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ABSTRACT The availability of log data recorded by computer-based systems such as operating system
and network logs, makes it possible for the stakeholder to look after the system for monitoring, evaluation,
and improvement purposes. If an incident happens to the system, the log is the first and most important
artefact to recover so that investigations may be performed to gather an understanding of why such incidents
may have occurred. Log-based anomaly detection is one of the common approaches to uncovering incident
scenarios and finding the root cause of such incidents. In the context of drone flight, incidents reported in
logs include errors during take-off, flight range issues, and cancellations of actions. Existing studies employ
sequence anomaly detection to check whether an event during a drone flight is anomalous. It needs several
preceding events and includes deciding if the following event is legitimate or malicious. However, one
single log record can have no relationship to other log events and be malicious at the same time. Thus,
several studies explored point anomaly detection, where one log record is the only feature needed. Dividing
the anomalies into two categories can be overwhelming as the number of logs generated by a system is large.
At the same time, it can be helpful to separate critical anomalies from the less severe ones. Therefore, this
study proposes DroLoVe, a severity-oriented multiclass anomaly detection approach for drone flight log
data. In accordance with the dataset characteristics, where the samples from different severity levels share
common features, this paper employs a multitask-based label vector representation to train deep neural
network models. After an extensive experiment on several baselines, the proposed scenario outperforms
other models from existing studies with promising results. The proposed label’s representation improves
the prediction confidence score on various encoder types with 8.6% and 1.8% from focal and cross-entropy
scenarios on average, respectively.

INDEX TERMS Anomaly Detection, Digital Forensics, Drone Forensics, Multitask Learning, Transformer
Encoder, Information Security

. INTRODUCTION
The availability of digital data produced by computer systems

tem monitoring, running process conformance checks, and
overall system evaluation [1].

continues to increase exponentially. It is followed by the
advancement in many research areas to make use of the
data, such as natural language processing, which is used
to analyse textual data. This type of data can be found in
several contexts stored in computer storage devices, such as
runtime logs that are constantly generated during the device’s
operational period. The information recorded in log data is
highly valuable for many purposes, including running sys-
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The use of log data is critical when incident cases occur, as
the empirical events and incident scenarios can be discovered
by analysing the log artefacts. Assuming that the integrity of
the log is guaranteed, log data is one of the artefacts with the
highest priority for investigating various types of incidents,
such as collision, crash landing, cyberattack, payload deliv-
ery issue, and weather-related incidents [2]. It is exemplified
by the research effort that has been made by the community
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FIGURE 1: An illustration of a flight scenario where several
anomalous events with different severity levels happen.
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on log-based anomaly detection using various approaches,
including machine learning- [3], [4], deep learning- [4]-[6],
and graph-based methods [7], [8].

Different types of systems generate log records in different
formats and structures, which are strongly affected by the
log statements or templates normally used in each of the
systems. Certain systems use highly technical log statements,
which consist of domain-specific log elements. For instance,
operating system logs have common elements such as host
names, Internet Protocol (IP) addresses, protocols, ports, and
messages [9]. Thus, analysing a particular system log may
need different techniques from one type to another.

Generally, log-based anomaly detection can be performed
using either point, collective, or contextual approaches. In the
log-based anomaly detection literature, most of the existing
studies propose either a contextual or collective approach,
where the decision is taken by examining a sequence of log
events. However, detecting abnormalities in log data can be
performed using a point-based approach, where one single
log record is the only feature needed. Therefore, several
studies explored utilising a point-based approach to detect
anomalous events on logs data, such as in operating sys-
tems [9], [10], drone devices [11], and distribution systems
[9], [10]. In the drone context, a log message contains a
description of occurring events which are triggered by var-
ious components such as sensors, peripherals, and firmware.
Analysing the log message means analysing events from
all aspects of the drone including sensors, components and
features [2].

Typically, existing log-based anomaly detection studies
classify the log events into two categories: normal and
anomaly [3]. This is helpful in an online setting, where the
number of detected abnormalities in a certain period of time
is considerably small. However, in a digital forensic setting,
where the detection is performed on all collected artefacts
which might be large in size, the number of the abnormalities
is likely to be large [14]. Thus, analysing the detection
result in a binary setting is impractical for the investigator.
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Moreover, out of all detected peculiarities, there might be
several negligible ones with less severe impacts on the system
or less likely to be related to an incident. Extending binary
to multiclass anomaly detection can provide more detailed
and contextual detection results to assist in an investigation
and analysis [15]-[17]. Considering the severity levels of an
anomaly, an investigator can adjust the analysis objectives
targeting a certain level only, depending on the needs and
cases.

As shown in Fig. 1, the drone experiences several events
during a flight. When analysing the flight logs from a forensic
perspective, distinguishing the severity levels can help the
investigator pinpoint critical anomalies to less severe ones.
The challenge is that even though the severity level is dif-
ferent, the samples share a common word or even phrase,
as depicted in Fig. 2. It makes it challenging to build a
point anomaly detection model that depends on the semantics
of the log message only. Fig. 3 shows the visualisation of
the semantic feature vectors of the samples in the drone
flight log datasets obtained from the pre-trained Bidirectional
Encoder Representations from Transformers (BERT) [12]
after undergoing a dimensional reduction using the t-SNE
[13].

This paper is a further experiment of the previous initial
study in multiclass anomaly severity detection on drone flight
logs data [18]. It is strongly inspired by the work in [9],
[10] where detecting anomalies on logs data is seen as a
sentiment analysis task. In this work, the distinctive fea-
ture lies within the employment of a sequence classification
model with a multitask label to train a detection model for
better performance. An extensive experiment is conducted
on several different encoders commonly used in log-based
anomaly studies, including long short-term memory (LSTM),
gated recurrent unit (GRU), transformer, and fine-tuned large
language model (LLM). To provide an objective performance
comparison of the proposed framework, several baselines are
constructed, including those that are proposed in published
works.

This paper proposes a transformer encoder-based log-
based anomaly detection optimised using multitask label
representation to help the model learn from the overlapped
features shared by the samples from different severity levels.
A domain-specific decoding procedure is also proposed to
infer the prediction result. In-depth analyses are performed
to evaluate the proposed framework thoroughly. The main
contributions of this paper are summarised as follows:

1) Propose Drone Log Severity (DroLoVe), a severity-
oriented multiclass anomaly detection approach on
drone flight log data.

