria contain GCs that are involved in responses
to changes in environmental signals [7,8]. Previously it was
established that a GC and cGMP system is involved in
bacterial encystment in Rhodospirillum centenum and by
homology in other members of the Alphaproteobacteria
[9]. In higher plants, cGMP is now an established second
messenger that mediates plant hormone dependent and plant
defence responses [6] and novel GCs have been identified
that are discussed below. Together these findings indicate that
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cGMP is a universal signalling molecule in eukaryotic cells
with similar roles in at least some prokaryotes.

Guanylate cyclases
GCs in animal cells are either soluble where they form
heterodimers that are activated by NO binding at the
haem nitric oxide/oxygen-binding (HNOX) site or single
transmembrane proteins that have an extracellular ligand-
binding site and an active intracellular GC domain (Figure 1).
In mammals, there are seven members of membrane-bound
GCs (GC-A to GC-G), and these include the natriuretic
peptide receptors and photoreceptors [10]. To date, several
crystal structures of soluble GCs have been solved providing
further insight into their mechanism of action that has
recently been reviewed [11,12]. A key attribute is that the
canonical eukaryotic GCs are related to type III adenylate
cyclases and it is quite remarkable that only a few amino
acid changes in the catalytic centre convert a GC into an
adenylate cyclase [13–15]. Another key finding is that protein
dimerization is essential for GC activity and monomeric
subunits are thought to form asymmetric dimers in a head
to tail conformation [16,17]. Metal-binding residues and
transition state-stabilizing residues are found along the
intermolecular interface that provides a catalytic cleft for
substrate (GTP) binding [2,16,18,19].

Canonical transmembrane GCs consist of an extracellular
ligand-binding domain, a transmembrane domain and an
inactive kinase homology domain that is linked to a GC
catalytic domain [2,20] (Figure 1). The linker domain that
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Figure 1 The domain organization of GCs

The domain organization of animal soluble GCs is compared with canonical transmembrane GCs and two examples of the

novel kinase GCs, PSKR1 and IRAK3.

links the kinase homology domain and the GC catalytic
domain is a 50–70-amino-acid stretch that has been implicated
in receptor dimerization [10,21], which, like soluble GCs,
is essential to form the active site cleft for nucleotide
binding. The surface groove in the GC domain is thought
to rotate following ligand activation to bring the two GC
domains into a closed conformation to bind GTP [20].
The kinase homology domain in canonical transmembrane
GCs shares sequence similarities with typical protein kinase
domains, although the aspartic acid in the HRD domain
essential for phosphotransferase activity is often lacking.
The kinase homology domains of almost all transmembrane
GCs contain an ATP-binding motif and further ATP-binding
motifs have been identified in the linker and GC domains
that are currently generating a certain degree of discussion,
although it is clear that ATP interaction is an important
means of regulating the catalytic activity of the GC domain
[2,10,17,22,23].

A new class of guanylate cyclases
Although considerable evidence indicated that cGMP had
roles in signal transduction in plants, there were no GCs
annotated in the model plant Arabidopsis genome. Therefore
Ludidi and Gehring [24] designed a search motif based on
several functionally assigned amino acids in the catalytic
centre of known GCs from lower eukaryotes and identified
and experimentally confirmed the first molecule with GC
activity in higher plants, and homologues have since been
found in other plants with roles in light sensing [25]. AtGC1 is
a soluble protein with the catalytic GC centre found towards
the N-terminus, but does not contain a haem-binding region
necessary for NO binding [24]. Another protein AtNOGC1
has since been identified that responds to NO with alterations

in its GC activity [26]. The original search motif was
relaxed and over 40 receptor-like kinases, including the
brassinosteroid receptor (BRI1), phytosulfokine receptor 1
(PSKR1), pathogen peptide 1 receptor (PEPR1) and a wall-
associated receptor kinase 10 (WAKL10) [27–31], which all
share a similar kinase GC domain structure were identified.
The domain architecture of kinase GCs differs from that of
characterized animal receptor GCs in that the GC catalytic
centre is embedded within the kinase catalytic domain
(Figure 1) adjacent to the P activation loop. Consequently,
kinase GCs have a very unusual architecture which is distinct
from most multidomain proteins that have discrete regions
separated by linker sequences or domains [2,32].

