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Abstract –In this paper, the applicability of using a 

MultiLayer-Perceptron (MLP) Network as a possible hash 
algorithm is investigated. The difficulty of recovering an input 
from an MLP Network hashed output is presented. Important 
features of good hash algorithms such as resistance to birthday 
attacks and collision free hashing are explored with regard to 
the MLP Network. Possible advantages of using such an 
arrangement over existing hash algorithms are mentioned. 

Keywords – Cryptography, Neural Network, One Way 
Hashing. 

I. INTRODUCTION 

A one-way hash function is an important element of 
cryptography. Also called a compression function, 
contraction function, message digest, fingerprint, 
cryptographic checksum [1], it provides important functions 
such as the authentication of files and passwords. A hash 
function takes in a variable number of bits as input, and 
produces a fixed number of bits, usually 128, as output. A 
good hash function makes it impossible to recover the 
original input from the output. A good hash function also 
makes it difficult to find another set of input bits other than 
the original that will produce the same output. Thus, 
authenticating a password simply requires comparing the 
hash of the password with a stored copy of the same hash. 
Yet, a compromised system containing the stored hashes will 
not be able to reveal the original passwords. 

Available hash functions include the Message Digest 
family comprising of MD2 [2], MD4 [3] and MD5 [4] by 
Ron Rivest, and Secure Hash Algorithm (SHA) [5] by NIST 
and NSA. Other functions are available, though MD5 and 
SHA are more commonly used. While both MD5 and SHA 
can be considered improved versions of MD4 with better 
avalanche effects, SHA differs from MD5 by hashing to 160 
bits instead of 128 bits. 

In this paper, an investigation is made on the applicability 
of using an MLP Network as a one-way hash function. In 
particular, the MLP Network will be analyzed regarding its 
ability to satisfy the conditions of a good one-way hash 
function: difficulty of obtaining the input from the output, 
resistance to birthday attacks and collision resistance. 

In part 2 of the paper, there will be some preliminary 
introduction on neurons and sigmoidal activation functions. 
The structure of the MLP Network used for the one-way 
hashing function will be developed and presented. This is 
followed by an analysis of using the MLP Network as a hash 
function.  

It is not encouraged that the one-way hash function 
presented be used today in any critical or sensitive data or 
application. The strength of any new hash function can only 
become apparent after intense public scrutiny. 

II. PRELIMINARIES 

In this section, an overview of the concepts behind neural 
networks and MLP Networks in particular will be presented. 
Artificial neural networks (ANN) are mathematical models 
of complicated biological neural networks. ANN consists of 
many computation components in parallel. ANN can also be 
trained, and together with the potential to process vast 
amount of data in parallel, can be used for many purposes 
including pattern recognition and economic prediction [6]. 

A. Neural Networks 

Figure 1 presents the structure of a neuron [7] that will be 
used to build the MLP Network. 

 
 
 
 
 
 
 

 
Figure 1: Structure of a Neuron 

 
The output of a neuron is given by the following equation: 
 

 ])[(∑ +×= bii WWxy ϕ  (1) 
where xi are the input bits, Wi are the corresponding 

weights of the neuron, Wb is the bias weight and ϕ is the 
activation function. 

The activation function is a non-linear sigmoidal function. 

 
 

Figure 2: Sigmoidal functions with increasing α 
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The sigmoidal function is given by the following equation: 
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(2) 
where α determines the slope of the sigmoidal function.  
 
The sigmoidal function replaces the step function found in 

the perceptron of McCulloch and Pitts. It is thought that 
biological neurons generate a continuous action potential in 
response to a particular level of depolarizing current X [8]. 
A continuous sigmoidal function thus makes a better 
representation rather than a step function. 

   Non-linear functions are used in most if not all one-way 
hash function. Non-linear functions make it difficult to 
obtain the input from the output function. In MD5, there are 
a total of four non-linear functions that takes in three 32-bit 
inputs and produces a 32-bit output. The presence of the 
sigmoidal non-linear function suggests that the MLP 
Network may be suitable for one-way hashing. This will be 
further explored during the analysis of the MLP Network as 
a one-way hash. 

