
Journal of Computational Information Systems 6:7(2010) 2359-2366
Available at http://www.Jofcis.com

1553-9105/ Copyright © 2010 Binary Information Press
July, 2010

Particle Swarm Optimization for Absolute Value Equations

Longquan YONG†

Department of Mathematics, Shaanxi University of Technology, Hanzhong 723001, China

Abstract

We investigate the NP-hard absolute value equation (AVE) Au - |u| = b, where A is an arbitrary square matrix. In this paper,
we present a smoothing method for the AVE. First, we replace the absolute value function by a smooth one, called
aggregate function. With this smoothing technique, we formulate the non-smooth AVE as a smooth nonlinear equations,
furthermore, an unconstrained differentiable optimization problem. Then we adopt Particle Swarm Optimization (PSO) to
AVE. The numerical experiments show that the proposed algorithm is effective in dealing with the AVE.

Keywords: Absolute Value Equation; Particle Swarm Optimization; Smoothing Method; Aggregate Function

1. Introduction

We consider the absolute value equation (AVE)
 Ax x b=− (1)

where n nA ×∈ , , nx b ∈ , and x denotes the vector with absolute values of each component of
x . A slightly more general form of the AVE was introduced in [1] and investigated in a more general

context in [2].
As was shown in [3,4], the general NP-hard linear complementarity problem (LCP) that subsumes many

mathematical programming problems can be formulated as an absolute value equation such as (1). This
implies that AVE (1) is NP-hard in its general form. Theoretical analysis focuses on the theorem of
alternatives, various equivalent reformulations, and the existence and nonexistence of solutions. Reference
[1] provides a theorem of the alternatives for a more general form of AVE, Ax +B|x|=b, and enlightens the
relation between the AVE and the interval matrix. In [5], the AVE is shown to be equivalent to the bilinear

program, the generalized LCP, and the standard LCP if 1 is not an eigenvalue of A . Based on the LCP
reformulation, sufficient conditions for the existence and nonexistence of solutions are given.

Oleg proved in [6] that the AVE (1) can be equivalently reformulated as a standard LCP without any

assumption on A and B , and discussed unique solvability of AVE (1). In [7], Hu and Huang
reformulated a system of absolute value equation as a standard linear complementarity problem without
any assumption and give some existence and convexity results for the solution set of the AVE (1).

It is worth mentioning that any LCP can be reduced to the AVE [5-7], which owns a very special and
simple structure. Hence how to solve the AVE directly attracts much attention. Based on a new

† Corresponding author.
 Email addresses: yonglongquan@sohu.com(Longquan YONG).

2360 L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366

reformulation of the AVE (1) as the minimization of a parameter-free piecewise linear concave
minimization problem on a polyhedral, Mangasarian proposed a finite computational algorithm that is
solved by a finite succession of linear programs in [8]. In the recent interesting paper [9] of Mangasarian, a
semismooth Newton method is proposed for solving the AVE, which largely shortens the computation time
than the SLP method. It shows that the semismooth Newton iterations are well defined and bounded when

the singular values of A exceed 1. However, the global linear convergence of the method is only
guaranteed under more stringent condition than the singular values of A exceed 1. In [10] Mangasarian
formulated the NP-hard n-dimensional knapsack feasibility problem as an equivalent absolute value
equation in an n-dimensional noninteger real variable space and proposed a finite succession of linear
programs for solving the AVE (1).

In [11], a generalized Newton method, which has global and finite convergence, was proposed for the
AVE. The method utilizes both the semismooth and the smoothing Newton steps, in which the semismooth
Newton step guarantees the finite convergence and the smoothing Newton step contributes to the global
convergence. In [12], a smoothing Newton algorithm to solve the AVE (1.1) was presented. The algorithm
was proved to be globally convergent and the convergence rate was quadratic under the condition that the
singular values of A exceed 1. This condition was weaker than the one used in [9].

Recently, AVE (1) has been investigated in the literature [13-15].
In this paper, we present a new method for solving absolute value equations. We replace the absolute

value function by a smooth one, called aggregate function. With this smoothing technique, we formulate
the non-smooth AVE as a smooth nonlinear equations, furthermore, an unconstrained differentiable
optimization problem. Then we adopt Particle Swarm Optimization (PSO) to AVE. The numerical
experiments show that the proposed algorithm is effective in dealing with the AVE.

