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a  b  s  t  r  a  c  t

Bayesian  belief  networks  (BBNs)  are  a  widespread  tool  for  modelling  the effects  of  management  decisions
and activities  on  a variety  of  environmental  and  ecological  responses.  Parameterisation  of  BBNs  is often
achieved  by  elicitation  involving  multiple  experts,  and  this  may  result  in  different  conditional  probability
distribution  tables  for the  nodes  in  a  BBN.  Another  common  use  of  BBNs  is in  the  comparison  of  alternative
management  scenarios.  This  paper  describes  and  implements  the  ‘belief  index’  (BI),  an  empirical  measure
for evaluating  outcomes  in BBN  modelling  that  summarises  the  probabilities  (or  beliefs)  of  any  one
node  in  a BBN.  A  set  of  four species-specific  BBNs  for  managing  watering  events  for  wetland  fish  is
outlined  and  used  to statistically  assess  between-expert  and  between-species  variability  in parameter
estimates  by  means  of  the BI. Different  scenarios  for  management  decisions  are  also  compared  using  the
% improvement  measure,  a derivative  of  the  BI.

© 2012 Published by Elsevier B.V.

1. Introduction

Bayesian belief networks (BBNs) are increasingly being used
to model the effect of management decisions and activities on
a variety of environmental and ecological responses (e.g. Borsuk
et al., 2004, 2006; Pollino et al., 2007a; Uusitalo, 2007; Renken
and Mumby, 2009; Johnson et al., 2010; Nicholson and Flores,
2011). BBNs provide for a transparent tool in which complex rela-
tionships amongst variables can be clearly articulated, knowledge
gaps identified, alternate management scenarios compared, and
the most important drivers for ecological responses determined
(e.g. Varis and Kuikka, 1997; Marcot et al., 2006; McCann et al.,
2006; Uusitalo, 2007; Stewart-Koster et al., 2010). The high level
of flexibility of BBNs, and especially their ability to cope with lit-
tle and/or missing data (Uusitalo, 2007) as well as to incorporate
empirical data, expert opinion or a combination of both (Pollino
et al., 2007b),  makes them well suited to an adaptive management
framework (Prato, 2005; Nyberg et al., 2006). For this reason, BBNs
have become an integral part of probability-based decision support
tools (Marcot et al., 2006), which represent an effective means of
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synthesising and applying ecological knowledge to management
decisions (Castelletti and Soncini-Sessa, 2007).

BBNs are graphical representations of mathematical models in
which each variable is represented as a node with the directed links
forming arrows amongst the nodes. BBNs are acyclic, that is they do
not support feedback loops. Each node in a BBN consists of states
that are independent, mutually exclusive and exhaustive proposi-
tions about the values that the variable represented by the node can
assume. A node that has no incoming arrows and is therefore not
dependent on any other node is an input parent (or root) node;
a node with both incoming and outgoing arrows is a summary
child node; and a node with incoming but no outgoing arrows is
an output child node (McCann et al., 2006). Each node in a BBN
has associated a probability table, which is unconditional for input
nodes and conditional for child nodes. A conditional probability
table (CPT) consists of as many conditional probability distribu-
tions as there are combinations of states of the parent nodes and
describes the probability of each state occurring given the states of
the connecting nodes. BBNs use therefore probability as a measure
of uncertainty, with beliefs about variables expressed as probability
distributions (Uusitalo, 2007).

Development and analysis of a BBN has been represented as a
three-stage process involving (i) structural development and eval-
uation, (ii) parameter estimation, and (iii) quantitative evaluation
(knowledge engineering approach, Pollino et al., 2007b). Parameter
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estimation (i.e. the development of CPTs) can be achieved by elic-
itation from experts and/or from expert literature, by automated
learning from data, or by a combination of both methods (Pollino
et al., 2007a,b). In the case of expert elicitation, a panel of experts
is usually involved in the parameter estimation process, with the
result that different probability distributions may  arise because
of discordances amongst the experts themselves (Uusitalo, 2007).
Probability distributions from multiple experts can then be com-
bined by either behavioural or mathematical aggregation methods,
the latter including the simple average (or equal-weighted linear
opinion pool) of distributions from a number of experts (Clemen
and Winkler, 1999; O’Hagan et al., 2006).