If this surprising domain structure is functional in cells, it
is likely that natural ligands of the receptor kinase GCs would
stimulate cGMP production. Freshly isolated mesophyll
protoplasts treated with epibrassinolide (a steroid acting at
the BRI1 receptor) or active phytosulfokine peptide (PSK-α)
significantly increased cGMP production relative to control
protoplasts and inactive non-sulfated PSK [28,32]. cGMP
increases occur in a time frame consistent with activating
the GC catalytic function of the receptor kinase GCs and
so implicate cGMP in early signalling events stimulated by
these natural ligands. Overexpression of full length PSKR1
in isolated protoplasts results in raised cGMP levels [28].
A cyclic nucleotide reporter system was used to show that
bacteria transformed with the recombinant PSKR1 kinase
domain have increased cGMP levels following induction of
protein expression [33].

Initial recombinant protein studies were undertaken
with a segment of the intracellular domain of BRI1 and
revealed cGMP production but not cAMP production [27].
Further to that study, the entire kinase domains of PSKR1,
WAKL10 and PEPR1 have been shown to generate cGMP
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detectable with both antibody and mass spectrometry studies
[28–30]; interestingly the metal ion selectivity of these
molecules differed. Overall, the GC activity of the novel
kinase GCs was considerably lower than that observed
for animal transmembrane GCs which are again lower
than soluble GCs. However, a recent study with BRI1
encompassing the kinase domain did not show any cGMP
production [34] and these conflicting results remain to be
reconciled. Recombinant protein assays can sometimes
be difficult to establish when the cofactors are not all known
and this may be particularly true when a novel function is in
question. The assay used by Bojar et al. [34] used conditions
that appeared to favour kinase activity and their construct
lacked domains that promote dimerization; together these
factors possibly obscured any GC activity especially as it
is fairly low. Such considerations are further supported by
modelling studies where PSKR1 has been modelled against a
kinase or a cyanobacteria GC showing a closed and open GC
catalytic centre respectively [31].

Unquestionably, the receptor-like kinases have important
roles as kinases in plants where they are involved in
regulating growth and development. The intracellular kinase
domain of BRI1 has a typical kinase fold structure [34]
and homology models of PSKR1 also show typical kinase
structure [31] (Figure 2A). The kinase activity of BRI1 has
been particularly well characterized and wild-type proteins
form homo- and hetero-dimers and cross phosphorylate each
other and downstream substrates to activate transcription
factors [35]. BRI1 kinase mutants have reduced growth
[35], although the weak bri301 mutant (G989I) that has no
detectable kinase activity still retains partial responsiveness
to brassinosteroids [36]. Kinase activity of PSKR1 is also
partly understood in vitro where it has been shown to be
inhibited by cGMP [28] and modulated by calmodulin in vivo
[37]. The others are less well characterized although in vitro
kinase activity occurs with WAKL10 [29]. The biological data
indicates that regulation of the kinase activity is complex
with both phosphorylation and other modulatory binding
sites generating allosteric changes to switch the kinase activity
from off to on. Phosphorylation of the cytoplasmic domain of
BRI1 can dramatically alter kinase activity. Phosphorylation
in the juxtamembrane domain, C-terminal domain and the
active loop are all important in stimulating kinase activity
whereas phosphorylation of certain residues (e.g. Ser891)
inactivates the kinase [35,38,39]. In vitro studies with PSKR1
show that phosphorylation of residues in the juxtamembrane
position and active loop are also important for kinase activity
while increases in calcium directly inhibit kinase activity (V.
Muleya, J.I. Wheeler and H.R. Irving, unpublished work).
Calmodulin-binding domains have been identified in both
BRI1 [38] and PSKR1 [37] and these also modulate the kinase
activity which may play a role in the response in plants.
Hence there are several switches that regulate kinase activity
and it is feasible that turning the kinase off will possibly
stimulate dimer formation that will enhance the GC activity
within plant cells and possibly stimulate redeployment of
cellular resources. Since plants cannot flee danger, they