B. Structure of MLP Network for one-way hashing 

   The structure of an MLP Network is made up of layers 
of neurons [9]. For the purpose of the one-way hashing 
function, two layers of neurons are employed, the preceding 
layer is called the “hidden” layer, and the other called the 
“output” layer. The meaning of the words “layer”, “hidden”, 
“output” and “input” differ in terminology for different text. 
For our purpose, the term “input layer” is not actually a layer 
of neurons, but rather the input bits themselves. The 
graphical structure of a fully connected MLP Network is 
shown in figure 3. 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 3: Structure of an MLP Network 

   
  Input bits are fed into the “hidden” layer of neurons. The 

output of the “hidden” layer becomes the input for the 
“output” layer. Due to the sigmoidal function, the output of 
each neuron is a real number between 0 and 1. Since it will 
be more useful to have binary values of either 0 or 1, a 
threshold of 0.5 is taken. Real outputs less than 0.5 will be 
taken as 0, while those greater or equal to 0.5 will be taken 
as 1. 

   The weights Wi are taken from a consistent source. A 
good source of weight values can be generated from pseudo-
random number generators that follow a gaussian 
distribution with a mean of 0 and a variance of 1. It is 
generally advisable to use values that are between –1 and 1 
to prevent a neuron from being saturated. Another possible 
source of weight values may be obtained from random tables, 
though the values should again be normalized so that they lie 
between –1 and 1. The values of the weights in the MLP 
Network is required to be the same every time the MLP 
Network is initialized for use as a one-way hash function. 

   The model of the MLP Network used in this paper has 
an output layer consisting of 128 nodes, with a hidden layer 
consisting of 64 nodes. The number of input bits is set to 
640. The total number of weight values including bias 
weight values, n, required is given in the equation below.  
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The MLP Network will roughly require between 1.5 to 3 

megabytes of memory in order to store the weight values. 
This may not be feasible in smart card systems, though in 
software, it will not be a problem. It should also be possible 
to develop a hardware chip that performs the functions of the 
MLP Network with built in memory space for weight 
storage. Existing hardware includes Accurate Automation 
Corp’s Neural Network Processor and Intel’s 80170NX 
Electrically Trainable Analog Neural Network (ETANN). 

C. One-way hash operation 

Since the input can be of variable number of bits long, 
padding is done in a similar fashion performed in MD5. A 
single ‘1’ bit is appended followed by ‘0’ bits until the 
length of the message is congruent to 448 bits. This is 
followed by a 64-bit representation of the original message 
length. This technique is known as MD-strengthening [10], 
and overcomes security problems arising from messages of 
different lengths hashing to the same output. Padding is 
done also because 512 bits of data are manipulated at a time 
during the one-way hash process. 

The hashing process proceeds by taking the 512 bits of 
data at a time, combine the input with the 128 bit output of 
the previous round, and obtain the 128 bit representation. 
The process stops when no more 512-bit blocks of data are 
available. The last 128-bit output is the hash representation 
of the input. A known initialization vector is used at the start 
of the process. 

III. ANALYSIS OF THE MLP NETWORK AS A ONE-
WAY HASH 

In this section, the three important aspects of one-way 
hash are explored in relation to the MLP Network. 
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A. Difficulty in recovering input from the hashed output 

Essentially, a one-way hash function is thus named 
because it only allows a representation to be created from the 
original message, yet the representation cannot be used to 
recover even a single bit of the original message, also known 
as Pre-image resistance [12]. This is important as one-way 
hash functions are used in digital signatures. Instead of 
signing a long message, which can take a long time, the 
hash of the long message is signed instead. 

The MLP Network can be represented in matrix form as 
shown below. 
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(5) 
 
Where y0 to y127 is the result of the output layer, o0 to o63 

is the result from the hidden layer and Wx,y is the weight 
corresponding to neuron x in the layer and input y. 

Take i, o, and y to be the array of input bits, hidden layer 
output bits and output layer output bits respectively. From 
equations 4 and 5, it seems possible to find o from y simply 
by performing Gauss-Jordan reduction [11]. This can be 
followed by performing Gauss-Jordan reduction again to find 
the input i. 

Luckily, the sigmoidal function makes finding the 
unknown o and I extremely difficult. Using the knowledge 
that the output elements of o lie between the range of 0 and 1 
since it is the output of a previous sigmoidal function, and by 
increasing the value of α in equation 2, it is possible to 
modify the sigmoidal function such that the probability of 
finding the inverse be extremely small. As α increases, the 
sigmoidal function approaches that of a step function shown 
below. 