A common use of BBNs is in ‘top-down’ reasoning for descrip-
tive/explanatory purposes, in which the probability of an effect is
computed once the evidence for one or more of its causes has been
provided (Castelletti and Soncini-Sessa, 2007). In this case, differ-
ent management scenarios may  be evaluated by first compiling
the BBN and then entering different sets of evidence for the par-
ent nodes, following a ‘what-if’ analysis approach (Nyberg et al.,
2006). By comparing alternative scenarios, management decisions
can then be made on how to maximise one or more target response
variables (e.g. Borsuk et al., 2004, 2006; McNay et al., 2006; Chan
et al., 2011; Shenton et al., 2011).

The aim of this study is to describe and implement the ‘belief
index’, an empirical measure for evaluating outcomes in BBN mod-
elling that summarises the probabilities (or beliefs) of any one node
in a BBN (usually an endpoint or query node, Pollino et al., 2007b).
To this end: (1) a set of related species-specific BBNs, developed
for managing watering events for wetland fish, is outlined and
employed in a series of sample applications; (2) computation of the
belief index, along with a derivative, is described; and (3) applica-
tions are provided on how to statistically assess between-expert
and between-species variability in parameter estimates as well as
to compare different scenarios for management decisions.

2. Description of the BBNs

As part of the outputs of a project whose primary objective
was to provide managers with improved knowledge and tools for
the effective delivery of environmental water to wetlands for the
benefit of native fish assemblages (Beesley et al., 2011), a ‘fish
in wetlands’ (FW) decision support tool was developed (Gawne
et al., in press). This decision support tool consisted of a set of
four species-specific BBNs (CARP, GOLDEN PERCH, GUDGEON and
SMELT) which were based on a common conceptualisation of the
relationships between wetlands, water flow and fish (Gawne et al.,
in press). The four fish species, common carp (Cyprinus carpio),
golden perch (Macquaria ambigua), carp gudgeon (Hypseleotris spp.)
and Australian smelt (Retropinna semoni) were selected to rep-
resent a diversity of life-history styles (Humphries et al., 1999),
and because there was sufficient ecological knowledge to construct
BBNs for these species.

Structural development and evaluation of the FW BBNs was
achieved through the engagement of both experts and managers
(Meredith and Beesley, 2009), whereas parameterisation was  based
on expert elicitation (Beesley et al., 2011). Experts were instructed
on how to describe the CPT for each node as a graphical relationship
amongst the parent node variables. This involved consideration of
both the mean response and the level of response uncertainty (95%
credible intervals, Pollino et al., 2007b)  for a specific combination
of parent inputs (Marcot et al., 2006). Graphical relationships were
converted first into estimated probability ranges, then into prob-
ability distributions, and eventually combined into a node’s CPT.
Only expert knowledge was therefore used for parameterisation of
the FW BBNs.

Each species-specific FW BBN includes two  sets of input nodes,
namely the Wetland Features and the Management Levers, and
a set of child nodes representing the Fish Responses, with the
endpoint node Population Health. This is driven by three nodes
representing the species’ Population Characteristics, namely: Fish
Condition, Total Abundance, and Population Structure. All other
nodes describe the major influences on the three Population
Characteristics nodes and are combined into six groups, namely:
Threats, Wetland derived, Abundance, Loss and Gain, Spawning,
and Movement. More details on the structure of the FW BBNs,
including an individual description of all nodes, are given in Beesley
et al. (2011).

