
IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 1

An Incremental Tensor-Train Decomposition
for Cyber-Physical-Social Big Data
Huazhong Liu, Laurence T. Yang, Senior Member, IEEE , Yimu Guo, Xia Xie,

and Jianhua Ma, Member, IEEE

Abstract— Cyber-physical-social big data generated from ubiquitous devices and diverse spaces generally are multi-source,
heterogeneous, and deeply intertwined. To efficiently analyze and handle the ubiquitous cyber-physical-social big data, tensor is
considered as an effective tool, but the curse of dimensionality is still the main bottleneck of tensor-based big data analysis. Tensor
networks can considerably alleviate or overcome it through the tensor approximate theory. Therefore, this paper focuses on developing
an efficient big data processing framework based on tensor networks and providing an incremental tensor train decomposition
approach for the streaming big data. Concretely, this paper first presents a hierarchical cyber-physical-social big data processing
framework composed of three planes, namely, data representation and decomposition, data storage and processing, and data analysis
and service. Then, tensor train (TT) and quantized TT decompositions are particularly introduced to remarkably overcome the curse of
dimensionality. Furthermore, to efficiently handle the continuous streaming big data and avoid the repeated decomposition for the
history data, an incremental tensor train decomposition (ITTD) approach is proposed and the complexities are further analyzed in
detail. Experimental results demonstrate that ITTD demonstrably outperforms the nonincremental TT decomposition in execution time
on the precise of guaranteeing the nearly equal approximation error.

Index Terms—Cyber-physical-social systems, big data, ubiquitous computing, tensor decomposition, tensor network, incremental
tensor train decomposition, quantized tensor train.

F

1 INTRODUCTION

W ITH the continuous expansion of ubiquitous sensors,
devices, and social media, all sorts of data generated

from diverse spaces (e.g., cyber space, physical space, social
space) become widely available and intertwined. Cyber-
Physical-Social Systems (CPSS), an emerging paradigm, has
received considerable attention in the academia and re-
search community [1]. Differing from Cyber-Physical Sys-
tems (CPS) which merely focuses on connecting the physical
world objects, CPSS integrates the information generated
from not only cyber space and physical space, but also
social space and further connects them into a large-scale,
heterogeneous, federated, and complex system [2]. CPSS
focuses on integrating and coordinating all data collected
from these spaces to extract useful information and provide

• H. Liu is with the School of Computer Science and Technology and Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science
and Technology, Wuhan 430074, China, and also with the School of
Information Science and Technology, Jiujiang University, Jiujiang 332005,
China. E-mail: sharpshark ding@163.com.

• L.T. Yang is with the School of Computer Science and Technology and
Wuhan National Laboratory for Optoelectronics, Huazhong University of
Science and Technology, Wuhan 430074, China, and also with the Depart-
ment of Computer Science, St. Francis Xavier University, Antigonish, NS
B2G 2W5, Canada. E-mail: ltyang@gmail.com.

• Y. Guo and X. Xie are with the School of Computer Science and Tech-
nology, Huazhong University of Science and Technology, Wuhan 430074,
China. E-mail: kknightgo@gmail.com, shelicy@hust.edu.cn.

• J. Ma is with the Faculty of Computer and Information Sciences, Hosei
University, Tokyo 184-8584, Japan. E-mail: jianhua@hosei.ac.jp.

• (Corresponding author: Laurence T. Yang.)

Manuscript received Sep. **, 2017; revised ** **, ****.

intelligent services for our lives. CPSS has spurred intensive
popularity and been applied to multiple realms, such as
context-aware vehicular cyberphysical systems [3], NextMe
prediction systems [4], personalized travel sequence recom-
mendation systems [5], to name a few.

With the pervasiveness of data acquisition systems and
the booming development of social networks and commu-
nication networks, the data acquired from CPSS become
ubiquitous and very huge in amount. Cyber-physical-social
big data are gradually formed and exhibit some specific
characteristics, such as multi-source, heterogeneous, real-
time streaming, etc. [6]. Due to the rapid increase in data
scale, traditional ubiquitous computing methods show their
limitations, and the data analysis methods in CPSS involv-
ing data representation, storage, and processing require new
approaches. Meanwhile, the cyber-physical-social big data
are generated in a streaming way, it is necessary to imple-
ment an incremental big data processing solution to satisfy
the real-time requirements in real-world. Therefore, how
to efficiently represent, analyze, and handle the streaming
cyber-physical-social big data faces numerous challenges.

Tensor, a big data analysis tool, has been adopted in
diverse branches because of its prominent advantages in
representing and handling the complex and high-order data,
such as economy, education, agriculture, transport, and mil-
itary [7]. Some tensor-based data analysis methods, such as
tensor decompositions, tensor networks, high-dimensional
clustering, and multi-factor prediction, have also been uti-
lized to deal with some practical problems. Especially for
some large scale scenarios appeared in stochastic partial
differential equations [8], brain data analysis [9], large-scale
network anomography [10], etc., where the tensor’s order

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 2

may reach up to 10, 100, even 1000. However, curse of
dimensionality is still the main bottleneck during the tensor-
based big data analysis. The curse of dimensionality refers
to the fact that the entry number of a tensor grows expo-
nentially with its order [11]. Given a tensor with the order
N = 50 and the dimensionality I = 2, then the number
of entries is IN = 250. Suppose that each entry occupies 8
bytes in memory, then the volume of the tensor will reach up
to 8PB. Accordingly, the additional overhead including the
amount of operations, computations, and running memory
grow exponentially with the tensor’s order.

In order to tackle these problems arising from such huge
volume, the theories of tensor approximation and multilin-
ear algebra play important roles in numerical analysis and
practical applications. Tensor approximation provide us an
approach and opportunity to resolve these problems via a
small number of parameters. Therefore, some typical tensor
decompositions (TDs), such as, CANDECOMP-PARAFAC
(CP) decomposition, Tucker decomposition, etc., are pre-
sented successively and widely used to analyze tensor data
[12]. However, they appear discommodious because of their
corresponding limitations when dealing with high-order
tensors. For CP decomposition, the decomposition algo-
rithms generally are not stable for high-order tensors and
the computation of the optimal rank is considered as an NP-
hard problem [13]. For Tucker decomposition, although the
decomposition algorithms are stable, it is also not suitable
for high-order tensors in that the number of parameters
of their core tensor is exponential with the tensor’s order
which remains suffered by the curse of dimensionality [14].

Recently, some tensor networks (TNs) are proposed to
overcome these limitations when dealing with high-order
tensors, such as Hierarchical Tucker (HT), Tensor Train (TT),
Quantized Tensor Train (QTT) decompositions, etc. HT de-
composition is considered as a multilevel variant of Tucker
decomposition, it is also an alternative way to efficiently re-
duce the complexity of the Tucker decomposition [15], [16].
TT decomposition decomposes a high-order tensor into a
series of low-order core tensors (typically 2nd-order or 3rd-
order) which are interconnected by tensor contractions and
connected to a linear train [11]. QTT decomposition decom-
poses a tensor with very high dimensionality as a series of
sparsely interconnected low-order and low-dimensionality
core tensors via synthetically exploiting quantization (or
tensorization) and suitable TT decomposition [17].

TT, a special case of HT, is viewed as the simplest
tensor network format and has some advantages. Firstly,
TT decomposition is based on the low-rank approximation
of auxiliary unfolding matrix, the decomposition algorithm
is non-recursive and stable when facing high-order tensors.
Secondly, the number of parameters of TT decomposition is
asymptotically equal to that of CP decomposition [18], thus
it does not suffer from the morass of curse of dimension-
ality. Thirdly, it is also feasible to directly implement some
algebra operations in TT format, e.g., addition, dot product,
norm, and matrix-by-vector, etc. [11], which are conducive
to considerably improve the computation efficiency. There-
fore, TT decomposition has already been successfully used
to solve intractable high-dimensional problems in scientif-
ic computing, such as high-dimensional elliptic equation-
s [19], extreme eigenvalues in higher dimensions [20], high-

dimensional operator equations and eigenvalue [21], etc.
Nevertheless, facing the large-scale and heterogeneous

cyber-physical-social big data, there remains many chal-
lenges during the tensor-based big data analysis process
in practical scenarios. Firstly, the constructed tensor for
representing the cyber-physical-social big data is hardly
stored and handled explicitly because of the curse of di-
mensionality. Hence, it is required to select a suitable tensor
decomposition approach to tackle the problem. Secondly,
after the cyber-physical-social tensor is decomposed, how to
execute some tensor operations based on the decomposition
results is also a challenge. These tensor operations are hard-
ly performed based on the original tensor in that they can
not be reconstructed because of the curse of dimensionality.
Therefore, it is very meaningful to promote a novel process-
ing framework to efficiently represent, store, analyze, and
handle the cyber-physical-social big data.