In section 2, we give a smoothing function and study its properties that will be used in the next section.
Meanwhile, we give some propositions or lemmas for AVE that will be used later. In section 3 we describe
and present Particle Swarm Optimization (PSO) to AVE. Effectiveness of the method is demonstrated in

section 4 by solving some randomly generated AVE problems with singular values of A exceeding 1.
Section 5 concludes the paper.

We now describe our notation. All vectors will be column vectors unless transposed to a row vector. The
scalar (inner) product of two vectors x and y in the n-dimensional real space nR will be denoted by

Tx y . For nx R∈ the 2-norm will be denoted by ||x||, while |x| will denote the vector with absolute values
of each component of x . The notation m nA R ×∈ will signify a real m n× matrix. For such a matrix

TA will denote the transpose of A . We write I for the identity matrix, e for the vector of all ones (I
and e are suitable dimension in context). A vector of zeros in a real space of arbitrary dimension will be
denoted by 0. For 1 2(, , ,)T n

nx x x x R= ∈ , min 1 2min{ , , , }nx x x x= , i.e. the minimal component of x .
{ }iX diag x= for the diagonal matrix whose elements are the coordinates ix of nx R∈ .

2. Theoretical Background and a Smoothing Function

Define : n nH →= by
() :H x Ax x b−= − . (2)

It is clear that x is a solution of the AVE (1) if and only if 0()H x = . H is a nonsmooth function
due to the non-differentiability of the absolute value function. In this section we give a smoothing function

L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366 2361

of H and study its properties. We first give some properties of H which will be used in the next
section.

The following results by Mangasarian [5] and Jiri Rohn [13] characterize solvability of AVE.
Proposition 2.1 (Mangasarian). (Existence of AVE solution)
(i) If 1 is not an eigenvalue of A and the singular values of A are merely greater or equal to 1, then

the AVE (1) is solvable if the set S ≠ ∅ , where

() (){ }0, 0S x A I x b A I x b= + − ≥ − − ≥ .

(ii) If 0b < and A ∞ <γ/2, where γ = mini |bi|/maxi |bi |, then AVE (1) has exactly 2n distinct
solutions, each of which has no zero components and a different sign pattern.

Proposition 2.2 (Mangasarian). (Unique solvability of AVE).
(i) The AVE (1) is uniquely solvable for any nb R∈ if the singular values of A exceed 1.
(ii) The AVE (1) is uniquely solvable for any nb R∈ if 1 1A− < .

Proposition 2.3 (Mangasarian). (Existence of nonnegative solution).
Let 0A≥ , 1A < and 0b ≤ , then a nonnegative solution to the AVE (1) exists.

Proposition 2.4 (Jiri Rohn). If the interval matrix [A −I, A + I] is regular, then for each right-hand side
b the equation Ax -|x| = b has a unique solution.

Lemma 2.1[5] For a matrix n nA R ×∈ , the following conditions are equivalent.
(i) The singular values of A exceed 1.
(ii) The minimum eigenvalue of TA A exceeds 1.
(iii) 1 1A− < .

Lemma 2.2 [16] Suppose that A is nonsingular and 1 1BA− < . Then, BA+ is nonsingular.

Proof We first show that 1I A B−+ is nonsingular. For, if not, then for some non-zero vector
nx R∈ we have that 1() 0I A B x−+ = , which shows 1 1x A Bx A B x− −≤ ≤ , so 11 A B−≤ ,

too, which gives the contradiction. Since 1()A I A B−+ is nonsingular, we have BA+ is nonsingular.

Lemma 2.3 Let ()D diag d= with [1,1], 1,2, ,i i nd − =∈ . Suppose that 1 1A− < . Then, A D+

is nonsingular.
Proof Since 1 1 1D D DA A− −≤ < ≤ , by Lemma 2.2, we have A D+ is nonsingular.

Definition 2.1[17] A function , 0: n nH μ μ→ >= is called a uniformly smoothing

approximation function of a non-smooth function : n nH →= if, for any nx R∈ , H μ is

continuously differentiable, and there exists a constant κ such that
() () , >0x xH Hμ κμ μ− ≤ ∀ .