3. Methodology

3.1. Computation of the belief index and its derivation

The belief index (BI) is defined as the sum of the products of the
probabilities (P) of each state (k) in a node by the number of states
in the same node (modified after Bubb et al., 2006):

BI = ˙P(State i) × i (i = 1, . . . , k)

with values ranging from a minimum of 1 to a maximum of k. For
example, the BI for the five-state endpoint node Population Health
in the FW BBNs may  assume all values in the interval [1, 5], so that
1 is the value obtained when the probability for the Very poor state
equals 1 and that for all other states equals 0, and 5 is the value
when the probability for the Excellent state equals 1 and that for
all other states equals 0. As a caveat, except for two-state nodes,
identical BI values may  occur for nodes with three or more states
(e.g. BI[0.2, 0.3, 0.5] = BI[0.1, 0.5, 0.4] = BI[0.0, 0.7, 0.3] = 2.3).

A derivative of the BI is the % improvement measure:

% Improvement =
(

1 −
(

BIA
BIB

))
× 100%

where BIA and BIB are the belief indices for a target (such as an
endpoint) node in the BBN under e.g. two different scenarios A and
B. The % improvement can be either positive (scenario B results in a
higher BI than scenario A), negative (scenario B results in a lower BI
than scenario A) or zero (both scenarios have the same BI). Notably,
in using both the BI and the % improvement measure the ordering
of the states in the node is assumed to be from low to high and that
this is consistent throughout the BBN.

3.2. Statistical analysis

Except for Spawning, which comprised only one node (Spawn-
ing Intensity) and was  included only in the univariate analyses
(see below), all other Fish Responses node groups were retained in
the multivariate analyses. Groups were: Threats, Wetland derived,
Abundance, Loss and Gain, Movement, and Structure. The latter
group was  modified to incorporate Population Health and the three
nodes making up the Population Characteristics. A BI value was
computed for each of the Fish Responses nodes and for all species-
specific FW BBNs. A total of eight experts in fish ecology and
limnology participated in the parameter estimation process for CPT
generation, with each expert contributing knowledge to a different
number of FW BBNs (Table 1). Experts acted individually follow-
ing a set of common guidelines (cf. above). Netica® (version 4.16,
Norsys System Corp., Vancouver, British Columbia) was chosen as
the modelling shell for BBN implementation.

3.2.1. Overall variation
Variability between species and between experts was

assessed by distance-based tests for homogeneity of multivariate
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Table 1
Experts involved in the parameter estimation stage of four species-specific fish in
wetlands Bayesian networks (FW BBNs) for managing watering events for wetland
fish.

Species A B C D E F G H

CARP
√ √ √ √ √ √ √

GOLDEN PERCH
√ √ √ √ √

GUDGEON
√ √ √ √ √ √

SMELT
√ √ √ √ √ √

dispersions (Anderson, 2006). The species data matrix was 138 × 4
(observations × variables), and consisted of the BI values for the
138 nodes in total across the four species (39 nodes for CARP,
37 for GOLDEN PERCH, 31 for GUDGEON and 31 for SMELT)
by the 4 experts assessing all species (i.e. A, D, E, G; Table 1).
The experts data matrix was 22 × 29, and consisted of the BI
values for the 22 species × expert combinations (except C and H,
who assessed only one species each and therefore could not be
included in the analysis, Table 1) by the 29 nodes in common to all
species.

In both cases, variables were first normalised and a Euclidean
dissimilarity measure (because of simple count data) was applied
to obtain the corresponding distance matrix. A multivariate disper-
sion index (MDI, Warwick and Clarke, 1993) was then computed
for each species (across the nodes in the corresponding FW BBN)
and for each expert (across the species assessed), and followed
by a permutational test of multivariate dispersions (PERMDISP).
Statistical analyses were implemented in PRIMER v6.1.11 with
procedures MVDISP (for MDI  computation) and PERMDISP (9999
permutations, level of significance  ̨ = 0.05) (Clarke and Gorley,
2006).

3.2.2. Species-specific variation
For each FW BBN, variability between node groups also was

assessed by a distance-based test for homogeneity of multivari-
ate dispersions. The four species-specific data matrices consisted of
the BI values for 39 nodes × 7 experts for CARP, 37 × 5 for GOLDEN
PERCH, 31 × 6 for GUDGEON and 31 × 6 for SMELT. MDIs were com-
puted for each node group across the four FW BBNs (all other
multivariate analyses as per above).