2) Propose a data-driven label’s vector representation and
a severity-oriented predicted label’s decoding proce-
dure to perform multiclass anomaly severity detection
within drone flight log messages.

3) Provide in-depth discussions and analyses of the
model’s performance supported by an extensive ex-
periment on a large number of hyperparameter search
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FIGURE 2: A word cloud visualisation to see that the samples from different severity levels share common words and phrases.
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FIGURE 3: A 2D visualisation of the dataset using BERT
[12] and t-SNE [13]. It shows that the samples are not linearly
separated; samples belong to different classes are close to one
another.

spaces.

4) Open the experimental code and results publicly avail-
able on a GitHub repository' to promote transparent,
verifiable, and reproducible research.

The remainder of the paper is structured as follows: Sec-

Uhttps://github.com/swardiantara/DroMoLog
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tion II discusses relevant previous studies related to log-based
anomaly detection and how to deal with class imbalance
problems in log-based anomaly detection task, the proposed
framework is explained in detail in Section III, Section IV
provides the experimental setup, followed by Section V
where the experimental results along with comprehensive
analyses and discussions are presented. The conclusion and
future works are elaborated in Section VII.

Il. RELATED WORK

This section discusses closely relevant prior studies on log-
based anomaly detection and different approaches to handle
class imbalance problems.

A. ANOMALY DETECTION ON LOGS DATA

Log data recorded by a system store valuable information that
can be utilised to perform analysis for investigative purposes,
such as anomaly detection which is commonly referred to
as log-based anomaly detection. Recently, with the advance-
ments in Machine Learning (ML) and Deep Learning (DL)
models, many studies proposed ML-based [3], [4], DL-based
[4]-[6], and graph neural network (GNN)-based [7] solutions
for detecting abnormalities in log data. Among the published
studies, various modelling techniques were used, including
point, contextual, and collective. These modelling methods
refer to the input needed by the model to perform anomaly
detection [9]. In a point setting, the detection is performed
against individual log records. The model depends solely
on the features from a single log entry. On the contrary,
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TABLE 1: Summary of Related Works in Log-based Anomaly Detection

Ref. Parsing pr}:)rceess Input Model Hér;gle g‘;lstsl
DeepSyslog [19] v Cleansing Sequence LSTM X X
DronLomaly [20] X Normalisation Sequence LSTM X X
LayerLog [21] X Cleansing Sequence LSTM X X
LogEncoder [22] v X Sequence BiLSTM X X
LogGraph [8] v X Sequence GNN X X
SwissLog [23] v X Sequence BiLSTM X X
Loader [24] X X Sequence  Transformer X X
NeuralLog [25] X X Sequence  Transformer X X
Pylogsentiment [9] v X Point GRU Tomek Link X
SentiLog [26] X Cleansing Point BiLSTM X X
TransSentLog [10] v X Point Transformer Tomek link X
DroLoVe (Ours) X X Point Transformer  Loss Weight v

contextual and collective settings utilise a group of log events
to detect the presence of abnormalities.

Common problems encountered in log-based anomaly de-
tection include the unstructured nature of log messages, each
system having its own log characteristics, being less human-
readable, and containing many special or technical terms
[22], [23]. To deal with these problems, a typical ML/DL-
based log-based anomaly detection comprises several stages,
i.e., log cleansing, log parsing, feature extraction, model
training, model testing, and model evaluation. The role of
log parsing in log analysis and anomaly detection has been
critical to perform both online and offline detection [27].
Performing log parsing aims to extract the core features of
logs and reduce the noise. However, employing parsing can
remove valuable information within the log messages [25].
To prevent parsing errors from being propagated to the next
detection phase, utilising a contextual embedding, such as
BERT, to extract the semantic features of logs data without
performing parsing can be a solution [21]. Therefore, the
whole features extracted from each log record are preserved
as it is. Nevertheless, similar but contradicting log events
ended up having features that are close to one another in
the latent space. Dealing with such an issue, Qi et al. [22]
propose a contrastive-based approach which consists of a
representation learning model to provide a decent input to
a one-class classifier to distinguish the normal from the
abnormal log samples. Instead of removing the parameter
values in a log message when performing log parsing, the
information can be used as an additional feature along with
the metadata of the logs to improve the model’s performance
[19].

Log-based anomaly detection has been applied widely to
various systems, such as operating systems [9], [10], parallel
file systems [26], drones [11], [18], [20], internet of things
[28], and industrial control systems [29]. Among these stud-
ies, a sequence-based approach is the common modelling
technique used, where the detection is observed on a collec-
tion of log events. For that reason, a recurrent-based network
is employed to capture the sequential dependency and rela-
tionship between the log events’ occurrences. For instance,
an LSTM [22] and GRU [9] model is used to capture the
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contextual features of the log sequence. The same approach
can also be used in a point-based setting, where the sequence
of words or parameters in a log message is the features
[9]. Since part of the log record contains a human-readable
message, the transformer model can be utilised to extract
the semantic information between the words and parameters
within a log record to perform point anomaly detection [10],
[24]. In this case, given that drone log data also includes
natural language, a point-based anomaly detection approach
is adopted in this paper. Table 1 presents the summary of the
previous related works.

B. CLASS IMBALANCE PROBLEM (CIP) IN LOG-BASED
ANOMALY DETECTION

It is assured that in log-based anomaly detection, the number
of anomalous samples is significantly less than the normal
ones. Employing a supervised-based technique is prone to
bias, as the model tends to learn from the majority samples.
To overcome CIP, several studies proposed data-level and
algorithm-level solutions [30]. Moreover, in a certain case,
there are no anomalous samples available. In this particular
situation, a one-class approach can be used to construct a
normal baseline model. During the detection, an anomaly
score is used to decide if an input event is anomalous based
on a threshold value [20], [22].

