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Abstract—The dynamic Allan variance (DAVAR) measures
the stability variations of precise clocks and oscillators. When
an anomaly occurs, the DAVAR changes with time, its shape
depending on the anomaly. In this work, we first discuss our
current knowledge about the DAVAR, by focusing on the meaning
of dynamic stability. Then, we extend our knowledge by obtaining
additional properties of the DAVAR. Furthermore, we visually
investigate the DAVAR for the main anomalies of precise clocks
and oscillators. Finally, we review a variety of applications based
on the DAVAR.

TIPS: VII (e) - Category: FREQUENCY CONTROL -
Subcategory: Frequency measurement and statistics.

I. INTRODUCTION

Time has been steadily strengthening its key role in tech-
nology since the birth of electrical and electronic devices.
Recently, this process has seen a steep acceleration, and today
a growing number of applications depend heavily on accurate
and reliable time references. Global navigation satellite sys-
tems (GNSSs) are among the most successful applications. In
a GNSS the user position is estimated from the time of flight
of the signals travelling from the satellites to the receiver. An
error in time implies therefore an error in position, and high
quality precise clocks are hence essential elements onboard
satellites and in ground stations of GNSSs. Certified time
has become a fundamental constraint also for time stamping
of bank and stock market transactions. Moreover, telecom-
munications and computer networks, as well as smart grids,
need accurate synchronization to a common time reference to
operate.

This abundance of applications of precise timing explains
the amount of research carried out to develop better precise
clocks, the true masters of time. The primary quantity to
describe the quality of a precise clock is stability, whose
standard measure is the Allan variance [1]-[4]. The Allan
variance is a function of the observation interval. The smaller
the Allan variance for a given observation interval, the better
the stability.

Experimental evidences show that the stability of a precise
clock varies with time due to several reasons, such as temper-
ature, humidity, vibrations, breakdowns, ageing, gravitational
effects, and irradiations. Such time-varying stability can be
described by the dynamic Allan variance (DAVAR) [5]-[10].
The DAVAR is a function of time and the observation interval.
When the clock follows the specifications, the DAVAR is
stationary with time and varies with respect to the observation
interval only. When an anomaly occurs, the clock deviates

from the specifications and the DAVAR changes also with
respect to time, its shape depending on the type of anomaly.

In this article we collect, integrate, and clarify what we
have understood so far about dynamic stability, namely, about
a stability that changes with time. We collect the main results
on the DAVAR, including the most recent ones on the study
of clock anomalies. We integrate these results by obtaining
additional properties and results on the DAVAR, such as the
equivalence between the DAVAR and the Allan variance for a
clock whose physical parameters do not change with time,
the continuous-time DAVAR in case of missing data, the
DAVAR for a linear frequency drift, the theoretical discrete-
time DAVAR for a series of common nonstationary behaviors
of precise clocks including a slow frequency jump, a change
of drift, and a change of noise type. We refer to such
nonstationary behaviors as nonstationarities. We clarify the
meaning of dynamic stability by discussing the DAVAR of
the most interesting nonstationarities of precise clocks. We
take a visual approach. Whenever possible, we discuss pictures
rather than formulas. The final goal is to build a visual guide
to dynamic stability analysis.

In addition to dynamic stability analysis, the structure of
nonstationary random processes can be investigated by using
time-frequency analysis [11]-[13], a body of techniques for the
representation of time-varying spectra, or wavelets [14], [15],
which instead provide a description in the time-scale domain.
Detrended fluctuation analysis, a technique based on piecewise
regression analysis, has also proven to be a useful tool [16].

The article is organized as follows. In Sect. II we introduce
our notation for time and frequency, we define the Allan
variance, and then the DAVAR along with its estimator, fast
computational algorithm, and visualization modes. In Sect. III
we give a visual tour of the DAVAR for the main nonstation-
arities of precise clocks. Finally, in Sect. IV we discuss the
applications of the DAVAR to the field of precise timing and
to other fields.