For each FW BBN, differences between experts and node groups
were tested by permutational (univariate) analysis of variance
(PERANOVA, Anderson, 2001), based on a two-factor design with
factors Expert and Group fixed, and with the BI values for each
node in the expert × group combinations as replicates. Given that
all groups (including Spawning) were included in the analyses,
there were in total 280 BI values for CARP (40 nodes × 7 experts),
185 for GOLDEN PERCH (37 × 5), 192 for GUDGEON (32 × 6) and
192 for SMELT (32 × 6). Unrestricted permutation of the raw
data (9999 permutations) was based on a Euclidean distance
matrix following normalisation, with statistically significant effects
(  ̨ = 0.05) followed by a posteriori pair-wise comparisons. PER-
ANOVA was implemented in PERMANOVA+ v1.0.1 for PRIMER
v6.1.11 (Anderson et al., 2008).

4. Applications

4.1. Parameter estimation comparison

Between-species variation was similar, as indicated by MDI
values (CARP: 0.978; GOLDEN PERCH: 0.970; GUDGEON: 0.985;
and SMELT: 1.093) and statistically insignificant multivariate dis-
persions (MVDISP: F3,134 = 0.34, P = 0.890) (Fig. 1, top). Likewise,
between-expert variation was similar (A: 0.903; B: 0.796; D: 1.226;
E: 1.301; F: 0.774; and G: 0.785) and statistically insignificant
(MVDISP: F5,16 = 1.43, P = 0.610) (Fig. 1, bottom).

Fig. 1. MDS  plots showing the level of dispersion in BI values amongst species (top)
and  experts (bottom).

There were no differences in multivariate dispersion between
node groups for all FW BBNs except for GUDGEON, for which higher
MDI  values were recorded for the Movement and Wetland derived
node groups, and lower MDI  values for Abundance and Threats
(Table 2, Fig. 2).

Finally, there were differences between experts for CARP, due
to expert H differing from all others except A; and between groups

Table 2
Multivariate dispersion indices for the belief index (BI) of the nodes in the groups
(except for Spawning, and with the Population Health node incorporated into a
Structure group including the Population Characteristics nodes) identifying the eco-
logical sub-model of the four species-specific FW BBNs.

CARP GOLDEN PERCH GUDGEON SMELT

Threats 0.600 0.648 0.500 0.405
Wetland derived 1.233 1.399 1.278 1.282
Abundance 0.922 0.866 0.409 0.385
Loss  and Gain 0.935 1.033 0.814 0.998
Movement 1.058 1.006 1.329 1.116
Structure 0.820 0.721 0.976 0.901

F 1.65 3.07 4.55 2.90
df1  5 5 5 5
df2 33  31 25 25
P# 0.521 0.141 0.034 0.186

Statistically significant effects (in bold) at  ̨ = 0.05.
# Permutational P value.
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Fig. 2. MDS  plots showing the level of dispersion in BI values between node groups for the four species-specific FW BBNs.

for GOLDEN PERCH mainly attributable to the Abundance and
Structure node groups. For GUDGEON and SMELT there were no
differences either between experts or between groups (Table 3).

4.2. Scenario comparison

4.2.1. Example 1 – which wetland to water?
Scenario – Management of the ecological values of several small

wetlands is required. To this end, 150 ML  of environmental water
are available for delivery via a regulator (with no carp screen
installed) from the river. It is estimated that it will take a total of
13 days for the water to be delivered. There are two wetlands to
choose between:

1. Wetland A is a billabong (i.e., oxbow lake) with an area of approx-
imately 20 ha prior to watering and a depth >60 cm.  The wetland
has no known history of acid sulphate soils (ASS), approximately
10–25% vegetation cover when inundated, and little decompos-
able vegetation. Once watered, hydrological modelling shows
that an additional 9 ha should be inundated. Once inundated,
the depth in summer is likely to be >1 m.

