
Application of MultiLayer Perceptron Network as a One-Way Hash Function

Liew Pol Yee1 and Liyanage C. De Silva2

National University of Singapore, Department of Electrical and Computer Engineering
4 Engineering Drive 3, Singapore 117576

1 cellomuse@yahoo.com, 2 elelcds@nus.edu.sg

Abstract –In this paper, the applicability of using a

MultiLayer-Perceptron (MLP) Network as a possible hash
algorithm is investigated. The difficulty of recovering an input
from an MLP Network hashed output is presented. Important
features of good hash algorithms such as resistance to birthday
attacks and collision free hashing are explored with regard to
the MLP Network. Possible advantages of using such an
arrangement over existing hash algorithms are mentioned.

Keywords – Cryptography, Neural Network, One Way
Hashing.

I. INTRODUCTION

A one-way hash function is an important element of
cryptography. Also called a compression function,
contraction function, message digest, fingerprint,
cryptographic checksum [1], it provides important functions
such as the authentication of files and passwords. A hash
function takes in a variable number of bits as input, and
produces a fixed number of bits, usually 128, as output. A
good hash function makes it impossible to recover the
original input from the output. A good hash function also
makes it difficult to find another set of input bits other than
the original that will produce the same output. Thus,
authenticating a password simply requires comparing the
hash of the password with a stored copy of the same hash.
Yet, a compromised system containing the stored hashes will
not be able to reveal the original passwords.

Available hash functions include the Message Digest
family comprising of MD2 [2], MD4 [3] and MD5 [4] by
Ron Rivest, and Secure Hash Algorithm (SHA) [5] by NIST
and NSA. Other functions are available, though MD5 and
SHA are more commonly used. While both MD5 and SHA
can be considered improved versions of MD4 with better
avalanche effects, SHA differs from MD5 by hashing to 160
bits instead of 128 bits.

In this paper, an investigation is made on the applicability
of using an MLP Network as a one-way hash function. In
particular, the MLP Network will be analyzed regarding its
ability to satisfy the conditions of a good one-way hash
function: difficulty of obtaining the input from the output,
resistance to birthday attacks and collision resistance.

In part 2 of the paper, there will be some preliminary
introduction on neurons and sigmoidal activation functions.
The structure of the MLP Network used for the one-way
hashing function will be developed and presented. This is
followed by an analysis of using the MLP Network as a hash
function.

It is not encouraged that the one-way hash function
presented be used today in any critical or sensitive data or
application. The strength of any new hash function can only
become apparent after intense public scrutiny.

II. PRELIMINARIES

In this section, an overview of the concepts behind neural
networks and MLP Networks in particular will be presented.
Artificial neural networks (ANN) are mathematical models
of complicated biological neural networks. ANN consists of
many computation components in parallel. ANN can also be
trained, and together with the potential to process vast
amount of data in parallel, can be used for many purposes
including pattern recognition and economic prediction [6].

A. Neural Networks

Figure 1 presents the structure of a neuron [7] that will be
used to build the MLP Network.

Figure 1: Structure of a Neuron

The output of a neuron is given by the following equation:

])[(∑ +×= bii WWxy ϕ (1)
where xi are the input bits, Wi are the corresponding

weights of the neuron, Wb is the bias weight and ϕ is the
activation function.

The activation function is a non-linear sigmoidal function.

Figure 2: Sigmoidal functions with increasing α

.

.

.

.

Wb

.

.

.

.

W0

Wi

ϕ ΣΣΣΣ y

1

x0

xi

> α

0-7803-7278-6/02/$10.00 ©2002 IEEE

Input Layer Output Layer Hidden Layer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The sigmoidal function is given by the following equation:

ve

v αϕ −+
=

1

1
)(

(2)
where α determines the slope of the sigmoidal function.

The sigmoidal function replaces the step function found in

the perceptron of McCulloch and Pitts. It is thought that
biological neurons generate a continuous action potential in
response to a particular level of depolarizing current X [8].
A continuous sigmoidal function thus makes a better
representation rather than a step function.