A practical solution to overcome CIP is by controlling the
class distribution in the dataset, either by oversampling the
minority class, undersampling the majority class, or adding
more data to the existing dataset [31]. Overall, either ap-
proach can improve the model’s performance, depending on
the dataset characteristics [32], [33]. For instance, generating
more samples of minority classes using the Synthetic Mi-
nority Oversampling Technique (SMOTE) can improve the
detection performance of a deep Q network (DQN)-based
[34] and deep neural network (DNN)-based [35] models.
Instead of duplicating the minority class to add more sam-
ples, as in random oversampling, SMOTE uses the k-nearest
neighbour as an anchor and creates a new sample that is
close to those k samples. It helps the model to learn from
minority classes better, instead of from redundant samples
produced by random oversampling [35]. However, in other
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FIGURE 4: The proposed approach overall architecture.

cases, normal samples can be unnecessarily abundant, where
removing a certain amount of samples does not reduce the
informational value from the dataset. Random undersampling
(RUY) is a simple way to eliminate several majority samples
to balance the class distribution [36]. Instead of picking
random samples to remove, Tomek Link can be used to
choose majority samples that are close to minority samples to
remove. It can increase the class separability of the dataset,
which then helps the model to distinguish between the normal
and anomalous events and increases the model’s performance
[9]. Performing minority oversampling and majority under-
sampling simultaneously also makes it possible to balance
the class proportion, which then helps increase the model’s
performance [37].

Overcoming CIP can also be achieved by using a method-
level solution, which revolves around selecting an appropri-
ate model or designing a training procedure. For instance,
Qi et al. [38] utilised a bidirectional generative adversarial
network to obtain the reconstruction loss and discrimination
loss as the features for an n-stacked ensemble classifier to
perform anomaly detection., which resulted in an increase in
recall. Ensemble models have been shown to perform better
than a single classifier, exemplified by [39], who proposed
an isolation forest (IF)-based method to perform anomaly
detection with various contamination ratios. Similar to the
ensemble, training two detection models for detecting the
normal and anomalous events separately can reduce false
positive cases [40]. A common challenge in using ensemble-
based models is how to perform final predictions, considering
each sub-model has its own predictions. Therefore, employ-
ing self-supervised contrastive learning can be a solution to
pre-train a model that can produce distinct features of normal
to abnormal samples. Using the decent features from the pre-
trained model, a standard clustering is performed to decide if
a test event is anomalous based on the Mahalanobis distance
score with respect to a threshold value [41]. Clustering can
also be used to estimate the unlabeled samples’ label prob-
ability, which is then used to train a discriminative model.
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A semi-supervised approach also shows a positive impact on
the model’s performance [42].

Unlike the previously discussed studies, inspired by an
existing study from another domain [43], this paper employs
loss weighting to train a neural model using an imbalanced
dataset. Performing data augmentation at the message level
to overcome CIP is impractical in this study as the augmented
messages do not exist in the actual scenario. Therefore, this
paper explores the effect of using various class weighting
schemas and loss functions.

lll. PROPOSED FRAMEWORK: DROLOVE

This section presents the proposed method towards a
severity-oriented multiclass anomaly detection approach for
drone flight log data. The overall flow of the proposed frame-
work is depicted in Fig 4. The following section describes the
approach in more detail.

A. OVERVIEW
Performing point log-based anomaly detection that takes
human-readable log messages as input is similar to conduct-
ing sequence or text classification. As mentioned in Section
I, this task may be interpreted as a sentiment analysis task
that aims to detect negative sentiments within log messages.
Taking an n-length log message m = [wy, wa, ..., w,| from
the dataset D = {(mhcl-)}‘;]zl1 as the input, where ¢ is
the label class name, BERT is used to tokenise the input
into a fixed length sequence with m maximum length and
retrieve the contextual embeddings, resulting in an input
matrix X € R™X4BERT which is then paired with the
encoded label y. Thus, the numerical input becomes (X, y).
This study aims to train a neural network model My to
classify the message m into one of the predefined classes
¢ € C = {high, medium, low, normal}, or can be
written as My : m — c.

Based on past literature discussed in Section II, processing
the sequence of words and performing classification based on
the sequence-level features is best performed using modern
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deep learning models such as LSTM, GRU, and Transformer.
In this study, these models are used in the experiment to
identify the best-performing one. The encoder takes the input
matrix X to learn the contextual dependencies among the
tokens in the input sequence, yielding the encoder hidden
states H € R™*768 a5 the BERT-base model produced a
768-dimensional vector. Note that the encoder can be stacked
in layers depending on the needs. In this study, the layer’s
number varies between one and three to prevent the model
from being too complex.

Before passing the encoder’s hidden states to the final
linear classifier, a pooling is performed to aggregate the
features from each token within the sequence to get the final
sequence-level representation. To this end, various pooling
techniques are used: maximum, average, CLS (Classify to-
ken), and /ast as depicted in Fig. 5. Max and average pooling
are performed at an element-wise manner, meaning that each
of the token’s vector elements in the corresponding position
are aggregated. CLS is a special token from the BERT pre-
training task used to represent the sequence features. Pooling
CLS means taking the CLS’ vector representation as the final
feature. As for the last refers to the last token’s representation
in the sequence; this only applies to LSTM and GRU models.
This aligns with the nature of the recurrent model where the
last token’s hidden state is considered to be the sequence
representation. When the model employs bi-directionality,
the last token’s forward hidden state and the first token’s
backward hidden state are concatenated to form the same size
of the final hidden state as the unidirectional one. The pooling
layer takes the hidden state H as the input and resulting the
vector h € R7%8,

The next step after performing pooling is to feed the
vector h to the linear layer, yielding the unnormalised logits
z € RICl, where |C| denotes the number of target class
in the dataset. During the training phase, these vectors are
used to compute the loss and update the model’s parame-
ter after passing through a normalisation function. For the
typical one-hot encoding label’s representation, the standard
cross-entropy is used to compute the loss, as defined in the
following equation:

Pooling : CLS Avg / Max Last
. 1 A 1
. e R
Last Hidden : hgrs h; h, hy; - h,,
: gy iy iy
Input i gy iy

Message : Backward Obstacle Avoidance is not Availale

FIGURE 5: An illustration for the pooling mechanism used in
the experiment. Note that the last pooling is only applicable
to the LSTM and GRU encoder.
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IC|
L =~ Zyi -log(9:) (1
i=1
¥y = softmax(z) )
X exp(zi)
i = 3
NS () v

where y and y are the true label vector and the prediction
probability distribution, respectively. The prediction proba-
bility ¥ is obtained from Eq 2, where each of the element in
y is computed using Eq 3.