2. Wetland B is a deflation basin lake that is currently dry. It
has no known history of ASS, approximately 25–50% vege-
tation cover when inundated and is covered in leaves and
weeds; it has a large amount of decomposable vegetation
(>75%). Once watered, hydrological modelling shows that 25 ha
should be inundated and maximum depth in summer should be
30–60 cm.

Neither wetland is likely to be colonised by a large number of
piscivorous birds. Likely nutrient status of the wetland or predatory
fish abundances are unknown, but it is predicted that vegetation
cover in the wetlands is 10–25%. The FW BBNs are run to assess the
population health response for native fish (i.e. golden perch, carp
gudgeon and Australian smelt) and for invasive common carp in
wetland A compared to wetland B (Table 4).

Prediction – The FW BBNs predict an improvement in Population
Health for all species as a result of watering in wetland A compared
to wetland B (Table 5). However, the output for wetland A still does
not appear ideal in absolute terms due to low probabilities for the
Good and Excellent states, and is limited by its small area. Using the
% improvement measure, the improvement in Population Health
in wetland A is predicted to be 59.3% for CARP, 27.5% for GOLDEN
PERCH, 66.6% for GUDGEON, and 80.7% for SMELT.

4.2.2. Example 2 – improving native fish health
Scenario – A large wetland in the lower River Murray is being

managed. Watering has occurred at the end of the irrigation sea-
son (May) and pumping into the wetland is required. Pumping
water in May  is suitable for watering lignum (Muehlenbeckia floru-
lenta), but few fish are expected to survive passage through the
pump. Therefore, construction of a regulated channel as well as
watering during the fish breeding season is under considera-
tion.

Prior to watering, the wetland is 150 ha in size and 30–60 cm
deep. One GL of water is available, which will take over a
month to deliver and will inundate an additional 110 ha. After
watering, the wetland is likely to be 60–100 cm deep and have
high levels of inundated vegetation cover (50–75%). The wetland
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Table 3
PERANOVA results for the BI computed for each node in all Expert × Group combi-
nations of the four species-specific FW BBNs.

Source df MS F#/t P#

CARP
Expert 6 2.681 2.96 0.008

H  v A 1 0.01 0.001
H  v D 1 0.03 0.027
H  v E 1 0.01 0.007
H  v F 1 0.01 0.004
H  v G 1 0.01 <0.001

Group 6 1.365 1.51 0.175
Expert × Group 36 1.328 1.47 0.052
Residual 231 0.906

GOLDEN PERCH
Expert 4 0.754 0.88 0.476
Group 5 6.867 8.01 <0.001

Abundance v Loss and Gain 1 5.19 <0.001
Abundance v Movement 1 3.95 <0.001
Abundance v Threats 1 3.92 <0.001
Abundance v Wetland derived 1 3.06 0.005
Loss and Gain v Structure 1 4.75 <0.001
Movement v Structure 1 3.65 0.001
Structure v Threats 1 3.75 0.001
Structure v Wetland derived 1 2.77 0.011

Expert × Group 20 0.803 0.94 0.539
Residual 155 0.857

GUDGEON
Expert 5 0.649 0.65 0.646
Group 6 1.836 1.85 0.096
Expert × Group 30 0.752 0.76 0.808
Residual 150 0.992

SMELT
Expert 5 0.945 1.028 0.403
Group 6 1.659 1.806 0.103
Expert × Group 30 0.872 0.949 0.542
Residual 150 0.919

Statistically significant effects (in bold) at  ̨ = 0.05 for the fixed effects Expert and
Group. Only significant a posteriori pair-wise comparisons are shown. MS = mean
sum of squares.

# Permutational F and P values, respectively.

has 10–25% decomposable vegetation cover and wetlands in
the area are at low risk from ASS. Predatory fish abundance is
unknown, but piscivorous bird abundances are likely to be medium.
No information is available about the wetland’s nutrient sta-
tus. The FW BBNs are run to evaluate watering in May  using a
medium pump and then watering in November using a regulator
(Table 4).

