Longzhi Yang

Longzhi Yang
Northumbria University · Department of Computer and Information Sciences

Ph.D

About

156
Publications
52,246
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,213
Citations
Citations since 2017
125 Research Items
2051 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
Additional affiliations
January 2020 - present
Northumbria University
Position
  • Managing Director
May 2018 - December 2019
Northumbria University
Position
  • Managing Director
March 2016 - May 2018
Northumbria University
Position
  • Porgramme Leader of BSc(MComp) Computer Networks and Cyber Security, and Computer and Digital Forensics

Publications

Publications (156)
Article
Full-text available
Human activity recognition (HAR) is an essential research field that has been used in different applications including home and workplace automation, security and surveillance as well as healthcare. Starting from conventional machine learning methods to the recently developing deep learning techniques and the Internet of things, significant contrib...
Article
Full-text available
As more business transactions and information services have been implemented via communication networks, both personal and organization assets encounter a higher risk of attacks. To safeguard these, a perimeter defence like NIDS (network-based intrusion detection system) can be effective for known intrusions. There has been a great deal of attentio...
Article
Full-text available
Electronic Government (e-Government) systems constantly provide greater services to people, businesses, organisations, and societies by offering more information, opportunities, and platforms with the support of advances in information and communications technologies. This usually results in increased system complexity and sensitivity, necessitatin...
Article
Full-text available
Fuzzy clustering decomposes data into clusters using partial memberships by exploring the cluster structure information, which demonstrates comparable performance for knowledge exploitation under the circumstance of information incompleteness. In general, this scheme considers the memberships of objects to cluster centroids and applies to clusters...
Article
Learning calligraphy writing skills in robots is regarded as a sophisticated task. Current robotic researchers have proposed many methods to implement various robotic calligraphy systems. However, several limitations of these methods, such as high computational costs and few diversities of generated results constrain the development of calligraphy...
Article
Computer aided diagnosis (CAD) systems play an essential role in the early detection and diagnosis of developing disease for medical applications. In order to obtain the highly recognizable representation for the medical images, a self-adaptive discriminative autoencoder (SADAE) is proposed in this paper. The proposed SADAE system is implemented un...
Article
Full-text available
Upright balance control is a fundamental skill of bipedal robots for various tasks that are usually performed by human beings. Conventional robotic control is often realized by developing accurate dynamic models using a series of fixed torque‐ankle states, but their success is subject to accurate physical and kinematic models. This can be particula...
Article
The ability of robots to write Chinese strokes, which is recognized as a sophisticated task, involves complicated kinematic control algorithms. The conventional approaches for robotic writing of Chinese strokes often suffer from limited font generation methods, which limits the ability of robots to perform high-quality writing. This article instead...
Article
The writing sequence of numerals or letters often affects aesthetic aspects of the writing outcomes. As such, it remains a challenge for robotic calligraphy systems to perform, mimicking human writers’ implicit intention. This article presents a new robot calligraphy system that is able to learn writing sequences with limited sequential information...
Article
Full-text available
Human activity recognition based on generated sensor data plays a major role in a large number of applications such as healthcare monitoring and surveillance system. Yet, accurately recognizing human activities is still challenging and active research due to people’s tendency to perform daily activities in a different and multitasking way. Existing...
Article
The approximation inaccuracy of the value function in reinforcement learning (RL) algorithms unavoidably leads to an overestimation phenomenon, which has negative effects on the convergence of the algorithms. To limit the negative effects of the approximation error, we propose error controlled actor-critic (ECAC) which ensures the approximation err...
Article
Existing models based on sensor data for human activity recognition are reporting state-of-the-art performances. Most of these models are conducted based on single-domain learning in which for each domain a model is required to be trained. However, the generation of adequate labelled data and a learning model for each domain separately is often tim...
Article
Conventional controllers for nonlinear systems often suffer from co-existences of non-linearity and uncertainty. This paper proposes a novel brain emotional neural network to address such challenges. The proposed network integrates a Type 2 wavelet neural network into a conventional brain emotional learning network which is further enhanced by the...