Besides, the cyber-physical-social big data are dynamic
and generally generated in a streaming way. After the new
streaming data are appended to the original tensor, how
to compute the TT format of the updated tensor faces
challenges. Firstly, it is impossible to explicitly reconstruct
the decomposed tensor and further achieve the updated
tensor because of the curse of dimensionality. Secondly,
it is necessary to reduce the total decomposition time to
satisfy the time constraint in practical ubiquitous scenarios.
In the past research, some incremental analysis methods
are successively presented, e.g., SVD-based incremental ap-
proaches [22], [23] and incremental tensor-based approaches
[24], [25]. However, there are little relevant methods for
the incremental tensor train decomposition. Hence, it is
significant that how to reuse the original TT decomposition
result of the history tensor and compute the new TT format
of the updated tensor.

Therefore, this paper focuses on developing an efficient
big data processing framework based on tensor networks
and providing an incremental tensor train decomposition
approach for streaming big data. This paper first develops
a novel processing framework for cyber-physical-social big
data by exploiting the advantages of tensor networks to
realize efficient storage and analysis. The proposed three-
layer processing framework supports data representation
and decomposition, data storage and processing, and data
analysis and service. Afterwards, to avoid the repeated
computation for the history data and compute the new
TT format of the updated tensor, this paper provides an
incremental TT decomposition (ITTD) approach. Finally, a
series of experiments are conducted to validate the proposed
framework and ITTD approach.

To summarize, the major contributions of this paper are
listed as follows.

• Presents a cyber-physical-social big data processing
framework based on tensor networks to considerably
alleviate or overcome the curse of dimensionality
by exploiting their characteristics and advantages in
decomposition format and algebraic operation.

• Proposes an ITTD approach to avoid the repeated
computation for the history data and reduce the total
execution time of decomposition when facing the
continuous streaming big data.

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 3

• Experimental results demonstrate that the proposed
ITTD approach demonstrably outperforms the non-
incremental TT decomposition in reducing the total
execution time on the precise of guaranteeing the
nearly equal approximation error and storage space.

The rest of this paper is organized as follows. Section 2
briefly recalls the related preliminaries. Section 3 presents a
novel processing framework based on tensor networks for
cyber-physical-social big data. In section 4, an incremental
tensor train decomposition approach is proposed in detail.
Section 5 compares the experimental results and section 6
concludes this paper.

2 PRELIMINARIES AND TENSOR TRAIN DECOM-
POSITION

Tensor, as the generalization of matrix in high-dimensional
space, has been considered as an effective data representa-
tion and analysis tool for big data and has gained increasing
attention by many researchers. For the concrete description
about tensor operations, tensor decompositions, and tensor
applications, please refer to [12], [18], [25], [26]. This section
briefly reviews the presentation method based on tensor
network diagram and tensor train decomposition.

2.1 Tensor Network Diagram

To visualize the corresponding operations and complex
interactions between different tensors, tensor network di-
agram (TND) is graphically utilized [18]. Fig. 1 depicts the
graphical representation of basic symbols and tensor opera-
tions through TND. In TND, there are generally two types
of symbols, one is a series of nodes or shapers (e.g., squares,
circles, spheres, ellipses, etc.) to graphically represent ten-
sors, and the other is outgoing edges (or lines, branches,
leads) emerging from one node to represent an order (or
way, mode) of the tensor. The edges of TND are divided into
two categories: connected edges which connect two nodes
and represent a contraction of two respective tensors along
the corresponding pair of orders, and free edges which
connect to only one node and stand for a physical order
of the tensor. Consequently, the order number of a tensor is
decided by the number of free edges in TND. TND not only
graphically provides illustrative large distributed networks
but also performs complex tensor operations in an intuitive
way and without using explicitly mathematical expressions.

I1 I2I1

I1

I2

I3

IN IN-1

Scalar Vector Matrix Nth-order tensor

I1

I2

I3

IN IN-1

In

I1

IN

I1

I2

I3

IN IN-1

1 n-1 n+1 NI I I I1 n-1 n+1 N1 n-1 n+1 NI I I1 n-1 n+1 N1 n-1 n+1 N

Mode-n unfolding Mode-(1, ,n) unfolding

In

I1 IN

In+1

1 nI I1 n1 n1 n1 n1 nI1 n1 n n+1 NI INNINN

I1 I2=J1

I3
J2

Contraction

Fig. 1. Graphical representation of basic symbols and operations via
TND.

2.2 Tensor Train Decomposition
Tensor train decomposition (TTD) is firstly proposed by
Oseledets in the numerical analysis community [11]. In prac-
tice, it is similar with the concept of ”matrix product states”
[27], [28]. Formally, an N th-order tensor X ∈ RI1×I2×···×IN

is defined to be the TT-format if it satisfies the following
format:

X = X(1) •X(2) • · · · •X(n) • · · · •X(N), (1)

where • denotes the operation of contracted product, X(n) ∈
Rrn−1×In×rn (n = 1, · · · , N ; r0 = rN = 1) is referred to as
core tensors (or cores), and {r0, r1, · · · , rN} are viewed as
TT-ranks of tensor. Fig. 2 illustrates the graphical represen-
tation of an N th-order tensor in TT format. Alternatively,
if the tensor is assigned to a specified index (i1, i2, · · · , iN),
then the entry-wise TT format can be represented as follows:

X(i1, i2, · · · , iN) = X(1)(i1)X
(2)(i2) · · ·X(N)(iN), (2)

where X(n)(in) ∈ Rrn−1×rn(n = 1, · · · , N ; r0 = rN = 1).

InI1

r2r1

I2

rN-1rN-2

IN-1 IN

rnrn-1

X
(1)

X
(2)

X
(n)

X
(N-1)

X
(N)

Fig. 2. Graphical representation of an N th-order tensor in TT format.

According to [11], the implementation of TT decompo-
sition is entirely based on low-rank decomposition through
a series of SVDs of auxiliary unfolding matrices. The TT
decomposition of an N th-order tensor needs N − 1 sequen-
tial SVDs. For each SVD on the auxiliary mode-(1, · · · , n)
unfolding matrix, the left singular matrix is transformed as
the current core tensor, the remainder will be continuously
executed by SVD in the same manner, until the last core ten-
sor is yielded. Because the low-rank tensor rarely appears in
practical computation, we should compress the original data
tensor by exploiting the low-rank approximation theory. At
this point the exact low-rank decomposition is modified to
the approximate case. While executing the SVD for each giv-
en unfolding matrix Mk, if the singular values are truncated
at δ, i.e.,

∥∥∥Mk − M̂k

∥∥∥
F
≤ δ ∥Mk∥F (M̂k is the reconstructed

approximate matrix according to the truncated value), then
the approximation error between the original N th-order ten-
sor X and the approximate tensor X̂ will be ε =

√
N − 1δ,

i.e.,
∥∥∥X − X̂

∥∥∥
F
≤ ε ∥X∥F . For the proof, please refer to

[11]. In other words, given any prescribed accuracy ε for
the TT decomposition, the threshold of truncation for each
unfolding matrix should be set to δ = ε√

N−1
. In this case,

the TT-ranks are actually δ-ranks of the unfolding matrices.
Consequently, according to the above decomposition

process and error estimation, the tensor train decomposition
algorithm can be provided for any N th-order tensor with
any prescribed accuracy ε, whose pseudocode is described
as Algorithm 1 [11].