II. TIME, FREQUENCY, STABILITY, AND DYNAMIC
STABILITY

We introduce the key quantities to characterize time, fre-
quency, stability, and dynamic stability. The readers familiar
with precise timing can skip the introduction to the time and
frequency concepts given in Sect. II-A.
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A. Time and Frequency

An ideal oscillator generates a sinusoidal signal of the form
[17]

u(t) = U0 sin(2πν0t), (1)

where U0 and ν0 are the nominal oscillation amplitude and
frequency, respectively. For a real-world oscillator, a more
effective model is given by

u(t) = (U0 + ϵ(t)) sin(2πν0t+ φ(t)), (2)

where ϵ(t) represents the amplitude fluctuations and φ(t) takes
into account the fluctuations on the phase. We neglect the
amplitude fluctuations and obtain the approximate model

u(t) = U0 sin(2πν0t+ φ(t)). (3)

If we now define

h0(t) = t, (4)

h(t) = t+
φ(t)

2πν0
, (5)

as the ideal and real clock reading, respectively, then we can
define the time deviation as

x(t) = h(t)− h0(t). (6)

The time deviation is hence the deviation of the clock reading
from an ideal time reference. Substituting,

x(t) =
φ(t)

2πν0
. (7)

We now consider the instantaneous oscillation frequency of
the approximated oscillator (3),

ν(t) = ν0 +
1

2π

dφ(t)

dt
. (8)

We define the normalized frequency deviation as

y(t) =
ν(t)− ν0

ν0
. (9)

From (6), (8), and (9), we obtain the classic connection
between the normalized frequency deviation and the time
deviation

y(t) =
dx(t)

dt
. (10)

Experimental measurements show that the time and frequency
deviations are made by noise components and deterministic
trends.

B. The Allan Variance

The Allan variance is defined as

σ2
y(τ) =

1

2

⟨
(ȳ(t+ τ)− ȳ(t))2

⟩
, (11)

where the average frequency deviation ȳ(t) is given by

ȳ(t) =
1

τ

∫ t

t−τ

y(t′)dt′, (12)

and ⟨⟩ denotes time averaging. The square root of the Allan
variance is the Allan deviation σy(τ). By using (10) we instead
have

σ2
y(τ) =

1

2τ2
⟨
(x(t+ τ)− 2x(t) + x(t− τ))2

⟩
. (13)

If we now define the increment

∆(t, τ) = ȳ(t+ τ)− ȳ(t), (14)

=
x(t+ τ)− 2x(t) + x(t− τ)

τ
, (15)

then the equivalent definitions (11) and (13) can be written as

σ2
y(τ) =

1

2

⟨
∆(t, τ)2

⟩
. (16)

If the random process ∆(t, τ) is ergodic we can evaluate the
Allan variance as

σ2
y(τ) =

1

2
E[∆(t, τ)2], (17)

where E is the expected value.
When we have N measurements x[0], . . . , x[N − 1] of the

time deviation, sampled at time τ0 so that x[n] = x(nτ0) and
τ = kτ0, we can estimate the Allan variance as

σ2
y[k] =

1

2k2τ20

1

N − 2k
(18)

×
N−2k−1∑

m=0

(x[m+ 2k]− 2x[m+ k] + x[m])2,

for k = 1, . . . , N/2− 1, where N is assumed to be even.

C. The Dynamic Allan Variance

The DAVAR is defined as [5]

σ2
y(t, τ) =

1

2(Tw − 2τ)
(19)

×
∫ t+Tw/2−τ

t−Tw/2+τ

E[(ȳ(t′ + τ)− ȳ(t′))2]dt′,

where Tw is the length of the analysis window and 0 <
τ < Tw/2. The square root of the DAVAR is the dynamic
Allan deviation (DADEV) σy(t, τ). The DAVAR is therefore a
sliding version of the Allan variance. From (10), the equivalent
definition obtained from the time deviation is

σ2
y(t, τ) =

1

2τ2(Tw − 2τ)
(20)

×
∫ t+Tw/2−τ

t−Tw/2+τ

E[(x(t′ + τ)− 2x(t′) + x(t′ − τ))2]dt′,

where 0 < τ < Tw/2. By substituting the increment (14),
both definitions (19) and (20) can be rewritten as

σ2
y(t, τ) =

1

2(Tw − 2τ)

∫ t+Tw/2−τ

t−Tw/2+τ

E[∆(t′, τ)2]dt′. (21)

We note that, contrary to the Allan variance, for the DAVAR
requiring the ergodicity of the increment ∆(t, τ) is unneces-
sary, because the expected value E[∆(t′, τ)2] does not replace
a time average performed over an infinite time interval, as in
(16). The definition of the DAVAR aims instead at tracking
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the variations in stability of the clock by integrating out
E[∆(t′, τ)2] with respect to time on the finite sliding interval
t− Tw/2 + τ < t′ < t+ Tw/2− τ .

DAVAR estimator. An estimate of the DAVAR from experi-
mental measurements can be obtained as [5]

σ2
y[n, k] =

1

2k2τ20

1

Nw − 2k
(22)

×
n+Nw/2−2k−1∑
m=n−Nw/2

(x[m+ 2k]− 2x[m+ k] + x[m])2,

where k = 1, . . . , Nw/2 − 1 (assuming Nw to be even), t =
nτ0 and τ = kτ0 as in (18), and the discrete-time analysis
window Nw satisfies Tw = Nwτ0.