Prediction – The FW BBNs predict that watering in November
through a regulator will result in improved Population Health for
all three native species (Table 5). Using the % Improvement mea-
sure, if the wetland is watered via a regulator compared to a pump
in May  this improvement is predicted to be 39.3% for GOLDEN
PERCH and 15.0% and 18.4% for GUDGEON and SMELT, respec-
tively.

5. Discussion

This study has demonstrated how a simple, empirical summary
measure of the probabilities of the states (or beliefs) of any one
node in a BBN can be used in a range of modelling applications. By
providing a general indication of the overall location of the proba-
bility mass of a node, the BI has been used effectively in this study to
assess variation in parameter estimation and in the comparison of
alternative management scenarios. Also, due to the computational
ease of both the BI and the % improvement measure, large amounts
of data could be processed in a minimal amount of time.

Clearly, as with any other index or statistic a limitation remains
intrinsic to the BI, namely the possibility of identical values

resulting from different probability states in a node with three
or more states. Even though this issue was not encountered
in this study, identical BI values arising from different node
state probabilities will have to be carefully evaluated for proper
interpretation and comparisons of BI scores. For this reason, the
measures proposed in this study should become part of a larger
set of tools in BBN modelling.

Elicitation of parameter estimates from multiple experts is com-
mon  practice in BBN-based modelling, and this can be achieved
through either behavioural (Nyberg et al., 2006) or mathematical
aggregation methods such as simple averaging (Chan et al., 2011;
Shenton et al., 2011). However, applications of the latter method
did not evaluate the degree of variability in parameter estimates
amongst experts. Whereas, Borsuk et al. (2006) used the average of
the values stated by three experts as the mode of triangular distri-
butions, and maximum and minimum values of the distributions
given by the average of the corresponding values across the three
experts. By contrast, in the present study computation of BIs for all
nodes in the BBNs supported by statistical analysis has allowed for
a convenient assessment of variation in parameter estimation.

The similar level of variation recorded both between species
and between experts is an indication of the homogeneity in the
knowledge available for the four fish species under investigation
as well as in the degree of confidence in the experts’ estimates.
On the other hand, the higher variation measured for GUDGEON
could be explained, at least in part, by the taxonomic ‘noise’ sur-
rounding what is currently recognised as a ‘species group’ (Bertozzi
et al., 2000), with the different taxa showing different ecological
responses.

The finding that parameter estimates for only one expert dif-
fered from those of the others is overall an indication of the high
level of concordance achieved amongst experts, especially given
that the outlier was the only expert that, for logistic reasons, was
unable to revise their parameter estimates during the quantitative
evaluation stage of the knowledge engineering process (Beesley
et al., 2011). Whereas, the differences recorded for the Abundance
and Structure node groups for GOLDEN PERCH are not surprising,
given current debate on whether recruitment in this species should
be regarded as more flexible than previously thought (Mallen-
Cooper and Stuart, 2003; King et al., 2005, 2009; Balcombe et al.,
2006; Roberts et al., 2008; Ebner et al., 2009).

Comparison of the probability state(s) of one or more (end-
point) nodes across different scenarios is common in BBN-based
modelling. Such comparisons have been so far either qualitative by
visual assessments or quantitative by ad hoc methods. Examples of
qualitative comparisons are: visual comparisons of BBN outcomes
(Borsuk et al., 2004), graphical evaluation (McNay et al., 2006), and
plotting of outcomes of several management scenarios (Chan et al.,
2011). Examples of quantitative comparisons are: computation of
percentage ranges (Shenton et al., 2011) and implementation of a
quantitative measure of causal strength (Borsuk et al., 2006). How-
ever, in none of those studies was a consistent measure like the
% improvement formally defined. As shown in the present study,
the % improvement measure facilitated the comparison of manage-
ment scenarios in the two  sample applications provided.

