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Abstract 

We investigate the NP-hard absolute value equation (AVE) Au - |u| = b, where A is an arbitrary square matrix. In this paper, 
we present a smoothing method for the AVE. First, we replace the absolute value function by a smooth one, called 
aggregate function. With this smoothing technique, we formulate the non-smooth AVE as a smooth nonlinear equations, 
furthermore, an unconstrained differentiable optimization problem. Then we adopt Particle Swarm Optimization (PSO) to 
AVE. The numerical experiments show that the proposed algorithm is effective in dealing with the AVE.   
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1. Introduction 

We consider the absolute value equation (AVE) 
                                      Ax x b=−                                  (1) 

where n nA ×∈ , , nx b ∈ , and x  denotes the vector with absolute values of each component of 
x . A slightly more general form of the AVE was introduced in [1] and investigated in a more general 

context in [2].  
As was shown in [3,4], the general NP-hard linear complementarity problem (LCP) that subsumes many 

mathematical programming problems can be formulated as an absolute value equation such as (1). This 
implies that AVE (1) is NP-hard in its general form. Theoretical analysis focuses on the theorem of 
alternatives, various equivalent reformulations, and the existence and nonexistence of solutions. Reference 
[1] provides a theorem of the alternatives for a more general form of AVE, Ax +B|x|=b, and enlightens the 
relation between the AVE and the interval matrix. In [5], the AVE is shown to be equivalent to the bilinear 

program, the generalized LCP, and the standard LCP if 1 is not an eigenvalue of A . Based on the LCP 
reformulation, sufficient conditions for the existence and nonexistence of solutions are given.  

Oleg proved in [6] that the AVE (1) can be equivalently reformulated as a standard LCP without any 

assumption on A  and B , and discussed unique solvability of AVE (1). In [7], Hu and Huang 
reformulated a system of absolute value equation as a standard linear complementarity problem without 
any assumption and give some existence and convexity results for the solution set of the AVE (1). 

It is worth mentioning that any LCP can be reduced to the AVE [5-7], which owns a very special and 
simple structure. Hence how to solve the AVE directly attracts much attention. Based on a new 
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reformulation of the AVE (1) as the minimization of a parameter-free piecewise linear concave 
minimization problem on a polyhedral, Mangasarian proposed a finite computational algorithm that is 
solved by a finite succession of linear programs in [8]. In the recent interesting paper [9] of Mangasarian, a 
semismooth Newton method is proposed for solving the AVE, which largely shortens the computation time 
than the SLP method. It shows that the semismooth Newton iterations are well defined and bounded when 

the singular values of A  exceed 1. However, the global linear convergence of the method is only 
guaranteed under more stringent condition than the singular values of A  exceed 1. In [10] Mangasarian 
formulated the NP-hard n-dimensional knapsack feasibility problem as an equivalent absolute value 
equation in an n-dimensional noninteger real variable space and proposed a finite succession of linear 
programs for solving the AVE (1).  

In [11], a generalized Newton method, which has global and finite convergence, was proposed for the 
AVE. The method utilizes both the semismooth and the smoothing Newton steps, in which the semismooth 
Newton step guarantees the finite convergence and the smoothing Newton step contributes to the global 
convergence. In [12], a smoothing Newton algorithm to solve the AVE (1.1) was presented. The algorithm 
was proved to be globally convergent and the convergence rate was quadratic under the condition that the 
singular values of A exceed 1. This condition was weaker than the one used in [9]. 

Recently, AVE (1) has been investigated in the literature [13-15]. 
In this paper, we present a new method for solving absolute value equations. We replace the absolute 

value function by a smooth one, called aggregate function. With this smoothing technique, we formulate 
the non-smooth AVE as a smooth nonlinear equations, furthermore, an unconstrained differentiable 
optimization problem. Then we adopt Particle Swarm Optimization (PSO) to AVE. The numerical 
experiments show that the proposed algorithm is effective in dealing with the AVE. 

In section 2, we give a smoothing function and study its properties that will be used in the next section. 
Meanwhile, we give some propositions or lemmas for AVE that will be used later. In section 3 we describe 
and present Particle Swarm Optimization (PSO) to AVE. Effectiveness of the method is demonstrated in 

section 4 by solving some randomly generated AVE problems with singular values of A  exceeding 1. 
Section 5 concludes the paper.  