Confidence analysis. The estimate of the DAVAR obtained
with (22) shows the typical fluctuations due to the estima-
tion process. The fluctuations are larger at high observation
intervals because the number Nw − 2k of triplets x[m+ 2k],
x[m + k], x[m] averaged in (22) decreases when the obser-
vation interval τ = kτ0 increases. A detailed discussion on
the confidence of the DAVAR estimator is given in [7], where
confidence surfaces are also defined. We note that the total
variance [18] and the ThêoH variance [19] could be used to
improve the confidence of the DAVAR estimate when a limited
number of measurements is available.

The case of missing data. Clock data series obtained from
experimental measurements may suffer from missing data.
We consider the case of time deviation measurements. The
DAVAR for the case of missing data can be written as

σ2
y(t, τ) =

1

2τ2µ(B(t, τ))
(23)

×
∫
B(t,τ)

E[(x(t′ + τ)− 2x(t′) + x(t′ − τ))2]dt′,

where B(t, τ) is the set of time values t′ in the interval t −
Tw/2 + τ ≤ t′ ≤ t + Tw/2 − τ for which all of the triplets
x(t′ − τ), x(t′), x(t′ + τ) are available for a given τ in 0 <
τ < Tw/2, and µ(B(t, τ)) is the measure of B(t, τ). If none
of the triplets are available in t − Tw/2 + τ ≤ t′ ≤ t +
Tw/2−τ , then B(t, τ) is the empty set, µ(B(t, τ)) = 0, and the
DAVAR is not defined for that particular time t and observation
interval τ . Conversely, if all of the triplets are available, then
B(t, τ) = (t − Tw/2 + τ, t + Tw/2 − τ) and µ(B(t, τ)) =
Tw − 2τ . In general, 0 ≤ µ(B(t, τ)) ≤ Tw − 2τ . We note that
a similar approach is used in [20] for the evaluation of the
Allan variance in case of missing data.

The estimator for the case of missing time deviation data is
defined straightforwardly from (23) as [9]

σ2
y[n, k] =

1

2k2τ20

1

#B[n, k]
(24)

×
∑

B[n,k]

(x[m+ 2k]− 2x[m+ k] + x[m])2,

where B[n, k] is the set of time values m in the interval n−
Nw/2 ≤ m ≤ n+Nw/2−2k−1 (assuming Nw to be even) for
which all of the triplets x[m], x[m+k], x[m+2k] are available

for a given k in 1 ≤ k ≤ Nw/2 − 1, and #B[n, k] denotes
the number of elements of B[n, k]. In general, similarly to the
continuous-time case, 0 ≤ #B[n, k] ≤ Nw − 2k.

Equivalence between the Allan variance and the DAVAR.
We define a time-invariant clock as a clock that follows the
specifications and whose physical parameters, therefore, do not
change with time. For this type of clock the DAVAR equals the
Allan variance. This property is straightforwardly obtained by
noting that, for a time-invariant clock, the increment ∆(t, τ)
is ergodic, and hence, from (17), it is

E[∆(t, τ)2] = 2σ2
y(τ). (25)

Substituting in (21),

σ2
y(t, τ) = σ2

y(τ), (26)

and hence, as expected, the DAVAR equals the Allan variance
at any time instant. By using this property we immediately
obtain the DAVAR for the common clock noise components.
For instance, consider a white frequency noise (WFN) with
normalized frequency deviation

y(t) = qξ(t), (27)

where ξ(t) is a white Gaussian noise with zero mean and
autocorrelation function

Rξ(t1, t2) = E[ξ(t1)ξ(t2)] = qδ(t1 − t2). (28)

The Allan deviation for this noise component is

σy(τ) =
√
qτ−1/2. (29)

Since ∆(t, τ) is ergodic for a WFN, from (26) the DADEV
is straightforwardly obtained as

σy(t, τ) =
√
qτ−1/2. (30)