Article
Full-text available
Most defence mechanisms such as a network-based intrusion detection system (NIDS) are often sub-optimal for the detection of an unseen malicious pattern. In response, a number of studies attempt to empower a machine-learning-based NIDS to improve the ability to recognize adversarial attacks. Along this line of research, the present work focuses on...
Article
Full-text available
Conventional control systems often suffer from the coexistence of nonlinearity and uncertainty. This paper proposes a novel brain emotional neural network to support addressing such challenges. The proposed network integrates a wavelet neural network into a conventional brain emotional learning network. This is further enhanced by the introduction...
Chapter
Upright balance control is the most fundamental, yet essential, function of a humanoid robot to enable the performance of various tasks that are traditionally performed by human being in various unstructured environments. Such control schemes were conventionally implemented by developing accurate physical and kinematic models based on fixed torque-...
Article
Metalearning has been widely applied for implementing few-shot learning and fast model adaptation. Particularly, existing metalearning methods have been exploited to learn the control mechanism for gradient descent processes, in an effort to facilitate gradient-based learning in gaining high speed and generalization ability. This article presents a...
Article
Full-text available
Conventionally, the k nearest-neighbor (kNN) classification is implemented with the use of the Euclidean distance-based measures, which are mainly the one-to-one similarity relationships such as to lose the connections between different samples. As a strategy to alleviate this issue, the coefficients coded by sparse representation have played a rol...
Article
Full-text available
Systems of sensor human activity recognition are becoming increasingly popular in diverse fields such as healthcare and security. Yet, developing such systems poses inherent challenges due to the variations and complexity of human behaviors during the performance of physical activities. Recurrent neural networks, particularly long short-term memory...
Preprint
On error of value function inevitably causes an overestimation phenomenon and has a negative impact on the convergence of the algorithms. To mitigate the negative effects of the approximation error, we propose Error Controlled Actor-critic which ensures confining the approximation error in value function. We present an analysis of how the approxima...
Article
The advent of new malware types and their attack vectors poses serious challenges for security experts in discovering effective malware detection and analysis techniques. The preliminary step in malware analysis is filtering out samples of counterfeit malware from the suspicious samples by classifying them into most likely and unlikely malware cate...
Article
Full-text available
Inertial measurement units (IMU) have been wildly used to provide accurate location and movement measurement solutions, along with the advances of modern manufacturing technologies. The scale factors of accelerometers and gyroscopes are linear when the range of the sensors are reasonably small, but the factor becomes non-linear when the range gets...
Chapter
Internet of Things (IoT) have demonstrated significant impact on all aspects of human daily lives due to their pervasive applications in areas such as telehealth, home appliances, surveillance, and wearable devices. The number of IoT devices and sensors connected to the Internet across the world is expected to reach over 50 billion by the end of 20...
Preprint
Full-text available
Conventional control systems often suffer from the co-existence of non-linearity and uncertainty. This paper proposes a novel brain emotional neural network to support addressing such challenges. The proposed network integrates a wavelet neural network into a conventional brain emotional learning network. This is further enhanced by the introductio...
Article
Zero Shot Learning (ZSL) aims to classify images of unseen target classes by transferring knowledge from source classes through semantic embeddings. The core of ZSL research is to embed both visual representation of object instance and semantic description of object class into a joint latent space and learn cross-modal (visual and semantic) latent...
Article
Intelligent robots, as an important type of Cyber-Physical systems, have promising potential to take the central stage in the development of the next-generation of efficient smart systems. Robotic calligraphy is such an attempt, and the current research focuses on the control algorithms of the robotic arms, which usually suffers from significant hu...
Conference Paper
Internet of Things have demonstrated its significant impact on all aspects of human daily lives due to its pervasive application in areas such as telehealth, home appliances, surveillance, and wearable devices. The number of IoT devices and sensors connected to the Internet across the world is expected to reach over 50 billion by the end of 2020. H...
Article
Full-text available
A honeypot is a concealed security system that functions as a decoy to entice cyberattackers to reveal their information. Therefore, it is essential to disguise its identity to ensure its successful operation. Nonetheless, cyberattackers frequently attempt to uncover these honeypots; one of the most effective techniques for revealing their identity...