Where 0κ > is constant that does not depend on x .
Obviously absolute value function x is non-differentiable. Let () :x xϕ = . Since

() : max{ , }, 1, 2, ,i i i ix x x x i nϕ = = − = ,

we can adopt the aggregate function introduced in Ref. [18] to smooth the max function. The smoothing
approximation function to the function ()ixϕ is derived as

() ln exp expi i
i

x xxμϕ μ
μ μ

⎧ ⎫⎛ ⎞ ⎛ ⎞
= + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
, 1, 2, ,i n= .

According to Theorem 3 of Ref. [18], we have

2362 L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366

0 () () ln 2 , 1, 2, ,i ix x i nμϕ ϕ μ≤ − ≤ ⋅ = .

Thus ()ixμϕ is a uniformly smoothing approximation function of ()ixϕ .

For any 0μ > , let ()1 2() (), (), , ()
T

nx x x xμ μ μ μϕ ϕ ϕ ϕ= . Define : n nH μ →= by

() ()x xH Ax bμ μϕ= −− . (3)

Clearly, H μ is a smoothing function of H . Now we give some properties of H μ , which will be used

in the next section.
By simple computation, we have
Lemma 2.4 For any 0μ > , the Jacobian of H μ at nx R∈ is

'
exp exp

, 1, 2, , .
exp exp

()

i i

i i

x x

i n
x x

xH A diagμ

μ μ

μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎜ ⎟⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= −

Now we investigate the nonsingularity of the matrix ' ()xHμ . Note that for any 0μ > ,

exp exp exp
1 2 1

exp exp exp exp

i i i

i i i i

x x x

x x x x
μ μ μ

μ μ μ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − <
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 1, 2, ,i n= .

Hence, by Lemma 2.3, we obtain the following result.
Theorem 2.1 Suppose that 1 1A− < . Then,

'
exp exp

, 1, 2, , .
exp exp

()

i i

i i

x x

i n
x x

xH A diagμ

μ μ

μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟=
⎜ ⎟⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= −

is nonsingular.
Theorem 2.2 Let ()H x and ()xHμ be defined as (2) and (3), respectively. Then, ()xHμ is a

uniformly smoothing approximation function of ()H x .
Proof For any 0μ > ,

2

1
() () ()() () () ln 2n

i ii
x x xH H x x x nμ μ μϕ ϕ ϕ ϕ μ

=
= =− − − ≤ ⋅∑ .

Thus, ()xHμ is a uniformly smoothing approximation function of ()H x .

Define : nθ →= by
21()

2
()x H xθ = .

For any 0μ > , Define : nθ →= by
21()

2
()x H xμ μθ = .

we can get the following theorem.
Theorem 2.3 Suppose that 1 1A− < . Then, for any 0μ > and nx R∈ , () 0xμθ∇ = implies that

() 0xμθ = .

Proof For any 0μ > and nx R∈ ,

L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366 2363

'() [()] ()Tx x xH Hμ μ μθ∇ = .

By Theorem 2.1, ' ()xHμ is nonsingular. Hence, if () 0xμθ∇ = , then () 0xHμ = and () 0xμθ = .

3. PSO Algorithm for AVE

In this section, we give Particle swarm optimization (PSO) method for solving () 0xH = . In past several
years, PSO has been successfully applied in many research and application areas. It is demonstrated that
PSO gets better results in a faster, cheaper way compared with other methods. Another reason that PSO is
attractive is that there are few parameters to adjust. One version, with slight variations, works well in a
wide variety of applications. Particle swarm optimization has been used for approaches that can be used
across a wide range of applications, as well as for specific applications focused on a specific requirement.
Now we state this algorithm as follows.

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by
Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling [19].
PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA).
The system is initialized with a population of random solutions and searches for optima by updating
generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO,
the potential solutions, called particles, fly through the problem space by following the current optimum
particles.

Each particle keeps track of its coordinates in the problem space which are associated with the best
solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called gbest. Another
"best" value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle
in the neighbors of the particle. This location is called pbest. When a particle takes all the population as its
topological neighbors, the best value is a global best and is called gbest.