Visualization modes. The DAVAR σ2
y(t, τ) is a real non-

negative quantity function of t and τ , therefore its representa-
tion is a surface in a three-dimensional space. Consequently,
a common way of representing the DAVAR is a mesh plot.
As an example, in Fig. 1 we show the average frequency
deviation, obtained for τ0 = 300 s, of a nonstationary WFN
whose Allan deviation is 10−11τ−1/2 for 0 ≤ t < 3.6 × 105

s, 2 × 10−11τ−1/2 for 3.6 × 105 s ≤ t < 5.4 × 105 s, and
again 10−11τ−1/2 for 5.4×105 s ≤ t ≤ 9×105 s. Therefore,
at τ = τ0 the Allan deviation is σy(τ0) ≃ 5.77 × 10−13. In
Fig. 2 we show the corresponding Allan deviation, which has
the typical slope of a WFN and does not reveal the change of
variance. Figure 3 shows instead the DADEV as a mesh plot,
obtained for a window length Tw = 90000 s. The DADEV,
displayed with a sampling time of 18000 s, clearly highlights
the change of variance of the clock noise, and from its slope
we can also estimate the Allan deviation in the three regions
of the time series.

An effective way of combining the information of the
frequency deviation, Allan deviation and DADEV is to display
them as in Fig. 4. We refer to this representation as “gallery
mode” because the average frequency deviation ȳ(t) and the
Allan deviation σy(τ) hang on the panels of the 3D plot like
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Fig. 1. Nonstationary WFN. The plot shows the average frequency deviation
for τ0 = 300 s of a WFN whose Allan deviation 10−11 τ−1/2 doubles in
the region 3.6× 105 s ≤ t ≤ 5.4× 105 s.

paintings in an art gallery. The primary advantage of this
representation is the direct comparison between the DADEV
and the frequency deviation, which better clarifies the nature of
the observed nonstationarities. The gallery mode also displays
the Allan deviation, which is the reference quantity for stability
analysis.

A third possible way of displaying the DADEV is the
waterfall plot shown in Fig. 5. This DADEV corresponds to
a WFN whose variance increases suddenly at half the signal
duration. The waterfall plot reveals this variation clearly. The
advantage of the waterfall plot is that it allows to better observe
the shape of the DADEV at different time instants. For a
waterfall plot to be effective, though, the number of time
instants at which the DADEV is computed must not be too
large. In a time laboratory, the waterfall plot can be used to
monitor the real-time evolution of the dynamic clock stability
by displaying, for instance on a daily basis, a new stability
curve computed also with the most recent available data, and
by erasing the oldest curve.

BeginExpansion
Computational algorithm. The DAVAR can be estimated from
experimental measurements by using (22) when all the data
are available, or by using (24) when some data are missing.
The computational time required by a direct implementation of
these estimators can be large for long time series. Fortunately,
the fast algorithm [6] dramatically reduces the computational
cost of the DAVAR. The fast algorithm is based on a recursive
implementation of the DAVAR, which works also in the case
of missing data.

Software implementations. The DAVAR has been implemented
in the main software programs for the characterization of
precise clocks and oscillators, including:

• Stable32: the commercial reference software for stability
analysis [21].

• The GPS Toolkit (GPSTk): an open source software
for the analysis of GPS data developed by the Space
and Geophysics Laboratory of the Applied Research

Fig. 2. Allan deviation of a nonstationary WFN. The plot shows the Allan
deviation of the nonstationary WFN represented in Fig. 1. The slope of the
Allan deviation indicates the presence of a WFN, but does not reveal the
change of variance.

Fig. 3. DADEV of a nonstationary WFN. The plot shows the DADEV of the
nonstationary WFN represented in Fig. 1. The DADEV clearly highlights the
change of variance of the clock noise.

Laboratories, at The University of Texas at Austin. For a
description of this software see [22].

• CANVAS (Clock Analysis, Visualization, and Archiving
System): a software for clock analysis developed by the
U.S. Naval Research Laboratory [23].

III. UNDERSTANDING DYNAMIC STABILITY

The best way to understand the variations with time of
the clock stability is to carefully analyze the DAVAR for the
most common nonstationarities occurring in precise clocks and
oscillators. We first consider the case of a clock following
the specifications, and then we go through a series of the
most common anomalies that occur to precise clocks, and
particularly to space clocks. For all of the considered ex-
amples, we show the gallery mode of the DAVAR estimated
from simulated data, and then the mesh plot of the theoretical
DAVAR obtained either from analytical calculations, or esti-
mated by averaging a large number of simulated realizations
(Monte Carlo simulations). Such simulations can be performed
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Fig. 4. Gallery mode representation of the DADEV of a nonstationary WFN.
The top plot shows the average frequency deviation of the nonstationary WFN
represented in Fig. 1. The side plot shows the corresponding Allan deviation
represented in Fig. 2. The mesh plot shows the DADEV represented in Fig.
3.