3 CYBER-PHYSICAL-SOCIAL BIG DATA PROCESS-
ING FRAMEWORK BASED ON TENSOR NETWORKS

In this section, a cyber-physical-social big data processing
framework based on tensor networks is illustrated, the

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 4

Algorithm 1: Tensor Train Decomposition Algorithm

1 Input: An N th-order tensor X ∈ RI1×I2×···×IN and a
prescribed accuracy ε.

2 Output: TT cores X(1), X(2), · · · , X(N) of
approximation tensor X̂ satisfying∥∥∥X − X̂

∥∥∥
F
≤ ε ∥X∥F .

3 begin
4 /* Initialize variables */
5 δ ← ε√

N−1
; T ← X ; r0 ← 1;

6 for n← 1 to N − 1 do
7 /* Mode-[n] unfolding */

8 M ← Unfolding-n (T , [rn−1In,
numel(M)
rn−1In

]);
9 /* Compute δ-truncated SVD */

10 [U, S, V]← SVD (M, δ);
11 i.e., M = USV T + E, ∥E∥F ≤ δ∥M∥F ;
12 /* Achieve new TT-rank and core */
13 rn ← rankδ(M);
14 X(n) ← Tensorization(U , [rn−1, In, rn]);
15 /* New temporary tensor */
16 T ← SV T ;

17 /* Achieve last core and TT-rank */

18 X(N) ← Tensorization(T , [rN−1, IN , rN]);
19 rN ← 1;
20 return cores X(1), X(2), · · · , X(N).

overview is depicted in Fig. 3. The hierarchical processing
framework consists of three planes, namely, data representa-
tion and decomposition plane, data storage and processing
plane, and data analysis and service plane. We elaborate the
respective functions and responsibilities of each plane from
a bottom-up view.

Data Representation and Decomposition

Data Storage and Processing

Data Analysis and Service

Ubiquitous

Data Source

Distributed
Storage

Ubiquitous
Tensor-based
Computation

Ubiquitous

Application

Tensor-based

Analysis

...

...

...

...

... Recommendation

Prediction

Learning

Mining

Clustering

Classification

... Tensor-based
Representation

Incremental
Tensor Networks...

HT
...

QTTTT

Cyber Space Physical Space Social Space

...

Fig. 3. Cyber-physical-social big data processing framework based on
tensor networks.

3.1 Data Representation and Decomposition
Data representation and decomposition plane aims to repre-
sent the sensed and collected data from CPSS in a compact
and efficient way. Ubiquitous cyber-physical-social big data
derived from diverse spaces generally are multi-source and
heterogeneous, hence, tensor is applied to this framework
by virtue of its excellent characteristics in low-rank approxi-
mation and high-dimensional correlative analysis. Building
on the previous work of our team in [25], the structured,
semi-structured, and unstructured data with different types
(such as text, image, audio, video, etc.) can be represented
to low-order tensors. In general, the original constructed
tensor not only takes up tremendous storage space, but
also contains a great deal of noisy and redundant data. To
reduce the storage space and extract the significant implicit
features from the original tensor, tensor networks (TNs) can
be applied under different practical situations, such as TT,
QTT, HT, etc. The achieved data after implementing TNs
generally become higher in quality and smaller in volume,
which are conductive to the compact storage and accurate
calculation, as well as the effective communication.

Besides, some data tensors derived from CPSS are char-
acterised by very large dimensionality in some actual situ-
ations, such as very large-scale vectors or matrices. On that
occasion, quantized tensor train (QTT) decomposition can
be exploited. The implementation of QTT generally can be
achieved from the following two steps. Firstly, we reformat
the original tensor with high dimensionality to a higher-
order tensor with low dimensionality via tensorization or
quantization. Secondly, we apply a suitable TN (e.g., TT)
to decompose the tensorized tensor. Fig. 4 provides two
examples of QTT decomposition. Such a quantized tensor
can achieve a good compression performance if it admits
low-rank approximation [29]. Moreover, to deal with the
streaming data and meet the requirements of response time
in CPSS, some incremental updating methods should be
exploited to avoid the repeated computation for the history
data and reduce the computation time.

I1

I2
I3

IN

X

»
» »»

»

I
J

1 2 NI I I I= ´ ´ ´ NIN

1 2

1 2

N

N

I I I I

J J J J

= ´ ´ ´

= ´ ´ ´

NI INI II II II II II I

NJ JNJ JJ JJ JJ JJ JJ J

I1

I2
J2

IN

J1

JN

a)

b)

x

InI1

r2r1

I2

rN-1

IN

X(1)

rn-1 rn

I1 InJ1

r2r1

J2

rN-1

IN

rn-1 rn

I2 Jn JN

X(2) X(n) X(N)

X(1) X(2) X(n) X(N)

Fig. 4. Examples of quantized tensor-train decomposition.

3.2 Data Storage and Processing
Data storage and processing plane is responsible to realize
the distributed data storage and parallel tensor computa-
tion based on the decomposed result through ubiquitous
computing. Differing from the standard TDs (e.g., CP or
HOSVD) which decompose a tensor to only one core tensor,
TNs aim to decompose a high-order tensor into a sequence
of low-order core tensors (typically 2nd-order or 3rd-order).
These cores become relatively smaller in size and are in-
terconnected by some specific contracted orders, such as
the TT decomposition of an N th-order tensor in Fig. 2.

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 5

TNs have different decomposed formats, but they can be
reciprocally converted from one to the other [30]. This kind
of decomposition approaches can considerably alleviate or
overcome the adverse effects caused by the curse of di-
mensionality in computation and storage (please see the
analysis in section 4.5). Therefore, these cores can be stored
in data centers or clouds or ubiquitous computing devices
in a distributed manner only if we grasp the relationship
among cores according to their specific rules.

In addition, some TN formats have some special prop-
erties and support some algebraic and tensor-based op-
erations, such as addition, minus, matrix-by-vector, and
norm in TT format [11]. These operations can be directly
computed in the same TN format without reconstructing
these cores to the original tensors, and the result will also
maintain the same TN format. Therefore, these original
algebraic and other tensor-based operations can be con-
verted to the operations among these distributed low-order
cores, including typical tensor addition, Hadamard product,
inner product, multilinear product, Einstein product, etc.
They can be feasibly executed in parallel under ubiquitous
computing environment. It is beneficial to further improves
the efficiency of tensor networks based big data analysis.

3.3 Data Analysis and Service
Data analysis and service plane focuses on providing effec-
tive and proactive services for people based on the analysis
results according to the practical ubiquitous intelligence
scenarios. The core tensors after executing TNs general-
ly contain enormous latent feature information. Based on
these cores, several big data analysis methods, such as
high-dimensional alternative clustering algorithms, multi-
dimensional correlative analysis algorithms, personalized
recommendation and accurate prediction algorithms, can be
performed to mine valuable knowledge hidden in cyber-
physical-social big data. Owing to the integration of hetero-
geneous data derived from multiple spaces and the multi-
dimensional correlative analysis, their analysis results com-
monly are more targeted and accurate. These results are ben-
eficial for providing excellent services for people according
to ubiquitous intelligence scenarios and concrete application
requirements, such as proactive healthcare services in smart
monitor systems, accurate recommendations for learners in
smart educational systems, and accurate prediction of traffic
jams in smart transport systems, etc.

4 INCREMENTAL TENSOR-TRAIN DECOMPOSI-
TION

Generally, the data in CPSS are generated in a streaming
manner, to avoid the repeated computation for the history
data, this section detailedly illustrates an incremental TT
decomposition (ITTD) approach. The proposed incremental
approach is performed by virtue of the special mathematical
properties of TT format rather than the incremental SVD.