The particle swarm optimization concept consists of, at each time step, changing the velocity of
(accelerating) each particle toward its gbest and pbest locations (local version of PSO). Acceleration is
weighted by a random term, with separate random numbers being generated for acceleration toward gbest
and pbest locations.

PSO concept is based on a metaphor of social interaction such as bird flocking and fish schooling. Akin
to GA, PSO is also population-based and evolutionary in nature, with one major difference from genetic
algorithms that it does not implement filtering; that is, all members in the population survive through the
entire search process. PSO simulates a commonly observed social behavior, where members of a group
tend to follow the lead of the best of the group. The procedure of PSO is illustrated as follows.

i. Initialization. Randomly generate a population of the potential solutions, called “particles,” and each
particle is assigned a randomized velocity.

ii. Velocity Update. The particles then “fly” through search hyperspace while updating their own
velocity, which is accomplished by considering its own past flight and those of its companions.

The particle’s velocity and position are dynamically updated by the following equations:

 () ()1 1 2 2

NEW OLD OLD OLD

id i id pbest id gbest idv w v C r x x C r x x= ⋅ + ⋅ ⋅ − + ⋅ ⋅ − (4)

NEW OLD NEW

id id idx x v= + (5)

2364 L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366

where the acceleration coefficients 1C and 2C are two positive constants; iw is an inertia weight and

1r , 2r is a uniformly generated random number from the range [0, 1] which is generated every time for

each iteration. Eberhart and Shi [20] and Hu and Eberhart [21] suggested using 1 2 2C C= = and

0.5 2iw rand= + . Equation (4) shows that, when calculating the new velocity for a particle, the previous

velocity of the particle (idv), their own best location that the particles have discovered previously (idx) and

the global best location (gbestx) all contribute some influence on the outcome of velocity update. The global

best location (gbestx) is identified, based on its fitness, as the best particle among the population. All

particles are then accelerated towards the global best particle as well as in the directions of their own best
solutions that have been visited previously. While approaching the current best particle from different
directions in the search space, all particles may encounter by chance even better particles en route, and the
global best solution will eventually emerge. Equation (5) shows how each particle’s position (idx) is

updated in the search of solution space.
Following we give PSO steps for solving the AVE.
Algorithm 3.1 PSO method for AVE

Step 1. Given 0 0, 0kμ > = . Establish the fitness value function

21()
2

()
k k

x H xμ μθ =

by using aggregate function ()
k

xμϕ .

Step 2. Apply PSO to solve min ()
kx

xμθ . Let arg min ()
kk x

xx μθ= .

Step 3. Check whether the stopping rule is satisfied. If satisfied, stop.

Step 4. Let 1 (1) /k k
k k e eμ μμ μ+ = + − , : 1k k= + . Return to step 2.

Remark. The origin of formula 1 (1) /k k
k k e eμ μμ μ+ = + − is the Newton iteration of equation

1 0eμ − = . So kμ converges to zero quadratically.

4. Computational Results

First we consider one AVE problem where the data (A, b) are

,

4 1 0 0 4
0 5 1 0 5

.
0 0 6 1 6
0 0 0 7 6

A b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Since singular values svd(A)=[7.2443,6.0643,5.0285,3.8024], the AVE is uniquely solvable by proposition
2.2. Solve by Algorithm 3.1, the unique solution to this AVE problem is * [1,1,1,1]Tx = .

L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366 2365

Following we consider some randomly generated AVE problem with singular values of A exceeding 1
where the data (A, b) are generated by the Matlab scripts:

n=input('dimension of matrix A=');
rand('state',0);
R=rand(n,n);
b=rand(n,1);
A=R'*R+n*eye(n);

and we set the random-number generator to the state of 0 so that the same data can be regenerated. More
detail of numerical results are presented in Table 1.

Table 1 Computational Results by Algorithm I

Dimension Iterations Elapsed Time (in seconds)

4 2 2.2300

8 2 3.3400

16 3 3.7900

32 2 4.1200

64 3 6.6900

128 3 12.4500

256 3 34.6700

512 5 76.5700

1024 5 157.1200

All the experiments were performed on Windows XP system running on a Hp540 laptop with Intel(R)
Core(TM) 2×1.8GHz and 2GB RAM, and the codes were written in Matlab6.5.