Fig. 5. Waterfall plot of the DADEV of a nonstationary WFN. The plot
shows the waterfall representation of the DADEV of a WFN whose variance
increases suddenly at half the signal duration. The waterfall plot simplifies
the analysis of the DADEV at every time instant. The effectiveness of this
plot is higher when the number of time instants is small.

with the clock models given in [24], [25]. The comparison of
the estimated and the theoretical DAVAR better clarifies the
meaning of dynamic stability analysis of precise clocks.

In all of the examples we consider a clock characterized by
a WFN whose Allan deviation is

σy(τ) = 10−11τ−1/2. (31)

We consider T = 9 × 105 s of data sampled at τ0 = 300
s. Therefore, as in the example of Fig. 2, at τ = τ0 the
Allan deviation is σy(τ0) ≃ 5.77×10−13. These specifications
correspond, for example, to a Rubidium clock for space
applications. For all of the examples, the window length of
the DAVAR is Tw = 90000 s. Moreover, all of the anomalies
occur on time instants multiples of the sampling time τ0.

A. Time-Invariant Clock

We first consider a time-invariant clock that follows the
expectations (31). In Fig. 6 we show the gallery mode repre-
sentation of the DAVAR. The top plot shows one realization of
the average frequency deviation ȳ(t) obtained for τ = τ0. The
side plot is the estimated Allan deviation obtained by using
(18). The slope of the Allan deviation is τ−1/2, and it correctly
indicates the presence of a WFN. The mesh plot is the DADEV
estimated by using (22). Aside from the fluctuations due to the
estimation process, the DADEV is apparently stationary with
time, and its slope corresponds to a WFN.

Figure 7 shows instead the theoretical DADEV, which is a
deterministic surface. We see that the theoretical DADEV is
stationary with time, and its slope corresponds to the WFN
given in the specifications (31). From (26) in fact, for a
time-invariant clock the theoretical DADEV equals at any
time instant the Allan deviation, and therefore the hypothesis
of stationarity drawn from the DADEV in Fig. 6 is indeed
correct. Therefore, the theoretical DADEV is instrumental in
understanding the clock behavior, because its variations with
time are caused solely by the nonstationarities occurring in the
clock data.

B. Phase Jump

We consider a phase jump occurring at half the signal
duration. The average frequency deviation in Fig. 8 shows the
delta function corresponding to the phase jump, a consequence
of the frequency deviation being the derivative of the time
deviation, as described by (10). The Allan deviation in the
side plot does not show this nonstationarity. Conversely, the
DADEV reveals the presence of the phase jump, which locally
deteriorates the clock stability. The absolute variation in the
stability is larger at small observation intervals. The theoretical
DADEV in Fig. 9 clearly shows the variation in stability
due to the phase jump aside from the fluctuations due to
the estimation process. We see that the variation in stability
becomes more peaked as the observation interval increases.
The DADEV corresponding to a phase jump is obtained
analytically in [8], where the dependence on the DADEV
window length is also given explicitly.

C. Frequency Jump

Frequency jumps are common anomalies in precise clocks,
and especially in space clocks. The average frequency devia-
tion in Fig. 10 shows a frequency jump occurring at half the
signal duration. The corresponding Allan deviation shows a
variation in the slope, which could be due to several causes,
such as a random walk frequency noise (RWFN), or to a linear
frequency drift. The mesh plot shows instead the estimated
DADEV, which highlights the presence of a WFN and of
the frequency jump. The variation in stability caused by
the frequency jump increases with the observation interval,
because, contrary to the phase jump, the frequency jump is
a permanent change in the clock behavior. The theoretical
DADEV of the frequency jump can be computed analytically
[8], and we show it in Fig. 11.
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D. Slow Frequency Jump

The average frequency deviation of Fig. 12 shows a slow
frequency jump, namely, a change in the mean value of the
frequency deviation which happens in a finite time interval.
Conversely, the frequency jump considered in Sect. III-C
happens suddenly. A slow frequency jump is equivalent to
a temporary change of frequency drift. Similarly to the fre-
quency jump, the Allan deviation exhibits a variation in its
slope, although this behavior can be due to different causes.
The DADEV clearly reveals the structure of the clock noise,
that is, the WFN component and the variation in stability due
to the slow frequency jump. This variation in stability is spread
over the time interval over which the jump occurs, and the
peak in stability is smeared out with respect to the case of
the frequency jump. Figure 13 instead shows the theoretical
DADEV of the slow frequency jump, obtained by Monte Carlo
simulations.