have evolved an array of defence sensing processes that are
intricately linked with their responses to growth signals.
Simply put, plants can switch from using valuable and
limited nutrient resources for growth to defence if the need
arises. Phytosulfokine and its receptor PSKR1 regulate plant
growth and development [40,41] and recently a critical role
in the plant innate immune response was identified where
it attenuates plant growth and redeploys plant resources to
fight infection [42,43].

Molecules containing hidden GC catalytic centre sig-
natures are not unique to plants and occur in many
other organisms. Our searches revealed annotated kinase
molecules with embedded GC catalytic centres in mammals
(including humans) indicating that kinase GCs are wide-
spread throughout the tree of life. One of the molecules
unearthed using sequence homology-guided bioinformatic
data-mining tools was interleukin 1 receptor-associated
kinase 3 (IRAK3). Homologues of IRAK3 are found across
mammalian species and the catalytic GC centre signature
is conserved in these molecules. The function of this GC
centre is unknown. IRAK3 is also known as IRAKM as it is
predominantly found in macrophages and monocytes where
it acts as a negative regulator of the inflammatory cascades
stimulated by activating the interleukin 1 (IL-1)/Toll-like
receptors (TLRs) [44]. IRAK3 prevents the dissociation of the
IRAKs from myeloid differentiation factor 88 (MyD88) and
thereby inhibits mitogen-activated protein kinase (MAPK)-
and nuclear factor κB (NF-κB)-induced gene transcription
leading to decreased inflammation. Recently, it was found
that IRAK3 is also able to interact with MyD88–IRAK4
to form an IRAK3 Myddosome to mediate TLR7-induced
MAPK/extracellular-signal-regulated kinase (ERK) kinase
3 (MEKK3)-dependent second wave NF-κB activation
uncoupled from post-transcriptional regulation [45]. The role
of IRAK3 is pivotal to homoeostasis in the innate immune
response and preventing development of autoimmune
diseases [46]. In some cancers IRAK3 is up-regulated and
reduces cell death by inhibiting the immune response [46].

Comparison of IRAK3 with PSKR1
Homology models of the kinase domain of PSKR1 and
IRAK3 were developed (see the Supplementary Online Data).
The model for PSKR1 was based on its 41.2 % identity
with the crystal structure of tomato resistance protein Pto
(for Pseudomonas syringae pv. tomato) kinase (PDB code
3HGK) [47] (Figure 2A). IRAK4 is the only member of
the IRAK family that has been crystallized to date. A
homology model of IRAK3 was developed based on the
IRAK4 (PDB code 2NRU) [48] as this crystal structure
was the most complete in terms of the kinase domain
and had 28.14 % identity with IRAK3 (Figure 2A). Both
homology models of IRAK3 and PSKR1 show a typical
kinase structure which is in agreement with these molecules
being primarily kinase in nature. Although human IRAK3
is a pseudokinase as the conserved aspartic acid in the HRD
domain is replaced by Ser293 (Supplementary Figure S1) and
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Figure 2 Comparison of PSKR1 and IRAK3 homology models

(A) Homology models of PSKR1 and IRAK3 are overlaid following alignment at key amino acid residues detailed in

Supplementary Figure S1. The GC centre is indicated as is the extra loop due to the presence of amino acids 336–339

in IRAK3. (B) IRAK3 showing ten possible configurations (silver) of the loop containing the C-terminal part of the GC centre

of IRAK3 (383–398). In addition, two alternative views of the loop configurations are shown demonstrating the potential for

large movements associated with this section of the protein. (C) Comparison of the surface topology of homology models