4.1 Main Solution
Suppose that the original tensor is X ∈
RI1×I2×···×Ik×···×IN , and the incremental tensor along
the kth order is Y ∈ RI1×I2×···×I

′
k×···×IN , hence, the

updated tensor is Z ∈ RI1×I2×···×(Ik+I
′
k)×···×IN . The main

process of ITTD is described as Fig. 5, which is comprised
of four steps. (1) Execute the TT decomposition of the
incremental tensor Y and yield its TT format Y tt. It is noted
that the TT format Xtt of original tensor X is known and
has been stored in advance. (2) Compute their TT cores of
the original and incremental zero-padding tensors on the
basis of the decomposed TT cores Xtt and Y tt, represented
as X

′

tt and Y
′

tt, respectively. Thereinto, appending zeros
to the original and incremental tensors is to maintain the
consistency of their dimensionality. (3) Compute the TT
format Z

′

tt of the updated tensor Z directly by exploiting
the addition of their TT cores of the original and incremental
zero-padding tensors. (4) Orthogonalize and compress the
TT cores of Z

′

tt, which can be periodically implemented
in actual situations. That is because the new TT cores
after executing the addition do not necessarily maintain
the orthogonality. Hereto, the ultimate TT format Ztt of
updated tensor Z is yielded.

rk-1 rk rN-1r1 r2

I1 I2

sk-1

Ik' IN

sk sN-1s1 s2

I1 I2 Ik IN

rk-1 rk rN-1r1 r2

I1 I2 Ik+Ik' IN

sk-1 sk sN-1s1 s2

I1 I2
Ik+Ik' IN

I1 I2
tk-1

Ik+Ik' IN
tk tN-1t1 t2 rk-1+sk-1 rk+sk rN-1+sN-1r1+s1 r2+s2

I1 I2 Ik+Ik' IN

Xtt Xtt'

Ytt Ytt'

1 2

1 2

34

1: Compute the TT format of a tensor

2: Compute the new TT format of a zero-padding tensor

3: Add two tensors in TT format

4: Orthogonalize and compress the TT cores of the updated tensor

I1 X

I2
Ik

IN IN-1

I1 Y
I2 Ik'

IN IN-1

Ztt'Ztt

Fig. 5. Main process of the incremental tensor train decomposition.

For a more detailed explanation, Fig. 6 illustrates a spe-
cific example of the incremental tensor train decomposition.
Given a 3rd-order tensor X ∈ R2×3×3, suppose that the
incremental tensor is Y ∈ R1×3×3, which will be appended
to X along the first order. To compute the TT format of the
updated tensor X + Y , we first compute the TT format of
the incremental tensor Y and represent it as Y tt, and the
TT format of the original tensor X can be directly achieved
from the historical results and depicted as Xtt. Secondly,
we append zeros to the original and incremental tensors
to maintain the consistency of their dimensionality, and
compute the TT format (X

′

tt and Y
′

tt) of the zero-padding
tensors on the basis of the existing TT cores (Xtt and Y tt).
Thirdly, we directly compute the sum of two zero-padding
tensors in TT format. Finally, we orthogonalize the TT cores
of the updated tensor to maintain their orthogonality and
compress them according to the prescribed accuracy.

4.2 TT Format of Zero-padding Tensor
Suppose that the TT format of a given tensor is known,
if we append enough zeros to the given tensor along a
specified order, how can we compute the new TT format of
the zero-padding tensor based on the known TT cores of the
given tensor? This section is to provide an effective solution
to compute the TT format for the zero-padding tensor.

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 6

X

I2=3

I1=2

I3=3

32
32

3 33
32

3

31
31

3 33
31

3

33

6

3

3

I1'=1

Y

0

X

Y

X

Y

0

33

33

3

I2=3

I1=2

I3=3
I2=3

I1=2

I3=3

I1'=1

I1'=1

I2=3
I3=3

I2=3

I1=2

I3=3

I1'=1

A: Compute the TT format of a tensor

B: Compute the new TT format of a zero-

 padding tensor

C: Add two tensors in TT format

D: Orthogonalize and compress the TT

 cores of the updated tensor

A

A

B

B

C D
Xtt

Ytt

Xtt'

Ytt'

Ztt'Ztt

Fig. 6. Example of the incremental tensor train decomposition for a 3rd-
order tensor along the first order.

Before providing the computation approach, two theorems
are illustrated and proved in detail, they are extended and
improved on the basis of the conclusion in [22].

Theorem 1. Given a matrix M1 ∈ Rm×n, and a matrix
M2 ∈ R(m+∆m)×n which is constructed by appending zeros

on the bottom rows of M1, i.e., M2 =

[
M1

0

]
. Supposed that

the SVDs of M1 and M2 are represented as M1 = U1S1V
T
1 ,

M2 = U2S2V
T
2 . If the same δ-truncations are applied in the

SVDs of M1 and M2, and their δ-ranks are r1 and r2, then

r2 = r1, Ur2
2 =

[
Ur1
1

0

]
, and V r2

2 = V r1
1 .

Proof. According to the properties of SVD , we can know that U1,
V1, U2, and V2 are orthogonal matrices, S1 and S2 are diagonal
matrices. Therefore,

MT
1 M1 = (V1S

T
1 U

T
1)(U1S1V

T
1) = V1S1

2V T
1 , (3)

MT
2 M2 = (V2S

T
2 U

T
2)(U2S2V

T
2) = V2S2

2V T
2 . (4)

Consider MT
2 M2 =

[
MT

1 0
] [M1

0

]
= MT

1 M1, by inte-

grating Eq. 3 and Eq. 4, we can obtain V1S1
2V T

1 = V2S2
2V T

2 .
It is noted that S2

1 and S2
2 are the eigenvalue matrices of the

two equal symmetric matrices MT
1 M1 and MT

2 M2, respectively.
According to the uniqueness of eigenvalues, it can be inferred that
S2
1 and S2

2 are equal, thus their corresponding singular values of
M1 and M2 are also equal. Accordingly, it can be easily concluded
that V1 and V2 are equivalent, i.e., V2 = V1. If the same δ-
truncation are applied in the SVDs of M1 and M2, then their
δ-ranks shall be equal, i.e., r2 = r1. Furthermore, we can infer
that V r2

2 = V r1
1 .

Besides, suppose that U2 =

[
U1

0

]
, according to the above

analysis, we can know that S1 and S2 are equal, V1 and V2

are equivalent. Therefore, M2 = U2S2V
T
2 =

[
U1

0

]
S2V

T
2 =[

U1S2V
T
2

0

]
=

[
U1S1V

T
1

0

]
=

[
M1

0

]
. It shows that

the assumption is correct. Therefore, we can further obtain that

Ur2
2 =

[
Ur1
1

0

]
.

Theorem 2. Given a matrix N1 = [v1, v2, · · · , vn] ∈ Rm×n,
and let N2 = [v1, 0, v2, · · · , 0, · · · , 0, · · · , vn] ∈ Rm×(n+∆n)

in which ∆n zero column vectors are inserted to N1. Suppose that
the SVDs of N1 and N2 are expressed as N1 = P1S1Q

T
1 , N2 =

P2S2Q
T
2 . If the same δ-truncations are applied in the SVDs of

N1 and N2, and their δ-ranks are r1 and r2, then r2 = r1,

P r2
2 = P r1

1 , and Qr2
2 =

[
Qr1

1

0

]
.

Proof. Clearly, by employing some elementary matrix transfor-
mations, N2 = [v1, 0, v2, · · · , 0, · · · , 0, · · · , vn] can be trans-
formed to N2 = [v1, v2, · · · , vn, 0, · · · , 0] = [N1, 0]. If we
transpose the matrix M2 in Theorem 1, then M2

T =
[
M1

T , 0
]
.

We can see that their forms of the two equations are identical.
Therefore, according to the conclusion in Theorem 1, it can be

easily infer that r2 = r1, P r2
2 = P r1

1 , Qr2
2 =

[
Qr1

1

0

]
.