Article
Full-text available
The YARA rules technique is used in cybersecurity to scan for malware, often in its default form, where rules are created either manually or automatically. Creating YARA rules that enable analysts to label files as suspected malware is a highly technical skill, requiring expertise in cybersecurity. Therefore, in cases where rules are either created...
Article
Full-text available
Robotic calligraphy is a very challenging task for the robotic manipulators, which can sustain industrial manufacturing. The active mechanism of writing robots require a large sized training set including sequence information of the writing trajectory. However, manual labelling work on those training data may cause the time wasting for researchers....
Conference Paper
Recently, the growth of the clinical sector and the technologies used in combination with the healthcare sector has resulted in the massive growth of the data that is being produced. To handle, store, and analyze such massive amounts of data, big data techniques are being used in the healthcare sector. This article features the gigantic effects of...
Article
Full-text available
Human activity recognition has become essential to a wide range of applications, such as smart home monitoring, health-care, surveillance. However, it is challenging to deliver a sufficiently robust human activity recognition system from raw sensor data with noise in a smart environment setting. Moreover, imbalanced human activity datasets with les...
Conference Paper
Full-text available
Dendritic cell algorithm (DCA) is a class of artificial immune systems that was originally developed for anomaly detection in networked systems and later as a general binary classifier. Conventionally, in its life cycle, the DCA goes through four phases including feature categorisation into artificial signals, context detection of data items, conte...
Preprint
Since its inception as a solution for secure cryptocurrencies sharing in 2008, the blockchain technology has now become one of the core technologies for secure data sharing and storage over trustless and decentralised peer-to-peer systems. E-government is amongst the systems that stores sensitive information about citizens, businesses and other aff...
Preprint
Full-text available
Electronic government (e-government) uses information and communication technologies to deliver public services to individuals and organisations effectively, efficiently and transparently. E-government is one of the most complex systems which needs to be distributed, secured and privacy-preserved, and the failure of these can be very costly both ec...
Article
Full-text available
This paper proposes a robotic hand-eye coordination system by simulating the human behavior pattern to achieve a fast and robust reaching ability. This is achieved by two neural-network-based controllers, including a rough reaching movement controller implemented by a pre-trained RBF for rough reaching movements, and a correction movement controlle...
Article
As a combination of robotic motion planning and Chinese calligraphy culture, robotic calligraphy plays a significant role in the inheritance and education of Chinese calligraphy culture. Most existing calligraphy robots focus on enabling the robots to learn writing through human participation, such as human–robot interactions and manually designed...
Conference Paper
Many factors have been shown to be important for maintaining effective learning and achieving success in higher education; more specifically in Computer Science. While factors such as existing student competencies and abilities have been extensively explored, the impact of measures of positive psychology are less well understood in this context. Un...
Article
Full-text available
Recently, image‐based scene parsing has attracted increasing attention due to its wide application. However, conventional models can only be valid on images with the same domain of the training set and are typically trained using discrete and meaningless labels. Inspired by the traditional zero‐shot learning methods which employ auxiliary side info...
Chapter
Full-text available
Fuzzy interpolation improves the applicability of fuzzy inference by allowing the utilisation of sparse rule bases. Curvature-based rule base generation approach has been recently proposed to support fuzzy interpolation. Despite the ability to directly generating sparse rule bases from data, the approach often suffers from the high dimensionality o...
Chapter
Full-text available
Dendritic Cell Algorithm (DCA) is a bio-inspired system which was specifically developed for anomaly detection problems. In its preprocessing phase, the conventional DC requires domain or expert knowledge to manually categorise the input features for a given dataset into three signal categories termed as safe signal, pathogenic associated molecular...
Chapter
The process of neural network based robotic calligraphy involves a trajectory generation process and a robotic manipulator writing process. The writing process of robotic writing cannot be expressed by mathematical expression; therefore, the conventional gradient back-propagation method cannot be directly used to optimize trajectory generation syst...
Chapter
Full-text available
Dendritic Cell Algorithm (DCA) is a binary classifier in the category of artificial immune systems. During its pre-processing phase, DCA requires features to be mapped into three signal categories including safe signal, pathogenic associated molecular pattern, and danger signal, which is usually referred to as signal categorisation. Conventionally,...
