Logan Mulroney

Logan Mulroney
University of California, Santa Cruz | UCSC · Department of Biomolecular Engineering

About

13
Publications
1,118
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
294
Citations
Citations since 2017
12 Research Items
279 Citations
2017201820192020202120222023020406080
2017201820192020202120222023020406080
2017201820192020202120222023020406080
2017201820192020202120222023020406080

Publications

Publications (13)
Preprint
SARS-CoV-2 is a positive single-stranded RNA virus that interacts with proteins of infected cells at different stages of its life cycle. These interactions are necessary for the host to recognize and block the replication of the virus. Yet, if cells fail to block SARS-CoV-2, host proteins are recruited to translate, transcribe and replicate the gen...
Article
Full-text available
The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do...
Preprint
The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested sub genomic RNAs used to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques...
Article
Full-text available
Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional methods the 5′ and 3′ ends of poly(A) RNA cannot be identified unambiguously. This is due in part to the architecture of the nanopore/enzyme-motor complex, and in part to RNA de...
Article
Full-text available
The covalent modification of RNA molecules is a pervasive feature of all classes of RNAs and has fundamental roles in the regulation of several cellular processes. Mapping the location of RNA modifications transcriptome-wide is key to unveiling their role and dynamic behaviour, but technical limitations have often hampered these efforts. Nanopore d...
Article
Full-text available
Understanding transcriptomes requires documenting the structures, modifications, and abundances of RNAs as well as their proximity to other molecules. The methods that make this possible depend critically on enzymes (including mutant derivatives) that act on nucleic acids for capturing and sequencing RNA. We tested two 3′ nucleotidyl transferases,...
Preprint
Full-text available
Understanding transcriptomes requires documenting the structures, modifications, and abundances of RNAs as well as their proximity to other molecules. The methods that make this possible depend critically on enzymes (including mutant derivatives) that act on nucleic acids for capturing and sequencing RNA. We tested two 3′ nucleotidyl transferases,...
Article
Full-text available
The Limnospira genus is a recently established clade that is economically important due to its worldwide use in biotechnology and agriculture. This genus includes organisms that were reclassified from Arthrospira, which are commercially marketed as “Spirulina.” Limnospira are photoautotrophic organisms that are widely used for research in nutrition...
Preprint
Full-text available
Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional methods the 5′ and 3′ ends of poly(A) RNA cannot be identified unambiguously. This is due in part to the architecture of the nanopore/enzyme-motor complex, and in part to RNA de...
Chapter
Proteins present a significant challenge for nanopore-based sequence analysis. This is partly due to their stable tertiary structures that must be unfolded for linear translocation, and the absence of regular charge density. To address these challenges, here we describe how ClpXP, an ATP-dependent protein unfoldase, can be harnessed to unfold and p...
Article
Full-text available
The ribosome small subunit is expressed in all living cells. It performs numerous essential functions during translation, including formation of the initiation complex and proofreading of base-pairs between mRNA codons and tRNA anticodons. The core constituent of the small ribosomal subunit is a ~1.5 kb RNA strand in prokaryotes (16S rRNA) and a ho...
Preprint
The ribosome small subunit is expressed in all living cells. It performs numerous essential functions during translation, including formation of the initiation complex and proofreading of base-pairs between mRNA codons and tRNA anticodons. The core constituent of the small ribosomal subunit is a ∼1.5 kb RNA strand in prokaryotes (16S rRNA) and a ho...
Article
Previously we showed that the protein unfoldase ClpX could facilitate translocation of individual proteins through the α-hemolysin nanopore. This results in ionic current fluctuations that correlate with unfolding and passage of intact protein strands through the pore lumen. It is plausible that this technology could be used to identify protein dom...

Network

Cited By