E. Change of Drift

The average frequency deviation in Fig. 14 shows a change
of drift at half the signal duration. The Allan deviation
shows a corresponding increase for large observation intervals.
This increase can be due, for instance, to a sudden or slow
frequency jump, as shown in Sects. III-C-III-D. The DADEV
reveals instead the nonstationarity, since the initial zero drift
corresponds to the typical slope of the WFN component, and
then the drift change generates a variation in the dynamic
stability. In Fig. 15 we show the theoretical DADEV for the
change of drift. The variation in dynamic stability is clearly
visible in the second part of the time series, and it can be
explained analytically by computing the DADEV for the linear
frequency drift

y(t) = y0 + d t. (32)

Its average frequency deviation is

ȳ(t) = y0 + d t− 1

2
d τ. (33)

Therefore, the increment ∆(t, τ) is given by

∆(t, τ) = d τ. (34)

Replacing this result in the definition (21) of the DAVAR gives

σ2
y(t, τ) =

1

2
d2τ2, (35)

which corresponds to the Allan variance in presence of sta-
tionary drift. Therefore, the DADEV of a linear frequency drift
is

σy(t, τ) =

√
2

2
d τ, (36)

and it corresponds to the behavior observed in Figs. 14-15.

F. Sinusoidal Term

A sinusoidal term is commonly observed in space clock
estimates, and it can be due, for instance, to a residual of the
orbit, or to relativistic effects, or to periodic changes of the
environmental parameters. The average frequency deviation in
Fig. 16 shows the presence of a sinusoidal term added to the

WFN component. The corresponding Allan deviation shows
the typical bump. The estimated DADEV shows a bump along
the τ axis, but also an oscillation in time. The DADEV of a
sinusoidal term

y(t) = A cos(2πf0t+ φ) (37)

can be in fact computed analytically [8], and it is given by

σy(t, τ) = σy(τ)
√
1− α(τ) cos(4πf0t+ 2φ), (38)

where σy(τ) represents here the Allan deviation of a sinusoid,

σy(τ) = A
sin2 πf0τ

πf0τ
, (39)

and
α(τ) =

sin 4πf0(τ − Tw/2)

4πf0(τ − Tw/2)
. (40)

Therefore, the oscillation in time of the DADEV is due to the
term cos(4πf0t+ 2φ), whereas the behavior along the τ axis
depends both on σy(τ) and α(τ). The effect of a sinusoid
on dynamic stability can be better observed in the theoretical
DADEV shown in Fig. 17.

G. Change of Variance

A change of variance is shown in the average frequency
deviation of Fig. 18. The Allan deviation averages out this
nonstationarity, and it shows the typical curve for a WFN.
The DADEV reveals instead this increase in variance, and
by measuring the slope before and after this change we can
characterize the clock noise. The DADEV for a change of
variance can be obtained analytically [8]. By using this result,
we can generate the theoretical DADEV in Fig. 19.

H. Change of Noise Type

Changes of noise type can be observed in experimental data.
In Fig. 20 we show the average frequency deviation of a WFN
which, at half the signal duration, becomes a white phase noise
(WPN) with higher intensity. The Allan deviation averages out
the two noise regions, and hence it does not clearly reveal the
transition. The DADEV instead shows the WFN region first,
and then the transition to the WPN region. By estimating the
slopes in these two regions we can characterize the clock noise.
In Fig. 21 we show the theoretical DADEV obtained by Monte
Carlo simulations.

I. Missing Data

In Fig. 22 we show the average frequency deviation of
a stationary WFN with two blocks of missing data. The
estimated Allan deviation obtained with the method in [20]
is shown in the side plot. The estimated DADEV obtained
with (24) is shown in the mesh plot. The blocks of missing
data are represented by “canyons” in the mesh plot [9]. Even
with missing data we can analyze the local variations of the
stability and characterize the clock. In Fig. 23 we show the
theoretical DADEV obtained by Monte Carlo simulations.
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Fig. 6. White frequency noise. The top plot shows a WFN, and the side plot
its Allan deviation. The DADEV (mesh plot) is stationary with time, aside
from the fluctuations caused by the estimation process.

Fig. 7. Theoretical DADEV of a WFN. The plot shows the theoretical
DADEV, obtained by analytical calculations, of the WFN in Fig. 6.

Fig. 8. WFN with a phase jump. The mesh plot shows the DADEV of a
phase jump, whose average frequency deviation is a delta function (top plot).
The Allan deviation (side plot) averages out the phase jump and does not
reveal it.

Fig. 9. Theoretical DADEV of a WFN with a phase jump. The plot shows
the theoretical DADEV, obtained by analytical calculations, of the WFN with
a phase jump in Fig. 8. The effect of the phase jump decreases at large τ
values.
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Fig. 10. WFN with a frequency jump. The top plot shows a WFN with a
frequency jump, and the side plot its Allan deviation. The DADEV (mesh
plot) clearly reveals the frequency jump.