 Non-linear functions are used in most if not all one-way
hash function. Non-linear functions make it difficult to
obtain the input from the output function. In MD5, there are
a total of four non-linear functions that takes in three 32-bit
inputs and produces a 32-bit output. The presence of the
sigmoidal non-linear function suggests that the MLP
Network may be suitable for one-way hashing. This will be
further explored during the analysis of the MLP Network as
a one-way hash.

B. Structure of MLP Network for one-way hashing

 The structure of an MLP Network is made up of layers
of neurons [9]. For the purpose of the one-way hashing
function, two layers of neurons are employed, the preceding
layer is called the “hidden” layer, and the other called the
“output” layer. The meaning of the words “layer”, “hidden”,
“output” and “input” differ in terminology for different text.
For our purpose, the term “input layer” is not actually a layer
of neurons, but rather the input bits themselves. The
graphical structure of a fully connected MLP Network is
shown in figure 3.

Figure 3: Structure of an MLP Network

 Input bits are fed into the “hidden” layer of neurons. The

output of the “hidden” layer becomes the input for the
“output” layer. Due to the sigmoidal function, the output of
each neuron is a real number between 0 and 1. Since it will
be more useful to have binary values of either 0 or 1, a
threshold of 0.5 is taken. Real outputs less than 0.5 will be
taken as 0, while those greater or equal to 0.5 will be taken
as 1.

 The weights Wi are taken from a consistent source. A
good source of weight values can be generated from pseudo-
random number generators that follow a gaussian
distribution with a mean of 0 and a variance of 1. It is
generally advisable to use values that are between –1 and 1
to prevent a neuron from being saturated. Another possible
source of weight values may be obtained from random tables,
though the values should again be normalized so that they lie
between –1 and 1. The values of the weights in the MLP
Network is required to be the same every time the MLP
Network is initialized for use as a one-way hash function.

 The model of the MLP Network used in this paper has
an output layer consisting of 128 nodes, with a hidden layer
consisting of 64 nodes. The number of input bits is set to
640. The total number of weight values including bias
weight values, n, required is given in the equation below.

49344

)64164()65128(

=
×+×=n

(3)

The MLP Network will roughly require between 1.5 to 3

megabytes of memory in order to store the weight values.
This may not be feasible in smart card systems, though in
software, it will not be a problem. It should also be possible
to develop a hardware chip that performs the functions of the
MLP Network with built in memory space for weight
storage. Existing hardware includes Accurate Automation
Corp’s Neural Network Processor and Intel’s 80170NX
Electrically Trainable Analog Neural Network (ETANN).

C. One-way hash operation

Since the input can be of variable number of bits long,
padding is done in a similar fashion performed in MD5. A
single ‘1’ bit is appended followed by ‘0’ bits until the
length of the message is congruent to 448 bits. This is
followed by a 64-bit representation of the original message
length. This technique is known as MD-strengthening [10],
and overcomes security problems arising from messages of
different lengths hashing to the same output. Padding is
done also because 512 bits of data are manipulated at a time
during the one-way hash process.

The hashing process proceeds by taking the 512 bits of
data at a time, combine the input with the 128 bit output of
the previous round, and obtain the 128 bit representation.
The process stops when no more 512-bit blocks of data are
available. The last 128-bit output is the hash representation
of the input. A known initialization vector is used at the start
of the process.

III. ANALYSIS OF THE MLP NETWORK AS A ONE-
WAY HASH

In this section, the three important aspects of one-way
hash are explored in relation to the MLP Network.

0-7803-7278-6/02/$10.00 ©2002 IEEE

A. Difficulty in recovering input from the hashed output

Essentially, a one-way hash function is thus named
because it only allows a representation to be created from the
original message, yet the representation cannot be used to
recover even a single bit of the original message, also known
as Pre-image resistance [12]. This is important as one-way
hash functions are used in digital signatures. Instead of
signing a long message, which can take a long time, the
hash of the long message is signed instead.