We now describe our notation. All vectors will be column vectors unless transposed to a row vector. The 
scalar (inner) product of two vectors x  and y  in the n-dimensional real space nR  will be denoted by 

Tx y . For nx R∈  the 2-norm will be denoted by ||x||, while |x| will denote the vector with absolute values 
of each component of x . The notation m nA R ×∈  will signify a real m n×  matrix. For such a matrix 

TA  will denote the transpose of A . We write I  for the identity matrix, e  for the vector of all ones ( I  
and e  are suitable dimension in context). A vector of zeros in a real space of arbitrary dimension will be 
denoted by 0. For 1 2( , , , )T n

nx x x x R= ∈ , min 1 2min{ , , , }nx x x x= , i.e. the minimal component of x . 
{ }iX diag x=  for the diagonal matrix whose elements are the coordinates ix  of nx R∈ .  

2. Theoretical Background and a Smoothing Function 

Define : n nH →=  by 
( ) :H x Ax x b−= − .                            (2) 

It is clear that x  is a solution of the AVE (1) if and only if 0( )H x = . H  is a nonsmooth function 
due to the non-differentiability of the absolute value function. In this section we give a smoothing function 
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of H  and study its properties. We first give some properties of H  which will be used in the next 
section. 

The following results by Mangasarian [5] and Jiri Rohn [13] characterize solvability of AVE. 
Proposition 2.1 (Mangasarian). (Existence of AVE solution) 
(i) If 1 is not an eigenvalue of A  and the singular values of A  are merely greater or equal to 1, then 

the AVE (1) is solvable if the set S ≠ ∅ , where 

( ) ( ){ }0, 0S x A I x b A I x b= + − ≥ − − ≥ . 

(ii) If 0b <  and A ∞ <γ/2, where γ = mini |bi|/maxi |bi |, then AVE (1) has exactly 2n distinct 
solutions, each of which has no zero components and a different sign pattern. 

Proposition 2.2 (Mangasarian). (Unique solvability of AVE).  
(i) The AVE (1) is uniquely solvable for any nb R∈  if the singular values of A  exceed 1. 
(ii) The AVE (1) is uniquely solvable for any nb R∈  if 1 1A− < . 

Proposition 2.3 (Mangasarian). (Existence of nonnegative solution).  
Let 0A≥ , 1A <  and 0b ≤ , then a nonnegative solution to the AVE (1) exists. 

Proposition 2.4 (Jiri Rohn). If the interval matrix [A −I, A + I ] is regular, then for each right-hand side 
b the equation Ax -|x| = b has a unique solution. 

Lemma 2.1[5] For a matrix n nA R ×∈ , the following conditions are equivalent. 
(i) The singular values of A  exceed 1. 
(ii) The minimum eigenvalue of TA A  exceeds 1. 
(iii) 1 1A− < . 

Lemma 2.2 [16] Suppose that A  is nonsingular and 1 1BA− < . Then, BA+  is nonsingular. 

Proof  We first show that 1I A B−+  is nonsingular. For, if not, then for some non-zero vector 
nx R∈  we have that 1( ) 0I A B x−+ = , which shows 1 1x A Bx A B x− −≤ ≤ , so 11 A B−≤ , 

too, which gives the contradiction. Since 1( )A I A B−+  is nonsingular, we have BA+  is nonsingular. 

Lemma 2.3 Let ( )D diag d=  with [ 1,1], 1,2, ,i i nd − =∈ . Suppose that 1 1A− < . Then, A D+  

is nonsingular. 
Proof  Since 1 1 1D D DA A− −≤ < ≤ , by Lemma 2.2, we have A D+  is nonsingular. 

Definition 2.1[17] A function , 0: n nH μ μ→ >=  is called a uniformly smoothing 

approximation function of a non-smooth function : n nH →=  if, for any nx R∈ , H μ  is 

continuously differentiable, and there exists a constant κ  such that 
( ) ( ) ,    >0x xH Hμ κμ μ− ≤ ∀ . 

Where 0κ >  is constant that does not depend on x . 
Obviously absolute value function x  is non-differentiable. Let ( ) :x xϕ = . Since  

( ) : max{ , }, 1, 2, ,i i i ix x x x i nϕ = = − = , 

we can adopt the aggregate function introduced in Ref. [18] to smooth the max function. The smoothing 
approximation function to the function ( )ixϕ  is derived as  

( ) ln exp expi i
i

x xxμϕ μ
μ μ

⎧ ⎫⎛ ⎞ ⎛ ⎞
= + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
, 1, 2, ,i n= . 