Suppose that there is a given N th-order tensor
X ∈ RI1×I2×···×Ik×···×IN . If we append zeros to X along
the kth order, the zero-padding tensor can be generated and
represented as X

′
∈ RI1×I2×···×(Ik+I

′
k)×···×IN . X

′
contains

the given tensor (i.e., subtensor X
′
(:, :, · · · , (1 : Ik), · · · , :))

and the appended zero tensor (i.e., subtensor
X

′
(:, :, · · · , (Ik + 1 : Ik + I

′

k), · · · , :)), which is exhibited
in Fig. 6. Suppose that the given tensor has already been
decomposed to TT format and stored in advance, which is
described as follows:

X(i1, i2, · · · , ik, · · · , iN)

= X(1)(i1)X
(2)(i2) · · ·X(k)(ik) · · ·X(N)(iN),

(5)

where X(n)(in) ∈ Rrn−1×rn(n = 1, 2, · · · , N ; r0 = rN = 1).
To achieve the TT format of zero-padding tensor from

the existing TT format of the given tensor, we illustrate the
TT decomposition process via tensor network diagram. Fig.
7 graphically demonstrates the TT decomposition process
of an N th-order tensor, where N − 1 SVDs are executed
successively. For illustrating the decomposition process in
more depth, the implementation details of the second step
(i.e., step (2) in Fig. 7) are interpreted as follows. Firstly, we
unfold the tensor derived from the previous step (i.e., box
(T1) in Fig. 7) to a matrix (i.e., box (M) in Fig. 7) according
to mode-(1, · · · , n) unfolding operation. Then SVD (M =
USV T) is executed on the unfolding matrix, the left singular
matrix (i.e., box (U) in Fig. 7) is reshaped to the current core
tensor X(2), and the remaining section (i.e., box (SVT) in
Fig. 7) will be viewed as the input of next step (i.e., box (T2)
in Fig. 7) and decomposed continuously.

Therefore, while computing the first k − 1 TT cores of
the zero-padding tensor X

′
, the kth order is always located

in the column of each unfolding matrix. After unfolding
tensors X and X

′
along the first order, we can find that

the unfolding matrix M
′

1 generated from tensor X
′

can
be yielded by inserting some zero column vectors in the
unfolding matrix M1 generated from tensor X , namely,
M

′

1 =
[
M1 0

]
, which is illustrated in Fig. 8(a). If we de-

compose the two matrices through δ-SVD and express them
as M

′

1 ≈ U
r′1
1 S

r′1
1 V

r′1T
1 and M1 ≈ Ur1

1 Sr1
1 V r1T

1 . According to
Theorem 2, it can be inferred that their left singular matrices
are equivalent, i.e., Ur1

′

1 = Ur1
1 , and their right singular

matrices shall satisfy: V r1
′

1 =

[
V r1
1

0

]
. In accordance with

the foregoing analysis in Fig. 7, the left singular matrix

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 7

I2 I3

IN IN-1
I1

r1

I3

IN IN-1
I1

r2r1

I2

I1

I2 I3

IN IN-1

I3I1

r2r1

I2

rN-1rN-2

IN-1 IN

r3

X(1) X(1) X(2)

X(1) X(2) X(3) X(N-1) X(N)

r1

I2
I3

IN

r1I2 I3 IN r2r1I2
I3

IN

I3 IN

(1) (2)

(N-1)(3)

(T) (T1) (T2)

SVD

(2)
(M) (SVT)

(U)

Fig. 7. Illustration of tensor train decomposition for an Nth-order tensor.

will be transformed as the first core tensor, it means that
the first TT cores of tensors X and X

′
are equal. And

the remaining section Sr1
′

1 V r1
′T

1 =
[
Sr1
1 V r1T

1 0
]

will be
transformed to the input matrix of the second step, and its
form is same with the first unfolding matrix M

′

1. Similarly,
the second input matrix will be decomposed in the same
manner until the (k − 1)th core tensor is yielded. Therefore,
we can conclude that the first k − 1 TT cores of tensor X

′

and X are identical.

rk-1
X

Ik

Ik+1

IN

IN-1

rk-1
X'

Ik+Ik'

Ik+1

IN

IN-1

M

rk-1Ik

Ik+1 IN

M

Ik+1 IN

0

rk-1

Ik Ik+1

Mk

IN

rk-1Ik Ik+1 IN

rk-1

Ik+Ik' Ik+1

Mk'

IN

rk-1(Ik+Ik') Ik+1 IN
rk-1Ik'

I1

X
I2

Ik

IN

IN-1

I1

X'I2

Ik+Ik'

IN

IN-1

I2

M1

IN

I1 I2 Ik IN

I2

M1'

IN

I1

I2 Ik IN+

I2 Ik' IN

MI1

I2 Ik IN

M

I2 Ik IN

I1 0

I2 Ik' IN
(a)

(b)

Fig. 8. Illustration of tensor unfolding for X and X
′
.

While computing the kth core of the zero-padding tensor
X

′
, the kth order is just located in the row of the unfolding

matrix M
′

k, and the bottom rows of M
′

k are all zeros, i.e.,

M
′

k =

[
Mk

0

]
, which is illustrated in Fig. 8(b). Then

we execute δ-SVD for M
′

k and Mk and express them as
M

′

k ≈ Urk
′

k Srk
′

k V rk
′T

k and Mk ≈ Urk
k Srk

k V rkT
k . According

to Theorem 1, it can be seen that Urk
′

k =

[
Urk
k
0

]
and

will be transformed as the kth TT core. Consequently, we
can achieve the kth TT core of the zero-padding tensor
X

′
by appending zeros to the existing kth TT core of the

given tensor X according to corresponding transformation
rules. Besides, their right singular matrices V

′

k and Vk are
equivalent in accordance with the conclusion in Theorem 1.
It illustrates that the following unfolding matrices maintain

unchanged and the corresponding TT cores from k+1 to N
accordingly are the same.

Therefore, all TT cores of the zero-padding tensor X
′

can
be achieved from the TT cores of the given tensor X without
repeatedly recomputing the TT decomposition. According
to aforementioned analysis, we can find that all TT cores
remain unchanged except for the kth core. If the TT format
of the zero-padding tensor X

′
is represented as follows:

X
′
(i1, i2, · · · , in · · · , iN)

= X
′(1)(i1)X

′(2)(i2) · · ·X
′(n)(in) · · ·X

′(N)(iN),
(6)

where X
′(n)(in) ∈ Rr

′
n−1×r

′
n (n = 1, 2, · · · , N). Then

the rules of yielding all new TT cores X
′(n)(in) (n =

1, 2, · · · , N) of the zero-padding tensor X
′

are as follows:

X
′(n)(in) =

{
0, n = k and in > Ik;

X(n)(in), otherwise.
(7)

Meanwhile, it can be inferred that the TT ranks remain
unchanged after appending zeros to the matrix according to
Theorems 1 and 2.

r
′

n = rn, n = 1, 2, · · · , N. (8)

4.3 Addition of Two Tensors in TT Format
According to the approach provided in section 4.2, we can
compute the TT format of the original and incremental
zero-padding tensors. Then our current objective is how
to compute the TT format of the updated tensor based
on the TT formats of the original and incremental zero-
padding tensors. Therefore, our solution is to directly merge
their corresponding TT cores by exploiting the addition
characteristic of TT format.

According to Eq. 7, the TT format of the original zero-
padding tensor and incremental zero-padding tensor can be
yielded and represented as follows:

X
′
(i1, i2, · · · , iN) = X

′(1)(i1)X
′(2)(i2) · · ·X

′(N)(iN), (9)

where X
′(n)(in) ∈ Rrn−1×rn (n = 1, · · · , N ; r0 = rN = 1).

Y
′
(i1, i2, · · · , iN) = Y

′(1)(i1)Y
′(2)(i2) · · ·Y

′(N)(iN), (10)

where Y
′(n)(in) ∈ Rsn−1×sn (n = 1, · · · , N ; s0 = sN = 1).

Suppose that the TT format of the updated tensor is
represented as:

Z
′
(i1, i2, · · · , iN) = Z

′(1)(i1)Z
′(2)(i2) · · ·Z

′(N)(iN), (11)

where Z
′(n)(in) ∈ Rtn−1×tn (n = 1, · · · , N). Then the

computation of the TT format of the updated tensor can be
converted to the merge of original TT cores and incremental
TT cores. According to the addition operation provided in
[11], the generation rule of updated TT cores is defined as:

Z
′(n)(in) =

(
X

′(1)(i1) Y
′(1)(i1)

)
, n = 1;(

X
′(n)(in) 0

0 Y
′(n)(in)

)
, n = 2, · · · , N − 1;(

X
′(N)(iN)

Y
′(N)(iN)

)
, n = N.