The MLP Network can be represented in matrix form as
shown below.



















=


















×


















63

1

0

639

0

639,641,64,64

639,21,2,2

639,10,1,1 1

o

o

o

i

i

WWW

WWW

WWW

b

b

b

MM

L

OM

L

L

(4)



















=



















×



















127

1

0

639

0

63,1281,128,128

63,21,2,2

63,10,1,1 1

y

y

y

o

o

WWW

WWW

WWW

b

b

b

MM

L

OM

L

L

(5)

Where y0 to y127 is the result of the output layer, o0 to o63

is the result from the hidden layer and Wx,y is the weight
corresponding to neuron x in the layer and input y.

Take i, o, and y to be the array of input bits, hidden layer
output bits and output layer output bits respectively. From
equations 4 and 5, it seems possible to find o from y simply
by performing Gauss-Jordan reduction [11]. This can be
followed by performing Gauss-Jordan reduction again to find
the input i.

Luckily, the sigmoidal function makes finding the
unknown o and I extremely difficult. Using the knowledge
that the output elements of o lie between the range of 0 and 1
since it is the output of a previous sigmoidal function, and by
increasing the value of α in equation 2, it is possible to
modify the sigmoidal function such that the probability of
finding the inverse be extremely small. As α increases, the
sigmoidal function approaches that of a step function shown
below.

Figure 3: Step function

Supposing that a probability of 5×10-2 percent be required
for the output to be 0.9999999999999999999, the value of α
is found by:

1000

921

1
99999999999999999999.0

1
ln20

=
≈








 −−=α

(4)
By setting α to be 1000, it is possible to reduce the

probability that an output is not equal to 1 or 0 to 0.1%.
Extending this theory, the probability that none of the bits is
equal to 1 or 0 will be 0.001128, which is a very small
probability. Due to this small probability, Gauss-Jordan
reduction will no longer work should α be set to 1000 for the
output layer. The value of α for the hidden layer can be set to
a much smaller number since it is not necessary to drive a
neuron into saturation.

B. Collision resistance and Resistance to Birthday attacks

Collision resistance is the difficulty of finding a different
input that will map to the same output after hashing, for
example H (M’) = H (M). As the hash is supposed to provide
a “unique” representation of the input data, allowing another
disparate input data to hash to the same output defeats the
purpose. Birthday attacks are similar in idea, except that
instead of finding another input that will hash to a required
output, two random input data are found such that they hash
to the same output. Birthday attack resistance is also known
as 2nd Pre-image Resistance [12]. Thus it should require a
search though 264 before two such inputs that hash to the
same output are found.

In section 3.1, it was determined that α for the output
layer of neurons be set to 1000 to increase the difficulty of
finding o from y. However, this also means that multiple o
may be able to map to the same y, for example, o[0] may be
0.12345678 or 0.12345679 and yet be able to produce the
same y. This possibility suggests that the MLP Network be
susceptible to collision.

In order to prevent this from happening, it must be made
such that a single bit change in i will result in a vast change
in all the bits of o such that the previous example cannot
occur. Each neuron in a layer within a fully connected MLP
Network is totally connected to all the neurons in the next
layer. This inherent structure expedites the avalanche effect,
as a change in a single bit of the input will definitely result
in changes in the output of a neuron layer. Using the fact
that i can only consist of 0 or 1, the value of α for the hidden
layer neurons is set to 1, while the weights of the hidden
layer neurons are truncated to 3 decimal places. This
guarantees that any change in i will result in o at 4 decimal
places.