of PSKR1 and IRAK 3 showing the kinase cleft and the catalytic GC groove.
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very limited phosphorylation activity of this protein has been
reported [49]. Five amino acids that are conserved between the
kinase families were used to align the two structures and the
histidine residue of the HRD domain of PSKR1 was aligned
to the corresponding Cys291 of the CGS in IRAK3 (Figure 2A
and Supplementary Figure S1). The overall structures have a
high degree of similarity (RMSD of 0.72 Å; 1 Å = 0.1 nm)
demonstrating the predominant kinase shape. The main
differences are that the PSKR1 model does not show an N-
terminal α helix, a number of loop configuration differences
are seen throughout the model and the C-terminal α helices
do not align. The GC centre is in part an internal α-helix,
whereas the remainder emerges as a loop (Figure 2A) as
shown for the crystal structure of the kinase component
of BRI1 [34]. In the homology model of IRAK3 the loop
section of the GC centre and the KHLW loop (residues 336–
339, see the Supplementary Online Data) can easily adopt
alternative structures (Figure 2B). The KHLW (residues 336–
339) loop is adjacent to the GC centre section (Figure 2A).
There is a possible cation π interaction between Arg372 of
the GC centre and the adjacent His337 whereas Trp339 (part
of KHLW) sticks out into space and possibly has a role in
protein–protein interactions as most nearby amino acids are
polar. The loop region of IRAK3 from 383 to 398 includes part
of the GC centre and this was refined via iterative molecular
dynamics to generate ten possible loop configurations that
were overlaid on the IRAK3 model confirming that a number
of possible conformations exist that may alter the GC centre
configuration (Figure 2B). Surface models of PSKR1 and
IRAK3 indicate that the GC centre is associated with a small
groove leading into the kinase cleft (Figure 2C). The groove
alters with the different loop configurations and potentially
with dimerization a catalytic or binding site is developed.
Transient dimerization that depends upon interactions at the
C-terminus has been observed in PSKR1 (V. Muleya, J.I.
Wheeler and H.R. Irving, unpublished work) and it may be
that the transient nature of this dimerization is an important
regulatory component of the GC response.

Purified recombinant IRAK3 produces equivalent
amounts of cGMP as the cytoplasmic domain of PSKR1
in vitro (Figure 3). Again these amounts are low and are likely
to only have an effect on proteins in very close proximity.
More importantly, human embryonic kidney (HEK)-293T
cells transfected with IRAK3:GFP fusion constructs have
significantly increased levels of cGMP present compared
with the GFP transfection controls (L. Freihat, J.I. Wheeler
and H.R. Irving, unpublished work) indicating that the GC
catalytic centre is active in cells.

Conclusions and outlook
The novel kinase GCs function predominantly as kinases
(or pseudokinases) and this is reflected in their structural
properties. However, as discussed above, there is some
evidence that they can generate cGMP albeit at low amounts.
Recombinant protein studies are possibly hampered by the
lack of appropriate cofactors or the inability to turn the kinase

Figure 3 IRAK3 has similar GC activity to PSKR1

The GC activity of recombinant IRAK3 and the cytoplasmic domain

of PSKR1 were determined over 5 min in the presence of the

phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (2 mM),

1 mM GTP and 5 mM MnCl2 in 50 mM Tris/HCl (pH 7.8) (n = 3). Insets

show the typical purified protein following SDS/PAGE separation.

activity off. When expressed in cells, there is evidence that the
cGMP is generated and this may be due to endogenous factors
that down-regulate kinase activity. The GC domain has the
catalytic centre present but is likely to require dimerization to
generate functional moieties. These domains are truly hidden
and not easily recognized as a GC centre. Why are they
there? One possibility is that they function as a means to
regulate the protein itself as cGMP inhibits PSKR1 [28],
suggesting that they are actually a modulatory site rather
than a catalytic site. Does the site act as a switch to shift
the dynamics of the signal pathway from generating pathway
one to pathway two? If this is the case, the low GC catalytic
activity may actually represent a micro-autoregulatory site
that operates endogenously to switch the protein to interact
with alternate proteins. Interestingly, both PSKR1 [42,43]
and IRAK3 [45] have recently been identified as molecules at
signal transduction branch points.
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