Chapter
Recently, the growth of the clinical sector and the technologies used in combination with the healthcare sector has resulted in the massive growth of the data that is being produced. To handle, store, and analyze such massive amounts of data, big data techniques are being used in the healthcare sector. This article features the gigantic effects of...
Book
This book highlights the latest research in computational intelligence and its applications. It covers both conventional and trending approaches in individual chapters on Fuzzy Systems, Intelligence in Robotics, Deep Learning Approaches, Optimization and Classification, Detection, Inference and Prediction, Hybrid Methods, Emerging Intelligence, Int...
Article
Full-text available
The natural neuromuscular model has greatly inspired the development of control mechanisms in addressing the uncertainty challenges in robotic systems. Although the underpinning neural reaction of posture control remains unknown, recent studies suggest that muscle activation driven by the nervous system plays a key role in human postural responses...
Conference Paper
Full-text available
Since its inception as a solution for secure cryptocurrencies sharing in 2008, the blockchain technology has now become one of the core technologies for secure data sharing and storage over trustless and decentralised peer-to-peer systems. E-government is amongst the systems that stores sensitive information about citizens, businesses and other aff...
Article
Feature extraction plays a vital role in visual action recognition. Many existing gradient-based feature extractors, including histogram of oriented gradients (HOG), histogram of optical flow (HOF), motion boundary histograms (MBH), and histogram of motion gradients (HMG), build histograms for representing different actions over the spatio-temporal...
Article
Full-text available
Big data refers to large complex structured or unstructured data sets. Big data technologies enable organisations to generate, collect, manage, analyse, and visualise big data sets, and provide insights to inform diagnosis, prediction, or other decision-making tasks. One of the critical concerns in handling big data is the adoption of appropriate b...
Article
Robotic calligraphy, as a typical application of robot movement planning, is of great significance for the inheritance and education of calligraphy culture. The existing implementations of such robots often suffer from its limited ability for font generation and evaluation, leading to poor writing style diversity and writing quality. This paper pro...
Article
Full-text available
Three-dimensional convolutional neural networks (3DCNNs), a rapidly evolving modality of deep learning, has gained popularity in many fields. For oral cancers, CT images are traditionally processed using two-dimensional input, without considering information between lesion slices. In this paper, we established a 3DCNNs-based image processing algori...
Article
Full-text available
Intelligent robots are required to fully understand human intentions and operations in order to support or collaborate with humans to complete complicated tasks, which is typically implemented by employing human-machine interaction techniques. This paper proposes a new robotic learning framework to perform numeral writing tasks by investigating hum...
Article
Full-text available
This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. M...
Preprint
Meta-learning has been widely used for implementing few-shot learning and fast model adaptation. One kind of meta-learning methods attempt to learn how to control the gradient descent process in order to make the gradient-based learning have high speed and generalization. This work proposes a method that controls the gradient descent process of the...
Preprint
Deep learning and other big data technologies have over time become very powerful and accurate. There are algorithms and models developed that have near human accuracy in their task. In health care, the amount of data available is massive and hence, these technologies have a great scope in health care. This paper reviews a few interesting contribut...
Article
Full-text available
Context and background: Breast cancer is one of the most common diseases threatening the human lives globally, requiring effective and early risk analysis for which learning classifiers supported with automated feature selection offer a potential robust solution. Motivation: Computer aided risk analysis of breast cancer typically works with a se...
Chapter
It is a challenge task to enable a robot to dance according to different types of music. However, two problems have not been well resolved yet: (1) how to assign a dance to a certain type of music, and (2) how to ensure a dancing robot to keep in balance. To tackle these challenges, a robot automatic choreography system based on the deep learning t...
Chapter
Fuzzy inference systems provide a simple yet powerful solution to complex non-linear problems, which have been widely and successfully applied in the control field. The TSK-based fuzzy inference approaches, such as the convention TSK, interval type 2 (IT2) TSK and their extensions TSK+ and IT2 TSK+ approaches, are more convenient to be employed in...
Article
Dynamic control, including robotic control, faces both the theoretical challenge of obtaining accurate system models and the practical difficulty of defining uncertain system bounds. To facilitate such challenges, this paper proposes a control system consisting of a novel type of fuzzy neural network and a robust compensator controller. The new fuz...