0-7803-7278-6/02/$10.00 ©2002 IEEE

C. Converting the One-way hash into a MAC

A Message Authentification Code (MAC) is a one-way
hash with an additional secret key. The MLP Network used
as a one-way hash function provides two ways in which it
can be converted into a MAC. The first, similar to other
hash functions, is through the initialization vector used at
the beginning of the hashing operation. The initialization
vector becomes a 128 bit key that can be used to turn the
one-way hash into a MAC. The second way is by providing
an input key and a training output key. Using these keys,
back-propagation algorithm is applied to the MLP Network
to train and adjust the weights of the MLP Network. The
MLP Network becomes unique to the input and output key.

D. Advantages of Proposed Application

Applying an MLP Network as a hash algorithm presents
several useful attributes. Firstly, simply changing the initial
weight values of the MLP Network employed results in a
totally different hash output. Many hash algorithms can be
implemented for different purposes by setting unique initial
weight values for each purpose. Secondly, the MLP structure
can be modified, allowing for a hashed key of more than 128
bits, simply by adding more neurons into each layer.

IV. CONCLUSIONS

In this paper, the idea of using an MLP Network as a one-
way hash function is explored. The MLP Network structure
developed for one-way hashing consists of a hidden layer
and an output layer. The hidden layer contains 64 neurons
with 641 inputs including the bias. The weights of the
hidden neurons are truncated to 3 decimal places, while α is
set to 1. The output layer contains 128 neurons with 65
inputs including the bias, with α set to 1000. The MLP
Network thus structured is shown to be pre-image resistant,
2nd pre-image resistant and collision resistant. The proposal
of applying the MLP Network as a hashing algorithm has
several advantages over existing algorithms, as it can easily
be adjusted to produce variable number of output bits, and it
can also be initialized uniquely for multiple purposes.

References

[1] B. Schneier, “Applied Cryptography”, Chap 2, pp 30-31, John Wiley,
ISBN 0-471-11709-9, 1996.

[2] R. Rivest, “The MD2 Message Digest Algorithm”, RFC 1319, MIT
Laboratory for Computer Science and RSA Security Inc., April 1992.

[3] R. Rivest, “The MD4 Message Digest Algorithm”, RFC 1320, MIT
Laboratory for Computer Science and RSA Security Inc., April 1992.

[4] R. Rivest, “The MD5 Message Digest Algorithm”, RFC 1321, MIT
Laboratory for Computer Science and RSA Security Inc., April 1992.

[5] National Institute of Standards, and Technology, NIST FIPS PUB
186, “Digital Signature Standard”, U.S. Department of Commerce,
May 1994.

[6] W. S. Sarle, “Neural Network Faq”,
ftp://ftp.sas.com/pub/neural/FAQ.html, 2001.

[7] W. McCulloch and W. Pitts, “A Logical Calculus of the Ideas
Immanent in Nervous Activity”, Bulletin of Mathematical Biophysics,
Chap 7, pp 115-133, 1943.

[8] P. Crochat and D. Franklin, “Back-Propogation Neural Network
Tutorial”,
http://ieee.uow.edu.au/~daniel/software/libneural/BPN_tutorial/BPN_
English/BPN_English/, 2001.

[9] S. Haykin, “Neural Networks: A Comprehensive Foundation”, Chap
4,pp 178-184, Prentice Hall, ISBN 0-13-273350-1, 1999.

[10] B. Schneier, “Applied Cryptography”, Chap 18, pp 431-432, John
Wiley, ISBN 0-471-11709-9, 1996.

[11] P. V. Oneil, “Advanced Engineering Methematics”, Chap 8, pp 355-
371, International Thomson Publishing, ISBN 0-534-94320-9, 1995.

[12] A. J. Menezes et al, “Handbook of Applied Cryptography”, Chap 9,
pp 323-324, CRC Press, ISBN 0-8493-8523-7, 2001.

[13] Michael Roe, “Performance of Block Ciphers and Hash Functions –
One Year Later”, Fast Software Encryption 94, pp359-362, 1994.

0-7803-7278-6/02/$10.00 ©2002 IEEE

	IJCNN Main Menu
	IJCNN Table of Contents
	IJCNN Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