B. HANDLING CLASS IMBALANCED PROBLEM

One of the common problems when training a neural network
is when a dataset has an imbalanced proportion between
the classes, which happens to be the case in this study.
The distribution of the sample in the dataset is shown in
Table 2. As discussed in Section II-B, several techniques
can be used to deal with this situation, either by balancing
the sample distribution or incorporating class weights during
the model’s training [30]. In this study, it is impractical to
perform oversampling on the dataset, especially in the form
of natural language, as is the case in other domains where
techniques such as synonym replacement or structure re-
arrangement are applied. This is due to the nature of the
domain, where oversampling the drone flight log messages
does not reflect the real-world case and situation. Therefore,
incorporating a weighting schema during the training is a
feasible option.

Preventing a neural model from learning from the majority
of samples can be achieved by weighting the loss of each
class based on the frequency distribution. Therefore, the
importance of the minority class is considered equal [43]
to the majority class. Incorporating a class weight into the
cross-entropy loss as defined in Eq 1 where weighting the
per sample loss is written as the following:

IC|
L == "a; - yi - log(#i) )
=1

where «; denotes the weight for the ¢-th class. Another
way of performing weighting to loss function is to penalise
the model’s prediction with a low confidence score, called
Focal loss [43]. This is achieved by transforming the ratio of
the loss value between high-confidence and low-confidence
prediction probabilities. Focal loss is computed using the
following equation:
IC]
croel = N o, (1= 3) log(@i) ()
i=1
where v is a hyperparameter to control the range of the pre-
diction probability value being penalised. Increasing v > 0
weakens the relative loss from samples with high prediction
confidence scores. Therefore, the model is forced to focus
more on hard-to-classify samples [43].
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FIGURE 6: Proposed label’s vector representation based on
the dataset characteristics.

Computing the class weight can be challenging, as the
importance of a particular class could be vague relative to
the other classes in the label set. A common practice is
using frequency-based weighting, where the class weight is
computed based on the frequency distribution of the class in
the dataset. In this study, three class weights are explored
and used to train all encoder types: uniform, inverse, and
balanced. Uniform refers to equal weighting on all classes,
which means no weighting is used. While inverse and bal-
anced can be calculated using the following equations:

, D\ !
bal |D|
= — 7
" = ic] D] @

where |D| denotes the total samples in the dataset and |D.|
represents the number of the samples belong to class ¢ with
D. CcD.

C. SEVERITY-ORIENTED LABEL’S VECTOR
REPRESENTATION

Training a neural network to perform a multiclass classifi-
cation task typically converts the class names into a one-
hot encoding vector, where each vector element represents
a particular class which relies on an assumption that the
samples from different classes are mutually exclusive [44].
As discussed in Section I, and shown in Fig. 2 and Fig. 3, the
samples from distinct classes in the dataset are instead mutu-
ally inclusive. Therefore, this study proposes a label’s vector
representation inspired by the multitask learning paradigm.
Fig. 6 shows the proposed label along with the standard one-
hot encoding. The label relies on the assumption that samples
belonging to a higher severity level with one class share
common low-level features with samples in a lower severity
level. We call it a severity-oriented label as the model is
trained on two alternative labels instead of one exclusive label
only. Therefore, in case of misclassification, the prediction is
expected to fall one level under the true label.

Aligning to the nature of the label’s vector representation,
the loss function used in the training is log loss for multiclass
classification, which can be computed using the following
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Normal Low Medium High

FIGURE 7: Severity-oriented decoding process of the pre-
dicted label’s vector into the class name which is done in a
backward direction.

equation:

|C]
L9 = =", - [yilog (i) + (1 — yi) log(1 — §:)] (8)

i=1

where «; is the same term as in Eq 4. With this loss function,
the model is forced to learn from the shared features among
the two neighbouring classes. This assumption originated
from the multi-object detection task, where a single image
contains multiple objects to detect and those different objects
share low-level features. Therefore, predicting a certain ob-
ject benefited from other’s object features within the same
input sample [45]. The same assumption underlies the design
for the label’s vector representation in this study.

Inferring the prediction result with the proposed label is
different from the typical one-hot encoded label. The index
of the element with the highest probability value that is
obtained from arg max is used as the final prediction. Then,
the integer index is decoded back to the class name using the
same function used to convert the class name into the integer
index in the label encoding process. Conversely, each vector
element in the proposed label represents a particular class,
as shown in Fig. 6. Therefore, to normalise the logits from
the model into probability, sigmoid is used on each of the
prediction vector elements and is written as the following:

1
~ 1+ exp(—2)

i ©))
where g; is the prediction probability for the i-th class and
9; € [0,1]. To get the prediction label’s vector, a prediction
threshold A = 0.5 is applied, making the element with a value
more than or equal to the threshold equal to 1, otherwise it
is 0. Finally, severity-oriented decoding is used to get the
label class name back by checking the prediction label’s
vector from the last element and moving backward to the
first element, as illustrated in Fig. 7. If the current element
is marked as 1, the class name in that position becomes the
predicted class.

IV. EXPERIMENTAL SETUP

This section provides details about the dataset used in the
experiment presented herein, as well as describes the baseline
models used for performance comparison, the experiment
environment, and the hyperparameter settings used.
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TABLE 2: Summary of the distribution of the class in the
dataset

Dataset Split High Medium Low Normal Total

Train 30 104 173 161 468
Filtered Test 8 26 43 40 117
Total 38 130 216 201 585
Train 32 632 433 696 1,793
Unfiltered  Test 8 159 108 174 449
Total 40 791 541 870 2,242

A. DATASET

In this study, one of the artefacts of drone devices, the
flight log message, is used as the source of the evidence
to perform multiclass anomaly severity detection. These
human-readable messages, such as “Aircraft Core Board
Overheated” and “Compass error, calibration required”, can
be found in most of DJI-make’s flight logs in three columns:
warning, tip, and message. Originally, the flight log was in
encrypted .CSV files [46]. Thus, the drone phantom help?
is needed to decrypt the flight log files and then extract the
contents. The dataset used in this study is also used in [18],
where the log messages are collected from two sources: VTO
Labs [46] and Drone Wiki [47]. Instead of taking the average
over 5 folds, one of the folds (5™ fold) is directly used as
the standard deviation signified the performance evaluation
on 5 different folds is insignificant [18]. The filtered dataset
refers to the log messages after performing a unique filtering
process, while the unfiltered is the actual collection of drone
flight log messages gathered from the two sources mentioned
previously. The dataset is split into training and testing with
an 80:20 ratio. The summary of the per-class distribution in
the dataset is presented in Table 2.