(12)

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 8

Actually, by substituting Eq. 12 into Eq. 11 and exploiting
continuous matrix multiplication, we can obtain:

Z
′
(i1, i2, · · · , iN) = Z

′(1)(i1)Z
′(2)(i2) · · ·Z

′(N)(iN)

=
(
X

′(1)(i1) Y
′(1)(i1)

)(X
′(2)(i2) 0

0 Y
′(2)(i2)

)
· · ·

· · ·
(

X
′(N−1)(iN−1) 0

0 Y
′(N−1)(iN−1)

)(
X

′(N)(iN)

Y
′(N)(iN)

)
= X

′(1)(i1)X
′(2)(i2) · · ·X

′(N−1)(iN−1)X
′(N)(iN)

+Y
′(1)(i1)Y

′(2)(i2) · · ·Y
′(N−1)(iN−1)Y

′(N)(iN)

= X
′
(i1, i2, · · · , iN) + Y

′
(i1, i2, · · · , iN).

(13)
From Eq. 13, it can be seen that any entry of tensor Z

′
is

the sum of the corresponding entries of tensor X
′

and Y
′
.

Besides, it can be inferred from Eq. 12 that the TT ranks of
the updated tensor Z

′
are the sum of the corresponding TT

ranks of the original and incremental zero-padding tensors
X

′
and Y

′
, which is illustrated as follows:

tn =

{
1, n = 1 or N ;
rn + sn, n = 2, 3, · · · , N − 1.

(14)

4.4 Orthogonalization and Compression of Updated TT
Cores
The TT format of the updated tensor can be efficiently com-
puted through the aforementioned approach. Nonetheless,
some new TT cores after executing the addition of two
tensors in Eq. 12 do not necessarily satisfy the orthogonality.
Meanwhile, their TT ranks may also be increased. Therefore,
to maintain the orthogonalization of updated TT cores and
avoid the growth of TT ranks while satisfying the prescribed
accuracy, the orthogonalization and compression of updated
TT cores can be selectively implemented. In practice, to
save the execution time, it is not necessary to execute the
orthogonalization and compression operation after every
updating. Generally, the process should be executed in the
following situations. (1) If the update times reach up to a
setting threshold, it can be periodically executed offline. (2)
If the storage space of cores reaches up to a warning value.
(3) If the requirement of orthogonalization is required before
some special operations.

Algorithm 2 gives the pseudocode of orthogonalizing
and compressing the updated TT cores [11]. Lines 4 − 12
are to orthogonalize TT cores whose size are rn−1 × Inrn
through QR decomposition from right to left, where Q is
orthogonal and will be transformed to the new orthogonal
TT core and R is triangle matrix and will be passed to the
left TT core. Lines 13 − 22 are responsible for compressing
TT cores whose size is rn−1In× rn through SVD operations
from left to right while maintaining the prescribed accuracy.

Therefore, according to the solution in section 4.1, the
ITTD algorithm can be realized according to the proposed
approach, the pseudocode is illustrated in algorithm 3.

4.5 Complexity Analysis
4.5.1 Time Complexity Analysis
The execution time of the proposed ITTD approach consists
of TT decomposition of incremental tensor, computation of
new TT format for zero-padding tensors, addition of two

Algorithm 2: Algorithm for the Orthogonalization and
Compression of Updated TT Cores

1 Input: TT cores Z(1), Z(2), · · · , Z(N) of an N th-order
updated tensor Z and a prescribed accuracy ε.

2 Output: Orthogonal TT cores Z
′(1), Z

′(2), · · · , Z
′(N)

of the approximate tensor Z
′
. The computed

approximation satisfies
∥∥∥Z − Z

′
∥∥∥
F
≤ ε∥Z∥F .

3 begin
4 /* Compute truncation parameters */
5 δ ← ε√

N−1
;

6 /* Right-to-left orthogonalization */
7 for n← N to 2 do
8 /* Reshape the current core */

9 Mn ← Reshape (Z(n), [rn−1, In ∗ rn]);
10 /* Execute QR operation */
11 [Q, R]← QR (Mn);
12 Z(n) ← Reshape (Q,[r

′

n−1, In, rn]);
13 /* Change next core tensor */

14 Z(n−1) ← Z(n−1) ×3 R;

15 if ε ̸= 0 then
16 /* Left-to-right compression */
17 for n← 1 to N − 1 do
18 /* Reshape the current core */

19 Mn ← Reshape (Z(n), [rn−1 ∗ In, rn]);
20 /* Execute SVD operation */
21 [U , S,V]← SVD (M , δ);
22 Z

′(n) ← Reshape (U , [rn−1, In, r
′

n]);
23 /* Change next core tensor */

24 Z(n+1) ← Z(n+1) ×1 SV
T ;

25 return cores Z
′(1), Z

′(2), · · · , Z
′(N).

tensors in TT format, and orthogonalization and compres-
sion of TT cores. Let Titt, Tttzero, Tttadd, and Tttorth denote
the execution time consumed by each section. Therefore, the
total time consumption TITTD can be expressed as:

TITTD = Titt + Tttzero + Tttadd + Tttorth. (15)

Given an N th-order tensor X ∈ RI1×I2×···×IN , for sim-
plicity, we assume that I = max{In} (n = 1, · · · , N) and
r = {r0, r1, · · · , rN}, where rn is the TT rank of the tensor.
If the incremental dimensionality along the specific order is
I ′ (in general, I ′ < I), then the maximal dimensionality of
the original, incremental, and updated tensors are I , I , and
I + I ′, respectively.

To compute the TT decomposition of an incremental
tensor, N − 1 successive SVDs need to be executed and
cost O(IN+1) ∼ O(I N

2 +2rN/2−1
2) operations. The analysis

process can be illustrated as follows:
Consider the first N/2 SVDs, we can calculate the con-

sumed time according to the size of unfolding matrices.

n = 1, I ∗ IN−1,O(IN−1 ∗ I2) = O(IN+1);
n = 2, Ir1 ∗ IN−2,O(IN−2 ∗ (Ir1)2) = O(INr1

2);
n = 3, Ir2 ∗ IN−3,O(IN−3 ∗ (Ir2)2) = O(IN−1r2

2);
· · · · · ·

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 9

Algorithm 3: The Process of ITTD Algorithm

1 Input: The TT format Xtt of the original N th-order
tensor X ∈ RI1×I2×···×Ik×···×IN , an incremental
tensor Y ∈ RI1×I2×···×I

′
k×···×IN and a prescribed

accuracy ε. Output: TT cores Z(1), Z(2), · · · , Z(N) of
the updated tensor Z ∈ RI1×I2×···×(Ik+I

′
k)×···×IN in

TT format.
2 begin
3 /* Compute the TT format of tensor Y

according to algorithm 1 */

4 Y tt (Y (1), Y (2), · · · , Y (N))← TT(Y , ε);
5 /* Compute TT format of zero-padding

tensors according to Eq. 7 */

6 X
′

tt (X
′(1), X

′(2), · · · , X
′(N))← TT zeros(Xtt, k);

7 Y
′

tt (Y
′(1), Y

′(2), · · · , Y
′(N))← TT zeros(Y tt, k);

8 /* Execute addition of two tensors in
TT format according to Eq. 12 */

9 Z
′

tt (Z
′(1), Z

′(2), · · · , Z
′(N))← Add TT(X

′

tt, Y
′

tt);
10 if the requirement of orthogonalization and

compression is satisfied then
11 /* Orthogonalize and compress the

TT cores of updated tensor
acoording to algorithm 2 */

12 Z(1), Z(2), · · · , Z(N) ← Orth TT(Z
′

tt, ε);

13 return TT cores Z(1), Z(2), · · · , Z(N).

n = N
2 , IrN/2−1 ∗ I

N
2 ,O(I N

2 ∗ (IrN/2−1)
2)

= O(I N
2 +2rN/2−1

2);
· · · · · ·

It can be inferred that the total decomposition time is less
than twice the sum of the time consumed by the first
N/2 SVDs. Therefore, Titt = O(2 ∗ (IN+1 + INr1

2 +
IN−1r2

2+· · ·+I
N
2 +2rN/2−1

2)). If r1 ≤
√
I, r2 ≤

√
Ir1, r3 ≤√

Ir4, · · · , rN/2−1 ≤
√
IrN/2−2, then Titt = O(IN+1);

and if r1 ≥
√
I, r2 ≥

√
Ir1, r3 ≥

√
Ir4, · · · , rN/2−1 ≥√

IrN/2−2, then Titt = O(I
N
2 +2rN/2−1

2).
If all unfolding matrices are full rank and no truncation

is applied to all SVDs, then the worst time complexity of TT
decomposition will be generated and can be represented as
Titt = O(2∗ (IN+1+IN+2+IN+3+ · · ·+I

3N
2)) = O(I 3N

2).
Suppose that r = max{rn}(n = 0, 1, · · · , N), if r ≥ I

N−2
4 ,

the time complexity is Titt = O(I
N
2 +2r2), and if r increases

to I
N
2 −1, it will reach up to the worst time complexity

O(I 3N
2).