An important input in the development of the % improvement
measure in this study was  the direct engagement of managers
who explicitly enquired about the possibility of developing a
more effective way  to facilitate comparisons between scenar-
ios, other than reading probability states off the endpoint node
(i.e. Population Health) in the FW BBNs or visually assessing
probability distributions charts. Importantly, this engagement
process was in line with the knowledge engineering of BBNs
paradigm advocated by Pollino et al. (2007b), and represented a
key component of the quantitative evaluation stage (Beesley et al.,
2011).
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Table 4
Model input parameters for two sample applications of the four species-specific FW BBNs. In Example 1, Which wetland to water?: A is a billabong (i.e., oxbow lake); B is a
deflation basin. In Example 2, Improving native fish responses: A is a medium pump (in May); B is a Regulator (in November).

Node A B

Example 1
Wetland Features
Max  Newly Inundated Shallow (<50 cm)  Area (Spring/Autumn) <10 ha 10–50 ha
Max%  Inundated Veg Cover during Spring/Autumn 10–25% 25–50%
Likely  Nutrient Status of Wetland – –
Wetland depth (Minimum Thalweg) in Summer >100 cm 30–60 cm
Piscivorous Bird Abundance Low Low
Predatory Fish Abundance – –
%  Decomposable Veg Cover in Newly Wetted Area 1–10% >25%
%  Newly Inundated Area with ASS 0% 0%
Current  Area of Wetland 10–50 ha 0 ha (dry)
Current (Pre-Wetting) Max  Wetland Depth >60 cm <30 cm
Management Levers
Source Water River channel River channel
Time  Inundation Commenced November–December November–December
Method of Wetland Filling Regulator controlled channel Regulator controlled channel
Duration of Connection 3 days to 2 weeks 3 days to 2 weeks
Do  All Inflows Come through Carp Screens? No No
Example 2
Wetland Features
Max  Newly Inundated Shallow (<50 cm)  Area (Spring/Autumn) 100–500 ha 100–500 ha
Max% Inundated Veg Cover during Spring/Autumn 50–75% 50–75%
Likely  Nutrient Status of Wetland – –
Wetland depth (Minimum Thalweg) in Summer 60–100 cm 60–100 cm
Piscivorous Bird Abundance Medium Medium
Predatory Fish Abundance – –
%  Decomposable Veg Cover in Newly Wetted Area 10–25% 10–25%
%  Newly Inundated Area with ASS 1–10% 1–10%
Current  Area of Wetland 100–500 ha 100–500 ha
Current (Pre-Wetting) Max  Wetland Depth 30–60 cm 30–60 cm
Management Levers
Source Water River channel River channel
Time  Inundation Commenced May–June November–December
Method of Wetland Filling Pumping–Medium Regulator controlled channel
Duration of Connection >1 month >1 month
Do  All Inflows Come through Carp Screens? No No

Table 5
Model output probability values (%) for two sample applications of the four species-specific FW BBNs with corresponding BI values. Cf. Table 4.

Population Health CARP GOLDEN PERCH GUDGEON SMELT

A B A B A B A B

Example 1
Very poor 6.0 50.7 41.5 69.8 17.4 75.7 11.2 76.9
Poor  40.9 40.0 49.5 28.8 56.6 22.6 55.8 21.9
Moderate 46.9 9.0 8.6 1.4 24.7 1.7 30.4 1.2
Good  6.0 0.4 0.4 0.5 1.3 0.1 2.6 0.0
Excellent 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0

BI  2.52 1.59 1.68 1.34 2.10 1.26 2.24 1.24
Example 2
Very poor – – 85.5 29.6 9.9 2.6 14.9 3.6
Poor  – – 13.7 52.1 56.7 38.3 62.5 43.7
Moderate – – 0.7 16.9 30.4 49.6 21.2 45.7
Good  – – 0.3 1.4 3.0 9.1 1.4 6.7
Excellent – – 0.0 0.0 0 0.4 0.0 0.2

BI 1.16  1.90 2.26 2.66 2.09 2.56
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