B. BASELINES

In this study, an extensive experiment with various types
of encoders is conducted to construct strong baselines for
performance comparison. Ensuring the objectivity of the
comparison, these baselines’ hyperparameters are fine-tuned
using grid search on a finite search space, as shown in
Table 3. The details of the baseline construction are described
in the following subsections.

1) Baseline from Diverse Suitable Encoders

The distinction between the baseline and the proposed
method is based on the pair of label’s vector representation
and the loss function used during the training. Two baselines
are defined: one-hot encoding with cross-entropy loss and
one-hot encoding with focal loss. The proposed scenario
employs multitask encoding with log loss. Using these three
scenarios, a significant number of models using the following
encoders are trained:

1) None refers to fine-tuning the BERT’s [12] parame-
ter on the dataset. Different pooling mechanisms and

Zhttps://www.phantomhelp.com/logviewer/upload
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class weighting strategies are explored whilst using this
baseline, resulting in 54 scenarios.

2) Transformer implies the transformer encoder sub-
module in the transformer architecture, proposed in
[48]. From the search space in Table 3, bi-directionality
is the only irrelevant hyperparameter during the grid
search, generating 486 scenarios.

3) LSTM [49] and GRU [50] allude to recurrent neural
network families that are common in sequence clas-
sification tasks. In these two models, the number of
attention heads is the only irrelevant hyperparameter
during the grid search, yielding 324 scenarios each.

Therefore, the overall scenarios are 1,188 in total. BERT
is chosen as the embedding model for all scenarios as it
is widely used in diverse domains and proven to be better
compared to other contextual embedding models [51].

2) Baseline from Previous Works

Among the relevant published studies in the log-based
anomaly detection space, sequence-based is one of the most
commonly used approaches. Therefore, there are limited rele-
vant references as this study employs a point-based approach.
Below are the relevant baselines from previous research:

1) Pylogsentiment [9] is the first study which employs
sentiment analysis-based anomaly detection on operat-
ing system logs using GRU and GloVe embedding.

2) SentiLog [26], similar to [9], use a two-layered BiL-
STM and GloVe embedding model to perform anomaly
detection on parallel file system logs.

3) TransSentLog [10] is a further development of [9]
and uses a two-layered transformer encoder which used
two attention heads and GloVe embedding along with
integrated gradients to add explainability to the trained
model.

4) NeuralLog [25] is a one-layered transformer encoder-
based model trained on various log anomaly bench-
marks using 12 attention heads and BERT as the em-
bedding. Contrary to the other three baselines, this
study performed the detection on the sequence of log
records, instead of point-based.

BERT has been demonstrated to be a better embedding
compared to GloVe [51], as BERT produces a contextual
feature vector based on the relationship among the words
within a sentence. In this study, BERT is used as the embed-

TABLE 3: The search space for the hyperparameter tuning

Variable Value Space

None | Transformer | LSTM [ GRU
Loss Cross-Entropy, Focal, Log
Num. of Layers - 1,2,3
Attention Heads - 4,6,8 -
Pooling Max, Avg, CLS Max, Avg, Last
Class Weight Uniform, Balanced, Inverse
Bidirectionality - [ True, False
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TABLE 4: The Best Performing Model for Each Encoder Type and Loss Function Based on Accuracy and F1 Score Tested on

the Unfiltered Dataset After Performing Hyperparameter Tuning.

Encoder Loss #Layer #Head Pooling Class Weight Best Epoch  Acc(%) Pre(%) Rec(%) F1(%) Conf (us)
BiGRU* CE 1 - Last Uniform 9 96.429 96.527 96.429 96.470 0.9850.07
BiGRU Focal 2 - Last Uniform 12 96.205 96.430 96.205 96.303 0.9680.07
BiGRU Log 3 - Max Uniform 4 96.429 96.556 96.429 96.449 0.984¢ 05
LSTM CE 1 - Avg Uniform 12 96.205 96.486 96.205 96.315 0.9950.03
LSTM* Focal 2 - Last Uniform 10 96.429 96.604 96.429 96.498 0.965¢.97
LSTM Log 1 - Avg Balanced 11 96.205 96.535 96.205 96.328 0.991¢.05
None* CE - - Avg Balanced 6 95.759 96.370 95.759 95.985 0.9880.05
None Focal - - Avg Uniform 15 95.759 95.837 95.759 95.778 0.974¢.09
None Log - - Avg Uniform 7 95.759 95.864 95.759 95.786 0.993¢.05
Transformer CE 3 6 Avg Uniform 11 96.429 96.608 96.429 96.487 0.993¢.04
Transformer Focal 3 4 Max Uniform 10 96.429 96.400 96.429 96.366 0.9670.08
Transformer*  Log 1 6 Avg Balanced 7 96.875 96.856 96.875 96.851 0.995¢.03

Best-performing model from each loss function
*Best-performing model from each encoder type

ding model when reproducing the baselines’ performance.
Additionally, hyperparameter tuning is also performed to
make the performance comparison as objective and fair as
possible.

C. EXPERIMENT SETTINGS

The experiment is conducted on a personal computer
equipped with a 16GB VRAM GPU. The method is im-
plemented in Python version 3.10.13 with the help of the
Pytorch version 2.0.1 library. The model is trained and tested
only once by setting the random seed value to guarantee
reproducibility over multiple runs and on different devices.
During the experiment, as each encoder type has its hyperpa-
rameter, the search space is not the same as one another. The
details of the search space are presented in Table 3. Other
than the ones listed in the table, the hyperparameter values
are set as follows: learning rate is = 2e — 5, 15 epochs,
v = 2 [43] for the focal loss, and 8 batch size on train and
test.