According to Eq. 7, the computation of the new TT
format for the zero-padding tensor need only to change the
kth TT core, which just costs Tttzero = O(Ir2) operations.
According to Eq. 12, the addition of two tensors in TT format
costs Tttadd = O(NIr2) operations. In the process of orthog-
onalization and compression of TT cores, the right-to-left
orthogonalization requires successive N−1 QRs for matrices
of size 2r-by-2rI and costs O(N ∗2rI ∗ (2r)3) = O(16NIr4)
operations, the left-to-right compression requires N − 1
SVDs for matrices of size 2rI-by-2r and costs O(16NIr4)
operations. Hence, the total time of orthogonalization and

compression of TT cores is Tttorth = O(32NIr4). Therefore,
according to Eq. 15, the total time consumption is:

TITTD =

{
O(IN−1I

′2 +NIr4), r ≤ I
N−2

4

O(I
N
2 +2r2 +NIr4), r > I

N−2
4 .

(16)

Besides, the time complexity of nonincremental TT de-
composition (NTTD) is:

TNTTD =

 O((I + I
′
)
N+1

), r
′ ≤ (I + I

′
)

N−2
4

O((I + I
′
)

N
2 +2

r
′2
), r

′
> (I + I

′
)

N−2
4 .

(17)

To compare other incremental HOSVD (IHOSVD) in [25],
its time complexity is illustrated as follows:

TIHOSV D=O(N(IN−1r2 + INI
′
)). (18)

From the time complexity analysis in Eq. 16, we can find
that TITTD is mainly consumed by the TT decomposition
of incremental tensor and the orthogonalization and com-
pression of TT cores. If N and I are larger or r is smaller,
then the orthogonalization and compression procedure will
account for less proportion of execution time. By comparing
Eqs. 16 and 17, we can find that r ≤ r

′
. Therefore, after

analyzing Eqs. 16, 17 and 18, it can be inferred that ITTD
takes greater advantage in execution time compared with
NTTD and IHOSVD when the order and dimensionality of
tensor are larger and the compression rank is smaller, which
is conducive to the cyber-physical-social big data.

4.5.2 Storage Cost Analysis
The storage cost refers as to the amount of storage space
of the TT cores decomposed by TNs. Given an N th-order
tensor X ∈ RI1×I2×···×IN , suppose that I = max{In}(n =
1, · · · , N), and r = max{rn}(n = 0, 1, · · · , N). According
to the tensor network diagram in Fig. 2, it can be seen
that the storage cost of a TT format is O(NIr2). But the
storage cost for the original tensor is O(IN). It can be
seen that the number of parameters of TT decomposition
is asymptotically equal to that of CP decomposition [11].
Notably, if the tensor has low-rank structure or truncations
are applied, the TT-ranks shall keep small, and the stor-
age and computational complexities should be substantially
reduced, which will play a significant role in storing and
handling the cyber-physical-social big data.

Besides, QTT is adopted in some scenarios, especial-
ly for tensors with very large dimensionality, i.e., very
large-scale vectors or matrices. Given an N th-order tensor
X ∈ RI1×I2×···×IN with In = qJn , if all orders are simulta-
neously quantized, then a quantized tensor Y ∈ Rq×q×···×q

can be yielded, its order number is J1 + J2 + · · · + JN and
dimensionality is q. Suppose that the TT decomposition is
executed on the quantized tensor Y , then the storage cost of
QTT format is O(Nlogq(I)qr

2), where I = max{In}(n =
1, · · · , N), and r = max{rn}(n = 0, 1, · · · , J1 + J2 +
· · · + JN). In practical computation, r is typically small, q
commonly is equal to 2, 3 or 4, thus the storage cost of
QTT can be further reduced to a logarithmic (sub-linear)
storage requirement O(Nlogq(I)) from the original expo-
nential storage requirement O(IN), which is referred as to
so-called super-compression [17]. The super-compression is
quiet important for reducing the storage and computation
complexity for huge cyber-physical-social big data.

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 10

5 EXPERIMENTS

To verify the performance of the proposed ITTD approach,
a series of experiments are conducted on cloud platform
in accordance with various categories of datasets. Further-
more, we compare the ITTD with NTTD from multiple
perspectives, including execution time, approximation error,
and storage space.

5.1 Experimental Design

The experiments are implemented through Java Toolkit
AKKA and Python Package Numpy. All experiments are
executed on a cloud platform which configures an Intel’s
16-core Xeon E5-2630 processor with 2.4GHZ and a 125G
memory. The experiments are conducted from two scenar-
ios, one is implemented on the random data and the other is
on the real-world CPSS data. The random data are generated
according to different parameters, e.g., order, scale, and
density. Therein, the scale refers to the tensor size, the
density is the ratio of the number of nonzero elements to the
number of total elements of the tensor, and the prescribed
accuracy is the setting value during TT decomposition. The
real-world CPSS data are derived from the public traffic
system in Guangzhou city of China.

To compare the performance of ITTD, NTTD is selected
as the baseline. In reality, the CPSS data decomposed by
TT decomposition have been already stored in clouds or
networks in TT format. Therefore, when new streaming data
have generated, the NTTD should execute the following
steps to obtain the TT format of the updated tensor. Firstly,
the TT format of the original tensor should be reconstructed.
Secondly, we should add the incremental tensor to the
original tensor and generate the updated tensor. Finally, we
decompose the updated tensor according to TT decomposi-
tion and obtain the ultimate TT format.

5.2 Simulations and Evaluations

To verify the performance of the proposed ITTD approach
and more fully reflect the influence of various kinds of
data, we conduct a series of experiments by generating
some random data according to different scales, densities,
and prescribed accuracies. In these experiments, the tensor
orders are set to 7th-order, 8th-order, and 9th-order. Their
original tensor sizes are 10∗10∗10∗10∗10∗10∗2 (denoted
as 106 ∗ 2), 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 2 (denoted as
107 ∗ 2), and 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 ∗ 2 (denoted
as 108 ∗ 2), respectively. And every incremental tensor sizes
are 106 ∗ 1, 107 ∗ 1, and 108 ∗ 1, which shall be appended
to the original tensor along the last order, until the updated
tensors increase to 106 ∗ 10, 107 ∗ 10, and 108 ∗ 10 after 8
increments. Three densities are set to 1, 1e − 4, and 1e − 5,
and three prescribed accuracies are set to 0, 1e − 2, and
1e−1. Therefore, 9 random datasets are generated according
to different orders (i.e., order = 7, 8, 9) and densities (i.e.,
d = 1, 1e − 4, 1e − 5). Based on these datasets, we conduct
27 groups of experiments according to different prescribed
accuracies (i.e., eps = 0, 1e−2, 1e−1). Afterwards, the com-
parisons between ITTD and NTTD under diverse situations
are illustrated from the execution time, approximation error,
and storage space perspectives.