 
 
 
 
 
 
 
 
 
 
 
 

    
Figure 3: Step function 

 

Supposing that a probability of 5×10-2 percent be required 
for the output to be 0.9999999999999999999, the value of α 
is found by: 
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(4) 
By setting α to be 1000, it is possible to reduce the 

probability that an output is not equal to 1 or 0 to 0.1%. 
Extending this theory, the probability that none of the bits is 
equal to 1 or 0 will be 0.001128, which is a very small 
probability. Due to this small probability, Gauss-Jordan 
reduction will no longer work should α be set to 1000 for the 
output layer. The value of α for the hidden layer can be set to 
a much smaller number since it is not necessary to drive a 
neuron into saturation. 

B. Collision resistance and Resistance to Birthday attacks 

Collision resistance is the difficulty of finding a different 
input that will map to the same output after hashing, for 
example H (M’) = H (M). As the hash is supposed to provide 
a “unique” representation of the input data, allowing another 
disparate input data to hash to the same output defeats the 
purpose. Birthday attacks are similar in idea, except that 
instead of finding another input that will hash to a required 
output, two random input data are found such that they hash 
to the same output. Birthday attack resistance is also known 
as 2nd Pre-image Resistance [12]. Thus it should require a 
search though 264 before two such inputs that hash to the 
same output are found. 

In section 3.1, it was determined that α for the output 
layer of neurons be set to 1000 to increase the difficulty of 
finding o from y. However, this also means that multiple o 
may be able to map to the same y, for example, o[0] may be 
0.12345678 or 0.12345679 and yet be able to produce the 
same y. This possibility suggests that the MLP Network be 
susceptible to collision. 

In order to prevent this from happening, it must be made 
such that a single bit change in i will result in a vast change 
in all the bits of o such that the previous example cannot 
occur. Each neuron in a layer within a fully connected MLP 
Network is totally connected to all the neurons in the next 
layer. This inherent structure expedites the avalanche effect, 
as a change in a single bit of the input will definitely result 
in changes in the output of a neuron layer. Using the fact 
that i can only consist of 0 or 1, the value of α for the hidden 
layer neurons is set to 1, while the weights of the hidden 
layer neurons are truncated to 3 decimal places. This 
guarantees that any change in i will result in o at 4 decimal 
places. 
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C. Converting the One-way hash into a MAC 

A Message Authentification Code (MAC) is a one-way 
hash with an additional secret key. The MLP Network used 
as a one-way hash function provides two ways in which it 
can be converted into a MAC. The first, similar to other 
hash functions, is through the initialization vector used at 
the beginning of the hashing operation. The initialization 
vector becomes a 128 bit key that can be used to turn the 
one-way hash into a MAC. The second way is by providing 
an input key and a training output key. Using these keys, 
back-propagation algorithm is applied to the MLP Network 
to train and adjust the weights of the MLP Network. The 
MLP Network becomes unique to the input and output key. 

D. Advantages of Proposed Application 

Applying an MLP Network as a hash algorithm presents 
several useful attributes. Firstly, simply changing the initial 
weight values of the MLP Network employed results in a 
totally different hash output. Many hash algorithms can be 
implemented for different purposes by setting unique initial 
weight values for each purpose. Secondly, the MLP structure 
can be modified, allowing for a hashed key of more than 128 
bits, simply by adding more neurons into each layer. 

IV. CONCLUSIONS 

In this paper, the idea of using an MLP Network as a one-
way hash function is explored. The MLP Network structure 
developed for one-way hashing consists of a hidden layer 
and an output layer. The hidden layer contains 64 neurons 
with 641 inputs including the bias. The weights of the 
hidden neurons are truncated to 3 decimal places, while α is 
set to 1. The output layer contains 128 neurons with 65 
inputs including the bias, with α set to 1000. The MLP 
Network thus structured is shown to be pre-image resistant, 
2nd pre-image resistant and collision resistant. The proposal 
of applying the MLP Network as a hashing algorithm has 
several advantages over existing algorithms, as it can easily 
be adjusted to produce variable number of output bits, and it 
can also be initialized uniquely for multiple purposes. 
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