During the training, the best-performing checkpoint is
saved and used in the evaluation. The first criterion for choos-
ing the best checkpoint is by comparing both the accuracy
and F1 score of the current execution with the previous best
run. If the accuracy and F1 score of the current execution is
not higher than the previous score, then the second criterion
is to check if the F1 score is improved while the accuracy is
stagnant. If the second criterion does not hold, it is observed
if the accuracy is improved while the F1 score is stagnant.
Other than these criteria, the current execution is ignored.
The position of the best checkpoint is recorded as the best
epoch for performance evaluation. This value can be affected
by the loss computation that uses unnormalised logits during
the training. Therefore, an ablation study is performed to
investigate the effect.

The accuracy, weighted average precision, recall, and F1
scores are reported as the performance evaluation metrics.
Additionally, the mean prediction probability is recorded to
measure how confident the model is in predicting the test
data on average. To verify the importance of each component
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in the model, an ablation study is performed on several as-
pects. To provide an in-depth analysis from a domain-specific
perspective, error analyses are also conducted by investi-
gating the the misclassification cases. Finally, the learned
representation of the dataset is examined to check if the
model successfully learns a decent representation during the
training.

V. PERFORMANCE EVALUATION AND DISCUSSION
Following the procedure and details in the previous section,
this section reports the experimental results along with in-
depth discussions and analyses.

A. BEST PERFORMING SCENARIO

Evaluation Metric: After experimenting with all the designed
scenarios, the models’ performance is evaluated on the test
dataset. The best-performing model from each pair of en-
coder type and loss function is reported in Table 4 and Table 5
for unfiltered and filtered datasets. Based on the evaluation
metrics shown in both tables, the proposed scenario outper-
forms all baseline scenarios on all encoder types tested on the
unfiltered dataset, with an accuracy of 96.875 and an F1 score
of 96.851. As for the filtered dataset, the transformer encoder
trained on the baseline scenario outperforms the other scenar-
ios on all encoder types with an accuracy of 83.761 and an F1
score of 82.967. The proposed scenario only performs better
on the GRU and LSTM encoders compared to the baseline
scenarios.

Prediction Confidence: Evaluating a neural model’s per-
formance strongly depends on the task and domain problem.
In a particular task, accuracy can be the only important
metric. However, in some other domains, having a high ac-
curacy does not suffice. For example, in this study, the model
needs to be sure when predicting if a log is not an anomaly.
To check if a model is certain of the prediction, we can
investigate the prediction probability. Therefore, we record
the prediction probability of each scenario during the testing,
taking the mean (u) and the standard deviation (o) to perform
the model’s prediction confidence analysis. The distribution

9
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TABLE 5: The Best Performing Model for Each Encoder Type and Loss Function Based on Accuracy and F1 Score Tested on

the Filtered Dataset After Performing Hyperparameter Tuning.

Encoder Loss #Layer #Head Pooling Class Weight Best Epoch Acc(%) Pre(%) Rec(%) F1(%) Conf (o)
GRU CE 3 - Avg Uniform 9 81.197 81.176 81.197 80.863 0.9730.07
GRU Focal 3 - Avg Uniform 9 81.197 80.738 81.197 80.723 0.893¢.11
GRU#* Log 1 - Avg Uniform 9 82.051 81.950 82.051 81.429 0.9780.06
LSTM CE 3 - Avg Uniform 9 82.051 81.621 82.051 81.325 0.9310.11
BiLSTM Focal 3 - Last Inverse 12 82.051 81.816 82.051 81.618 0.869¢.11
LSTM* Log 2 - Last Inverse 13 82.051 81.699 82.051 81.859 0.976¢.97
None* CE - - CLS Balanced 11 80.342 82.251 80.342 80.873 0.9580.10
None Focal - - CLS Balanced 7 80.342 80.914 80.342 80.602 0.8330.16
None Log - - Avg Uniform 14 78.632 79.110 78.632 78.846 0.975¢.07
Transformer*  CE 3 4 CLS Uniform 13 83.761 84.699 83.761 82.963 0.970¢.99
Transformer Focal 1 4 CLS Inverse 12 82.906 82.663 82.906 82.315 0.876¢.15
Transformer Log 2 8 Max Balanced 11 81.197 80.756 81.197 80.876 0.9680.09
Best-performing model from each loss function
*Best-performing model from each encoder type
of the mean prediction confidence is presented in Fig. 8 based
. . 1.0 1
on the loss function. From the figure, it can be observed that 5
the confidence score of log loss is significantly higher and v 0.9
more stable than the other two losses, indicating that the S
. s .. »n 0.8
proposed label increases the model’s prediction confidence g 0.8
overall for encoder types on average. S 0.7
©
Conv.erg.ence Spe'ed: ’I"he bes't’epoch in the Table 4 and “g 0.6 1 Dataset
Table 5 indicate the iteration position when the model reaches o EEE Unfiltered B Filtered
the best performance from a total of 15 epochs. It can be 0.5 . . .
Log Loss Cross Entropy Focal

used to evaluate the model’s training behaviour in differ-
ent scenarios. From the unfiltered evaluation, the proposed
scenario reached the best performance at the 7" iteration,
relatively faster than the other two best-performing scenarios,
which need 11 and 10 iterations for cross-entropy and focal,
respectively. On the contrary, the result of the filtered dataset
shows an opposite tendency. The higher-performing scenar-
ios tend to take more iterations than the lower-performing
ones. However, the proposed scenario outperforms the other
two baseline scenarios on the GRU encoder with the same
number of iterations. When using a transformer encoder,
the proposed scenario underperforms the other two baselines
significantly while taking an almost similar number of itera-
tions. Fig. 9 shows the distribution of the best epoch on each
loss function, where log loss tends to take more epochs to
reach the best checkpoint.