According to Theorem 3 of Ref. [18], we have 
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0 ( ) ( ) ln 2 ,   1, 2, ,i ix x i nμϕ ϕ μ≤ − ≤ ⋅ = . 

Thus ( )ixμϕ  is a uniformly smoothing approximation function of ( )ixϕ . 

For any 0μ > , let ( )1 2( ) ( ), ( ), , ( )
T

nx x x xμ μ μ μϕ ϕ ϕ ϕ= . Define : n nH μ →=  by  

( ) ( )x xH Ax bμ μϕ= −− .                             (3) 

Clearly, H μ  is a smoothing function of H . Now we give some properties of H μ , which will be used 

in the next section. 
By simple computation, we have 
Lemma 2.4 For any 0μ > , the Jacobian of H μ  at nx R∈  is 

'
exp exp

, 1, 2, , .
exp exp

( )

i i

i i

x x

i n
x x

xH A diagμ

μ μ

μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎜ ⎟⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= −  

Now we investigate the nonsingularity of the matrix ' ( )xHμ . Note that for any 0μ > , 

exp exp exp
1 2 1

exp exp exp exp

i i i

i i i i

x x x

x x x x
μ μ μ

μ μ μ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − <
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 1, 2, ,i n= . 

Hence, by Lemma 2.3, we obtain the following result. 
Theorem 2.1 Suppose that 1 1A− < . Then,  

'
exp exp

, 1, 2, , .
exp exp

( )

i i

i i

x x

i n
x x

xH A diagμ

μ μ

μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎜ ⎟⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= −  

is nonsingular. 
Theorem 2.2 Let ( )H x  and ( )xHμ  be defined as (2) and (3), respectively. Then, ( )xHμ  is a 

uniformly smoothing approximation function of ( )H x . 
Proof  For any 0μ > , 

2

1
( ) ( ) ( )( ) ( ) ( ) ln 2n

i ii
x x xH H x x x nμ μ μϕ ϕ ϕ ϕ μ

=
= =− − − ≤ ⋅∑ . 

Thus, ( )xHμ  is a uniformly smoothing approximation function of ( )H x . 

Define : nθ →=  by  
21( )

2
( )x H xθ = . 

For any 0μ > , Define : nθ →=  by  
21( )

2
( )x H xμ μθ = . 

we can get the following theorem. 
Theorem 2.3 Suppose that 1 1A− < . Then, for any 0μ >  and nx R∈ , ( ) 0xμθ∇ =  implies that 

( ) 0xμθ = . 

Proof  For any 0μ >  and nx R∈ , 
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'( ) [ ( )] ( )Tx x xH Hμ μ μθ∇ = . 

By Theorem 2.1, ' ( )xHμ  is nonsingular. Hence, if ( ) 0xμθ∇ = , then ( ) 0xHμ =  and ( ) 0xμθ = . 

3. PSO Algorithm for AVE 

In this section, we give Particle swarm optimization (PSO) method for solving ( ) 0xH = . In past several 
years, PSO has been successfully applied in many research and application areas. It is demonstrated that 
PSO gets better results in a faster, cheaper way compared with other methods.  Another reason that PSO is 
attractive is that there are few parameters to adjust. One version, with slight variations, works well in a 
wide variety of applications. Particle swarm optimization has been used for approaches that can be used 
across a wide range of applications, as well as for specific applications focused on a specific requirement. 
Now we state this algorithm as follows.  

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by 
Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling [19]. 
PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). 
The system is initialized with a population of random solutions and searches for optima by updating 
generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, 
the potential solutions, called particles, fly through the problem space by following the current optimum 
particles.   

Each particle keeps track of its coordinates in the problem space which are associated with the best 
solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called gbest. Another 
"best" value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle 
in the neighbors of the particle. This location is called pbest. When a particle takes all the population as its 
topological neighbors, the best value is a global best and is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing the velocity of 
(accelerating) each particle toward its gbest and pbest locations (local version of PSO). Acceleration is 
weighted by a random term, with separate random numbers being generated for acceleration toward gbest 
and pbest locations.  