Fig. 11. Theoretical DADEV of a WFN with a frequency jump. The mesh
plot shows the theoretical DADEV, obtained by analytical calculations, of the
WFN with a frequency jump shown in Fig. 10. The dynamic stability of the
frequency jump decreases with τ .

Fig. 12. WFN with a slow frequency jump. The top plot shows a WFN with
a slow frequency jump, and the side plot its Allan deviation. The DADEV
(mesh plot) reveals the slow frequency jump.

Fig. 13. Theoretical DADEV of a WFN with a slow frequency jump. The
mesh plot shows the DADEV, obtained by Monte Carlo simulations, of the
WFN with a slow frequency jump in Fig. 12. The dynamic stability of the
slow frequency jump decreases with τ .
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Fig. 14. Change of drift. The top plot shows a WFN whose drift changes.
The side plot is the corresponding Allan deviation. The DADEV (mesh plot)
shows a decrease in stability when the initial zero drift changes.

Fig. 15. Theoretical DADEV of a change of drift. The plot shows the
theoretical DADEV, obtained by Monte Carlo simulations, of the change of
drift in Fig. 14. The transition between the two drift regions is clear.

Fig. 16. Sinusoidal term. The top plot shows a WFN with a sinusoidal term,
whereas the side plot shows its Allan deviation. The DADEV (mesh plot)
shows that the sinusoid generates a bump along the τ axis, and an oscillatory
behavior along the t axis.

Fig. 17. Theoretical DADEV of a sinusoidal term. The plot shows the
theoretical DADEV, obtained by analytical calculations, of the WFN with a
sinusoidal term shown in Fig. 16. The oscillations in time are clearly visible.
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Fig. 18. Change of variance. The top plot shows a WFN whose variance
changes suddenly. The DADEV (mesh plot) reveals the change of variance,
which is averaged out by the Allan deviation (side plot).

Fig. 19. Theoretical DADEV of a change of variance. The plot shows the
DADEV, obtained by analytical calculations, of the WFN with a change of
variance in Fig. 18. The transition between the two variance levels is clearly
visible.

Fig. 20. Change of noise. The top plot shows a WFN which changes into
a WPN. The Allan deviation (side plot) averages out the two noise regions,
whereas the DADEV (mesh plot) clearly reveals them.

Fig. 21. Theoretical DADEV of a change of noise. The plot shows the
theoretical DADEV, obtained by Monte Carlo simulations, of the WFN and
WPN components in Fig. 20.
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IV. APPLICATIONS OF THE DYNAMIC ALLAN VARIANCE

We discuss the application of the DAVAR to the field of
precise timing and to other fields.

A. Applications to Precise Timing

The DAVAR is a tool specifically designed to characterize
the stability of precise clocks and oscillators, therefore its
primary field of application is precise timing. Consequently,
we first discuss applications of the DAVAR to precise timing.

Clock characterization. The DAVAR can be used to charac-
terize the behavior of a precise clock embedded in a complex
system, for instance a space clock onboard a satellite of a
GNSS. As a matter of fact, the DAVAR is routinely used by
the U.S. Naval Research Laboratory to characterize the GPS
clocks [26], [27]; it was used to characterize the Galileo clocks
of the experimental satellites GIOVE-A and GIOVE-B [28];
it has been proposed as a tool to increase the robustness of
the time references used in deep space missions [29].

Clock anomaly detection. The DAVAR can be used to detect
when the stability of a precise clock does not meet the
specifications. This detection is achieved by defining a proper
detection surface [7]. When the DAVAR crosses the detection
surface, an anomaly is detected. For example, in Fig. 24 we
show the DADEV of a clock noise made by the sum of a WPN
and a WFN. The variance of the WPN component increases
with time, but this increase is not noticeable in the average
frequency deviation because it is hidden in the dominant
WFN component. Also the Allan deviation does not point out
this nonstationarity. The DADEV does reveal this increase in
the WPN variance, but to actually highlight it we need the
detection surface, which clearly points out the nonstationarity
of the WPN component at low observation interval values.

For this reason, a DAVAR detector was proposed within the
Galileo system time (GST) algorithm prototype, to continu-
ously check the precise clocks used to generate the reference
time scale for the Galileo system. A DAVAR detector is also
part of a multidetector that routinely controls the behavior of
the precise clocks onboard the satellites of Galileo and other
GNSSs [30], [31].