B. HYPERPARAMETER ANALYSIS ON EACH ENCODER

Considering the total number of experimented scenarios, it is
not possible to discuss all the details in this paper. Therefore,
we perform a chi-square test to determine which hyperparam-
eter is significant towards the accuracy of the models. Note
that this test measures the difference in the mean of accuracy
among different groups based on the categorical value in
each hyperparameter. Thus, the significant hyperparameter
can be different from one encoder to another. Fig. 10 shows
the test result, where the heat map colour indicates the
statistic test score and the annotation in each cell indicates the
corresponding p-value. Chi-square can be computed using
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Loss Functions

FIGURE 8: The distribution of the mean (1) prediction confi-
dence score from each loss function. Log loss is significantly
higher and more stable than CE and focal on both datasets.
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FIGURE 9: The distribution of the best epoch from each loss
function. Log loss tends to need more epochs compared to
cross-entropy and focal loss.

the following formula:

2 (045 — Eij)?
= — 10
=y G 10)

VOLUME 4, 2022



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3396926

IEEE Access

S. Silalahi et al.: Severity-oriented multiclass Drone Flight Logs Anomaly Severity Detection

50
- 18.51 Ry

40

o)
o
Q
uw
=
|_
[7p]
—
w
()
C
o
=z
_u
52 30
S g - 48.90 43.98 50.73
C ]
[IT S
L
=]
£ & -16.79
&> -20
=
0 - 37.44 39.17
)
()
c
S - - 10
>
%)
C
g - 45.35  34.37 35.06 40.65
= | -0
© E c © GLJ (o))
s ©° 2 3 » =
5 2 g T - 8
g ” 2 E =
5 & a 2 2
o @) 3
Hyperparameter

FIGURE 10: A significance test using the chi-square test of
independence to check which hyperparameter is significant
towards the accuracy. Only those with p-values less than 0.05
are shown.

where O;; and E;; are the observed and expected frequencies
in cell (4,7) in a contingency table constructed from each
hyperparameter paired with the accuracy. Since the accuracy
is a continuous variable, the value is converted into several
groups by binning the value into several ranges. Having the
chi-square test result presented in Fig 10, it can be seen
that the significant hyperparameters differ from one encoder
to another. Note that this test does not reflect the direction
of the dependency. Instead, it shows which hyperparameter
the accuracy depends on. The dependency can be either
increasing or decreasing the accuracy. Nevertheless, it can
help choose which hyperparameter to modify in the next
experiments.

C. COMPARISON WITH STATE-OF-THE-ART MODELS

In this study, several baselines from previous studies are
reproduced on the dataset to perform performance compar-
isons. The reproduced performance from an experimental
procedure explained in subsection IV-B2 is presented in Ta-
ble 6. On both datasets, the proposed scenario outperforms all
the baselines with an improvement of 0.423 and 0.665 in the
F1 score on the filtered and unfiltered datasets, respectively.
Considering that Pylogsentiment used a GRU-based encoder
and SentiLog used an LSTM-based encoder, the proposed
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scenarios on these two encoders consistently outperform the
baselines’ performance tested on the filtered dataset. Note
that we also perform hyperparameter tuning on these base-
lines to ensure the validity of the performance comparison.
As for transformer-based baselines which are NeurallLog
and TransSentLog, the proposed scenario achieves lower
performance tested on the filtered dataset. However, on the
unfiltered dataset, the transformer-based proposed scenario
achieves the highest performance. Based on these findings,
it is verified that the proposed scenario can improve the
detection model’s performance.

D. ABLATION STUDY

Following the rapid advancement in neural network research,
more complex and sophisticated architectures are emerging.
A model can consist of layers of components that have a
specific role in the learning process. After conducting an
experiment on a certain dataset and task, it is crucial to verify
and check which component in the model contributes posi-
tively to the model’s performance. Therefore, we perform an
ablation study to explain which part of the proposed approach
has a significant impact on the performance. Note that only
the best-performing scenario on each dataset is explored.
First, we investigate the significance of the CLS token from
the BERT embedding. Secondly, we analyse the impact of
freezing the BERT’s parameter during training. Thirdly, we
vary the batch size during the training. Finally, we examine
the effect of increasing the prediction threshold used in our
proposed approach on the accuracy and F1 scores.

As shown in Table 6, excluding the CLS token’s embed-
ding before feeding the input matrix to the encoder decreases
the performance significantly. Also, freezing the BERT’s
parameter during the training caused a striking drop in the
performance scores.

Training a neural model using a batched sample is a
common practice to shorten the training time and enforce
the model to learn from representative samples. The size of
a batch can have an impact on the model’s performance. As
shown in Fig 11, varying the batch size has a notable impact
on the filtered dataset but insignificant on the unfiltered
dataset. From the figure, it can be seen that the 8 is the best
option to use. During the inference when using multitask
encoding and severity-oriented decoding, the threshold plays
a crucial role in the prediction evaluation. Fig 12 shows the
effect of increasing the threshold on the accuracy and F1
scores of the best-performing model tested on both datasets.
An interesting case is shown in Fig 12a when A\ = 0.65, the
accuracy reaches 97%, exceeding the best model’s accuracy
when A = 0.5. This happens when the true label is lower
than the predicted label, while the prediction confidence of
the higher label surpasses the threshold. Thus, following
the decoding procedure in section III-C, the predicted label
is incorrect. This phenomenon also happens on the filtered
dataset when A > 0.94. Overall, the decrement in the
accuracy and F1 scores is insignificant until A = 0.9 and
A = 0.8 on the unfiltered and filtered datasets, respectively.
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TABLE 6: Performance Comparison with Several Baselines from Previous Works

Ref. Filtered Dataset Unfiltered Dataset
: Acc (%) Pre (%) Rec (%) F1 (%) Conf (15) Acc (%) Pre (%) Rec (%) F1 (%) Conf (1)
Pylogsentiment [9] 80.342 81.400 80.342 80.604 0.944¢ 11 95.536 95.575 95.536 95.534 0.9880.07
SentiLog [26] 79.487 79.621 79.487 79.458 0.968¢.08 95.759 95.962 95.759 95.842 0.9930.04
NeuralLog [25] 82.051 81.506 82.051 81.436 0.819¢.17 96.205 96.208 96.205 96.186 0.985¢.07
TransSentLog [10] 81.197 81.120 81.197 81.127 0.9570.11 95.982 96.289 95.982 96.104 0.989.05
DroLoVe (GRU) 82.051 81.950 82.051 81.429 0.9780.06 96.429 96.556 96.429 96.449 0.984¢ 05
DroLoVe (LSTM) 82.051 81.699 82.051 81.859 0.976¢.07 96.205 96.535 96.205 96.328 0.991¢.05
w/o CLS vector 78.632 77957  78.632 78206 0978005 95536  96.047 95536 95717  0.996003
freeze BERT’s params 64.103 71.658 64.103 66.186 0.864¢.15 89.063 94.805 89.063 91.414 0.9760.07
DroLoVe (Transformer) 81.197 80.756 81.197 80.876 0.9680.09 96.875 96.856 96.875 96.851 0.995¢.03
w/o CLS vector 78.632 78.491 78.632 78.107 0.9520.10 95.759 96.096 95.759 95.877 0.9920.04
freeze BERT’s params 70.940 70.038 70.940 70.391 0.845¢.15 93.080 94.284 93.080 93.541 0.972¢.08
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FIGURE 11: Analysis of the effect of different batch sizes on 80
the accuracy and F1 scores.
0.5 0.6 0.7 0.8 0.9 1.0