PSO concept is based on a metaphor of social interaction such as bird flocking and fish schooling. Akin 
to GA, PSO is also population-based and evolutionary in nature, with one major difference from genetic 
algorithms that it does not implement filtering; that is, all members in the population survive through the 
entire search process. PSO simulates a commonly observed social behavior, where members of a group 
tend to follow the lead of the best of the group. The procedure of PSO is illustrated as follows. 

i. Initialization. Randomly generate a population of the potential solutions, called “particles,” and each 
particle is assigned a randomized velocity.  

ii. Velocity Update. The particles then “fly” through search hyperspace while updating their own 
velocity, which is accomplished by considering its own past flight and those of its companions.  

The particle’s velocity and position are dynamically updated by the following equations: 

     ( ) ( )1 1 2 2

NEW OLD OLD OLD

id i id pbest id gbest idv w v C r x x C r x x= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −         (4) 

NEW OLD NEW

id id idx x v= +                                   (5) 
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where the acceleration coefficients 1C  and 2C  are two positive constants; iw  is an inertia weight and 

1r , 2r  is a uniformly generated random number from the range [0, 1] which is generated every time for 

each iteration. Eberhart and Shi [20] and Hu and Eberhart [21] suggested using 1 2 2C C= =  and 

0.5 2iw rand= + . Equation (4) shows that, when calculating the new velocity for a particle, the previous 

velocity of the particle ( idv ), their own best location that the particles have discovered previously ( idx ) and 

the global best location ( gbestx ) all contribute some influence on the outcome of velocity update. The global 

best location ( gbestx ) is identified, based on its fitness, as the best particle among the population. All 

particles are then accelerated towards the global best particle as well as in the directions of their own best 
solutions that have been visited previously. While approaching the current best particle from different 
directions in the search space, all particles may encounter by chance even better particles en route, and the 
global best solution will eventually emerge. Equation (5) shows how each particle’s position ( idx ) is 

updated in the search of solution space.  
Following we give PSO steps for solving the AVE. 
Algorithm 3.1 PSO method for AVE 

Step 1. Given 0 0, 0kμ > = . Establish the fitness value function  

21( )
2

( )
k k

x H xμ μθ =  

by using aggregate function ( )
k

xμϕ . 

Step 2. Apply PSO to solve min ( )
kx

xμθ . Let  arg min ( )
kk x

xx μθ= . 

Step 3. Check whether the stopping rule is satisfied. If satisfied, stop.  

Step 4. Let 1 (1 ) /k k
k k e eμ μμ μ+ = + − , : 1k k= + . Return to step 2. 

Remark. The origin of formula 1 (1 ) /k k
k k e eμ μμ μ+ = + −  is the Newton iteration of equation 

1 0eμ − = . So kμ  converges to zero quadratically. 

4. Computational Results 

First we consider one AVE problem where the data (A, b) are 

,           

4 1 0 0 4
0 5 1 0 5

.
0 0 6 1 6
0 0 0 7 6

A b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Since singular values svd(A)=[7.2443,6.0643,5.0285,3.8024], the AVE is uniquely solvable by proposition 
2.2. Solve by Algorithm 3.1, the unique solution to this AVE problem is * [1,1,1,1]Tx = .  
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Following we consider some randomly generated AVE problem with singular values of A  exceeding 1 
where the data (A, b) are generated by the Matlab scripts: 

n=input('dimension of matrix A='); 
rand('state',0); 
R=rand(n,n); 
b=rand(n,1); 
A=R'*R+n*eye(n); 

and we set the random-number generator to the state of 0 so that the same data can be regenerated. More 
detail of numerical results are presented in Table 1.  

Table 1 Computational Results by Algorithm I 

Dimension Iterations Elapsed Time (in seconds) 

4 2 2.2300 

8 2 3.3400 

16 3 3.7900 

32 2 4.1200 

64 3 6.6900 

128 3 12.4500 

256 3 34.6700 

512 5 76.5700 

1024 5 157.1200 

All the experiments were performed on Windows XP system running on a Hp540 laptop with Intel(R) 
Core(TM) 2×1.8GHz and 2GB RAM, and the codes were written in Matlab6.5.  

In all instances the Algorithm 3.1 performs extremely well, and finally converges to an optimal solution 
for the AVE. We also note that the Algorithm 3.1 converges in very few iterations.  

5. Conclusions and Future Work 

We have proposed a new smooth method for solving the NP-hard absolute value equation Ax -|x| = b under 
the less stringent condition that the singular values of A  exceed 1. The effectiveness of the algorithm is 
demonstrated by its ability to solve some randomly generated problems. Possible future work may consist 
of investigating other intelligent optimization algorithm and improvement of the proposed algorithm here. 
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