Clock validation. Another possible use of the DAVAR is to
visually prove that the stability of a clock follows the speci-
fications. This application is particularly interesting for clock
manufacturers, who can prove that the stability performances
of their clocks remain constant throughout time. In Fig. 25
we show an example of such use [32]. The picture shows the
DADEV of a new space Rubidium atomic frequency standard,
named Robust-RAFS, developed by Orolia Switzerland SA
(SpectraTime). The DADEV demonstrates that the stability
of the Robust-RAFS is stationary with time and follows the
specifications during the entire performance test.

Other dynamic quantities. The analysis of how the stability of
a precise clock changes with time can be extended to other
definitions of stability, such as the Hadamard variance and
the time deviation [33]. In Fig. 26 we show, for instance,
the dynamic Hadamard variance (DHVAR) of an ultra-stable

Fig. 22. Missing data. The top plot shows a stationary WFN with two blocks
of missing data, and the side plot its Allan deviation. The DADEV reveals
the WFN component in every region of available data, and it instead shows
canyons where data are missing.

Fig. 23. Theoretical DADEV for missing data. The plot shows the DADEV,
obtained by analytical calculations, of the WFN with missing data shown in
Fig. 22.
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Fig. 24. Detection surface. The plot shows the DADEV of a clock noise made
by the sum of a WPN component whose variance increases with time, and a
WFN component. The detection surface highlights the nonstationarity of the
WPN component, which is not noticeable in the average frequency deviation
and in the Allan deviation.

Fig. 25. Dynamic stability validation of a Rubidium clock. The mesh plot
shows the DADEV of a new space Rubidium atomic frequency standard,
the Robust-RAFS, developed by Orolia Switzerland SA (SpectraTime). By
showing this picture, the clock manufacturer demonstrates to the customer that
the Robust-RAFS follows the specifications throughout the entire performance
test, and not just on the average, as it would prove with the Allan deviation
only (side plot). (The picture is a courtesy of Fabien Droz [32].)

oscillator onboard the New Horizons deep space mission to
the outer solar system [34]. The DHVAR indicates that the
noise structure is probably made by a random walk flicker
frequency noise, rather than a change of drift.

B. Other Applications

In addition to the noise of precise clocks and oscillators, the
DAVAR can be used to investigate the structure of any non-
stationary random process. Consequently, aside from precise
timing, the DAVAR has been applied to other fields of science
and engineering. An interesting application is the study of the
heart interbeat rate [35]. In Fig. 27 we show the DADEV

Fig. 26. Dynamic stability analysis of deep-space ultra-stable oscillators.
The plot shows the dynamic Hadamard variance of an ultra-stable oscillator
onboard the New Horizons space mission to the outer solar system. The
DHVAR seems to imply the presence of a random walk flicker frequency
noise in the oscillator data. (The picture is a courtesy of Gregory L. Weaver
[34].)

Fig. 27. DADEV of the heart interbeat rate for a normal patient. (The picture
is a courtesy of Ricardo Hernández-Pérez [35].)

of the heart interbeat rate for a normal patient, whereas in
Fig. 28 we show the DADEV of the heart interbeat rate
for a patient suffering from congestive heart failure (CHF).
The DADEV for the CHF case has a different shape and a
richer nonstationary content. These differences in the DADEV
structure can be used to better understand the mechanisms
behind CHF and to classify physiological patients and patients
suffering from CHF.

Among the other fields, the DAVAR has been also applied to
characterize the noise of fiber optic gyroscopes (FOGs) [36],
[37], and of sensors for robotic applications [38]. A DAVAR
whose window length is adapted to FOG signals by using a
fuzzy logic is proposed in [39].

V. CONCLUSIONS

We have presented what we have learned so far about
the measure of dynamic stability. Our discussion focuses
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Fig. 28. DADEV of the heart interbeat rate for a patient suffering from CHF.
The DADEV for this pathological patient shows a structure different from
the DADEV of the physiological patient shown in Fig. 27. (The picture is a
courtesy of Ricardo Hernández-Pérez [35].)

on the DAVAR, a measure of dynamic stability for precise
clocks and oscillators. We have investigated the concept of
dynamic stability by obtaining additional properties of the
DAVAR and by visually representing it for the most common
nonstationary behaviors of precise clocks and oscillators. We
have also discussed some applications of the DAVAR to the
field of precise timing and to other fields. The possibility
to analytically evaluate the equations governing the DAVAR
for the most common nonstationary behaviors, as well as its
effective visual representation of anomalous behaviors, make
the DAVAR an useful and sound tool for dynamic stability
analysis, which can be applied not only to atomic clocks, but
in general to any measured time series.
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