Thus, it confirms the prediction confidence distribution that
is depicted in Fig 8.

E. ERROR ANALYSIS

In the previous section, the models’ performance has been
discussed thoroughly from a quantitative perspective. Here,
we investigate the samples from the test set that are predicted
incorrectly by the best-performing model from each scenario.
In a binary setting, let the Normal class be positive and
the Anomaly is negative. Then, False Positive (FP) refers to
samples with a true label negative but predicted as positive.
At the same time, a False Negative (FN) is a case when a
sample belongs to a positive class but is predicted as negative.
However, in this study, we define the misclassification cases
differently:
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Threshold (A)

(b) Filtered Dataset (LSTM)

FIGURE 12: Analysis of the effect of increasing the predic-
tion threshold on the accuracy and F1 scores.

« False Positive refers to a case when the true class is
higher than the predicted class.

« False Negative is a misclassification case where the true
class is lower than the predicted class.

Table 7 shows the position of FP and FN based on the
above definition in a multiclass confusion matrix.

In an anomaly detection setting, FP is more important
than FN since detecting anomalous events as normal is a
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TABLE 7: Custom Confusion Matrix for Error Analysis

Normal Low Medium High
Normal TP FN(1) FN(2) FN(3)
Low FP(1) TP FEN(1) FN(2) True
Medium FP(2) FP(1) TP FN(1) | Class
High FP(3) FP(2) FP(1) TP

Predicted Class
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FIGURE 13: The number of misclassified samples from the
best-performing model on each loss function tested on the
filtered dataset.
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FIGURE 14: The number of misclassified samples from the
best-performing model on each loss function tested on the
unfiltered dataset.

critical error. Having a high number of FPs can endanger
the system with a serious impact, especially for FP(3) cases,
which means the true label is High and the predicted label is
Normal. At the same time, having a high number of FNs can
cause many false alarms, but they are not as critical as FPs.
Following the definition in the previous paragraph, we plot
the frequency of each misclassification type in Fig 13 and
Fig 14. From the figures, it can be seen that the proposed
approach performs better on the unfiltered dataset, despite
having a high number of FN(1) and FN(3). However, on the
filtered dataset, the proposed approach has more FP(2) than
the other two scenarios, even though it has a smaller number
of FP(1), FN(1), and FN(2).
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Other than analysing the misclassified samples, we also
analyse the learned representation of the dataset by each
of the best-performing models. The filtered dataset is used
to investigate the samples’ representation plotted into 2D
graphs, as shown in Fig 3. From the visualisation, it can be
seen that the samples that belong to High class are still close
to the Normal class in Fig 15a and Fig 15b. While in Fig 15¢,
the High class is far from the Normal class but even further
from the Medium class. Even though all scenarios result in a
well-separated representation, none of the scenarios reflects
the nature of the label. One would expect the High class to
be far from the Low class, representing the distance between
the class’ severity.

VI. CHALLENGES, LIMITATIONS, AND THREATS TO
VALIDITY

In the previous sections, the performance of the proposed
framework has been discussed and analysed. In this sec-
tion, challenges that are encountered during the study are
disclosed, along with limitations and threats to validity. As
drone forensics is an emerging topic, there are very limited
public datasets available. The log messages used in this
study are mainly acquired from DJI-made devices. There
is yet to come a publicly available dataset of log messages
from other drone manufacturers. Several publicly available
datasets are mainly about sensor data and multimedia arte-
facts [52]. While in this study, we solely depend on the
human-readable messages generated by the drone during a
flight. Given the condition where a small number of unique
messages and most of them are acquired from DJI drones, the
proposed model’s generality remains untested. Considering
the performance evaluation score, where the highest accuracy
is under 85%, the model needs further improvement so that
the validity of the detection can be enhanced so that the
model’s detection results can be convincing and accountable
enough to the investigator to be included in the investigation
report.

VIl. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate how to train a log-based
anomaly detection model that can prioritise the prediction
of higher severity anomalies on drone flight logs while in-
creasing the prediction confidence score at the same time.
Considering the nature of the dataset, where samples that
belong to different severity levels share common features, a
multitask label’s vector representation along with severity-
oriented decoding is proposed.

An extensive experiment proved that the proposed ap-
proach is better than the previous work baselines while
being inferior to our baseline scenario based on the accuracy
and F1 scores. From the anomaly detection perspective, the
proposed method achieves higher prediction confidence and
can prioritise higher severity levels during the inference on
the test dataset. Despite the promising results, the proposed
model is tested only on messages acquired from DJI-made
devices, leading to untested generality. Moreover, the testing
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FIGURE 15: A 2D visualisation of the filtered dataset representation obtained from the best model from each loss function
tested on the filtered dataset. t-SNE [13] is used to reduce the dimension of the embeddings.

set does not reflect an incident scenario, making the resulting
model untested in a real-case environment.

Further future studies may include exploring the pos-
sibility of doing high-level oversampling to introduce the
models with more log message patterns, producing a dataset
with incident scenarios to perform case studies for verifying
the proposed method’s performance and making it publicly
available.

DATA AVAILABILITY

The dataset used in the experiment is available on a rea-
sonable request. The code for the experiment, the resulting
performance evaluation, the scripts for data analysis, and
the figures in this paper are made publicly available on the
GitHub? to promote transparent, reproducible, and verifiable
research.
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