In all instances the Algorithm 3.1 performs extremely well, and finally converges to an optimal solution
for the AVE. We also note that the Algorithm 3.1 converges in very few iterations.

5. Conclusions and Future Work

We have proposed a new smooth method for solving the NP-hard absolute value equation Ax -|x| = b under
the less stringent condition that the singular values of A exceed 1. The effectiveness of the algorithm is
demonstrated by its ability to solve some randomly generated problems. Possible future work may consist
of investigating other intelligent optimization algorithm and improvement of the proposed algorithm here.

Acknowledgement

The author is very grateful to the referees for their valuable comments and suggestions. This work is
supported by Natural Science Foundation of Shaanxi Educational Committee under Grant No.09JK381.

References

[1] Jiri Rohn. A Theorem of the Alternatives for the Equation Ax+B|x|=b [J]. Linear and Multilinear Algebra. 2004,
52(6):421-42

[2] Mangasarian O.L. Absolute value programming [J]. Computational Optimization and Aplications. 2007,36(1):

2366 L. Yong. /Journal of Computational Information Systems 6:7(2010) 2359-2366

43-53
[3] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical programming, in Mathematics of

Decision Sciences, G. B. Dantzig and A. F.Veinott, Jr. (eds.), American Mathematical Society, Providence, R.I.,
1968, pp:115-136

[4] R.W. Cottle, J.S Pang, and R E Stone. The Linear Complementarity Problems. Academic Press, New York,1992
[5] Mangasarian O.L.,Meyer, R.R. Absolute value equations[J]. Linear Algebra and its Applications. 2006, 419(5):

359-367
[6] Oleg Prokopyev. On equivalent reformulations for absolute value equations [J]. Computational Optimization and

Applications. 2009, 44(3): 363-372
[7] Shen-Long Hu, Zheng-Hai Huang. A note on absolute value equations [J]. Optim. Lett. 2006, 4(3):417-424
[8] Mangasarian O.L. Absolute value equation solution via concave minimization [J]. Optim. Lett. 2007,1(1): 3-8
[9] Mangasarian O.L. A generlaized newton method for absolute value equations [J]. Optim. Lett. 2009, (3): 101-108
[10] Mangasarian O.L. Knapsack feasibility as an absolute value equation solvable by successive linear programming

[J]. Optim. Lett.2009, 3(2): 161-170
[11] C. Zhang,Q. J. Wei. Global and Finite Convergence of a Generalized Newton Method for Absolute Value

Equations. Journal of Optimization Theory and Applications. 2009,143(2):391-403
[12] Louis Caccetta, Biao Qu,Guanglu Zhou. A globally and quadratically convergent method for absolute value

equations [J]. Computational Optimization and Applications. (2010) doi: 10.1007/s10589-009-9242-9
[13] Jiri Rohn. An Algorithm for Solving the Absolute Value Equation [J]. Electronic Journal of Linear Algebra. 2009

(18): 589-599
[14] Jiri Rohn. On Unique Solvability of the Absolute Value Equation [J]. Optim. Lett. 2009, 3(4): 603-606
[15] L Yong. Mixed integer linear programming method for absolute value equations[C]. In Proceedings of the 2009

International Symposium on Information Processing,2009,pp: 316-318
[16] Stewart,G.W.Introduction to Matrix Computations. Academic Press, San Diego,1973
[17] Qi, L., Sun, D. Smoothing functions and smoothing Newton method for complementarity and variational

inequalityproblems [J]. J. Optim. TheoryAppl. 2002,113(1):121-147
[18] LI Xing-si.An efficient method for non-differentiable optimization problem[J]. Science in China-Series A. 1994,

37 (4): 371-377
[19] Kennedy, J. and R. C. Eberhart. Particle Swarm Optimization [C]. In Proceedings of the IEEE International

Conference on Neural Networks.1995,pp:1942-1948.
[20] Eberhart, R. C. and Y. Shi. Tracking and optimizing dynamic systems with particle swarms [C]. In Proceedings

of the Congress on Evolutionary Computation. 2001,pp:94-97
[21] Hu, X. and R. C. Eberhart. Tracking dynamic systems with PSO: where's the cheese?” [C]. In Proceedings of The

Workshop on Particle Swarm Optimization. 2001