5.2.1 Comparison of Execution Time
The comparisons of execution time between ITTD and
NTTD under different cases are depicted in Figs. 9∼12,
where the X-axis and Y-axis represent the tensor size and
execution time, respectively. Fig. 9 illustrates the influence
of different data scales to the execution time. It can be seen
from Figs. 9(a)(b)(c) that ITTD is inferior to NTTD in execu-
tion time when the original tensor size is 106 ∗ 2. However,
when the original tensor size increases to 107 ∗ 2 or 108 ∗ 2,
the performance of ITTD in execution time outperforms
that of NTTD. And the noticeable trend is that the larger
the scale is, the greater superiority the ITTD achieves. The
experimental results are exactly consistent with the analysis
in Eq. 16. Note that only partial experimental results are
displayed in Fig. 9 because of the space limitations, and the
remainder also follows the above conclusion.

2 3 4 5 6 7 8 9 10
0

10

20

30

40
(a) order=7,d=1,eps=0

tensor size (10
6
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

10

20

30

40
(b) order=7,d=1e-4,eps=1e-2

tensor size (10
6
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

10

20

30

40
(c) order=7,d=1e-5,eps=1e-1

tensor size (10
6
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(d) order=8,d=1,eps=0

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(e) order=8,d=1e-4,eps=1e-2

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(f) order=8,d=1e-5,eps=1e-1

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(g) order=9,d=1,eps=0

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(h) order=9,d=1e-4,eps=1e-2

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD

NTTD

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(i) order=9,d=1e-5,eps=1e-1

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD

NTTD

Fig. 9. The comparisons of execution time between ITTD and NTTD
under different scales.

Fig. 10 demonstrates the influence of different prescribed
accuracies to the execution time of ITTD and NTTD. In the
18 groups of experimental results, the general trend is that
the larger the prescribed accuracy is, the less execution time
the ITTD and NTTD cost. That is because that more noisy
information are removed when the prescribed accuracy is
larger. It can be seen from Figs. 9 and 10 that the execution
time consumed by NTTD continuously grows up at a rapid
rate with the increase of tensor size for all cases. However,
if the prescribed accuracy is zero (eps = 0), i.e., there are no
truncations in SVDs, the execution time spent by ITTD will
also rise with the increase of tensor size, but the rise rate is
much slower than NTTD. And if the prescribed accuracy is
given (eps = 1e−2 or 1e−1), i.e., the truncations are applied
in SVDs, then the execution time of ITTD will remain nearly
stable with the increase of tensor size. That is because that
only the incremental tensor is decomposed and the orthog-
onalization and compression of low-order updated TT cores
are executed in ITTD, and these operations shall take the
same amount of time when the incremental tensors are the
same size. The improved performance in execution time is
very conductive to handling the cyber-physical-social big
data.

Fig. 11 demonstrates the influence of different densities
to the execution time of ITTD and NTTD. It shows a faint
trend that the smaller the density is, the less time the ITTD

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 11

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(e) order=8,d=1

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD,eps=0

ITTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=0

NTTD,eps=1e-2

NTTD,eps=1e-1

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(e) order=8,d=1e-4

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD,eps=0

ITTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=0

NTTD,eps=1e-2

NTTD,eps=1e-1

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(e) order=8,d=1e-5

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD,eps=0

ITTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=0

NTTD,eps=1e-2

NTTD,eps=1e-1

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(e) order=9,d=1

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD,eps=0

ITTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=0

NTTD,eps=1e-2

NTTD,eps=1e-1

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(e) order=9,d=1e-4

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD,eps=0

ITTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=0

NTTD,eps=1e-2

NTTD,eps=1e-1

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(e) order=9,d=1e-5

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD,eps=0

ITTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=0

NTTD,eps=1e-2

NTTD,eps=1e-1

Fig. 10. The comparisons of execution time between ITTD and NTTD
under different prescribed accuracies.

and NTTD spend, but the influence of different densities
is not distinct. Actually, we can infer from Eq. 16 that
the execution time of ITTD is related to tensor order N ,
dimensionality I , and TT rank r. Therefore, if the tensor size
is given, the execution time will be determined by the TT
rank. In general, the smaller the tensor’s density, the smaller
the TT rank of random tensor if the prescribed accuracy is
given. But note that the TT rank of a tensor is determined
by the tensor’s own property when there is no truncation in
SVDs (i.e., eps = 0), rather than the tensor’s density.

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(a) order=8,eps=0

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD,d=1

ITTD,d=1e-4

ITTD,d=1e-5

NTTD,d=1

NTTD,d=1e-4

NTTD,d=1e-5

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(b) order=8,eps=1e-2

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD,d=1

ITTD,d=1e-4

ITTD,d=1e-5

NTTD,d=1

NTTD,d=1e-4

NTTD,d=1e-5

2 3 4 5 6 7 8 9 10
0

100

200

300

400
(c) order=8,eps=1e-1

tensor size (10
7
*)

ti
m

e
 (

s
)

ITTD,d=1

ITTD,d=1e-4

ITTD,d=1e-5

NTTD,d=1

NTTD,d=1e-4

NTTD,d=1e-5

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(d) order=9,eps=0

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD,d=1

ITTD,d=1e-4

ITTD,d=1e-5

NTTD,d=1

NTTD,d=1e-4

NTTD,d=1e-5

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(e) order=9,eps=1e-2

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD,d=1

ITTD,d=1e-4

ITTD,d=1e-5

NTTD,d=1

NTTD,d=1e-4

NTTD,d=1e-5

2 3 4 5 6 7 8 9 10
0

2000

4000

6000
(f) order=9,eps=1e-1

tensor size (10
8
*)

ti
m

e
 (

s
)

ITTD,d=1

ITTD,d=1e-4

ITTD,d=1e-5

NTTD,d=1

NTTD,d=1e-4

NTTD,d=1e-5

Fig. 11. The comparisons of execution time between ITTD and NTTD
under different densities.

Fig. 12 depicts the influence of different orthogonal-
ization and compression intervals to the execution time
of ITTD. According to the explanation in section 4.4, the
orthogonalization and compression procedure can be selec-
tively executed in practical applications. In these experi-
ments, four types of intervals (i.e., INVL=1, 2, 4, 8) are set,
which means that the orthogonalization and compression
procedure will be executed after every one, two, four, and
eight incremental updates, respectively. Figs. 11(a)(b) and
Figs. 11(c)(d) illustrate the independent and accumulated
execution time of ITTD after every incremental update. It
is obvious that ITTD will cost less execution time when
the orthogonalization and compression procedure need not
be executed. However, if the interval becomes larger, the
execution time consumed by the last orthogonalization and
compression will be very large, which may lead to larger ac-
cumulated execution time. It can be seen from Figs. 11(c)(d)
that ITTD under the condition of INVL=1 costs the largest

accumulated execution time, followed by INVL=2, 4, 8 (or
INVL=2, 8, 4). Therefore, we can select an appropriate in-
terval to execute the orthogonalization and compression
procedure according to different practical situations.

2 3 4 5 6 7 8 9 10
0

100

200

300
(a) order=8,d=1e-4,eps=1e-2

tensor size (10
7
*)

ti
m

e
 (

s
)

INVL=1

INVL=2

INVL=4

INVL=8

NTTD

2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

(b) order=9,d=1e-4,eps=1e-2

tensor size (10
8
*)

ti
m

e
 (

s
)

INVL=1

INVL=2

INVL=4

INVL=8

NTTD

2 3 4 5 6 7 8 9 10
0

500

1000

1500
(c) order=8,d=1e-4,eps=1e-2

tensor size (10
7
*)

a
c
c
u
m

u
la

te
d

 t
im

e
 (

s
)

INVL=1

INVL=2

INVL=4

INVL=8

NTTD

2 3 4 5 6 7 8 9 10
0

10000

20000
(d) order=9,d=1e-4,eps=1e-2

tensor size (10
8
*)

a
c
c
u
m

u
la

te
d

 t
im

e
 (

s
)

INVL=1

INVL=2

INVL=4

INVL=8

NTTD

Fig. 12. The comparisons of execution time between ITTD and NTTD
under different orthogonalization and compression intervals.

5.2.2 Comparison of Approximation Error
Fig. 13 illustrates the comparisons of the practical approx-
imation error between ITTD and NTTD according to d-
ifferent prescribed accuracies. The approximation error is

defined as AE =
∥X−X̂∥

F

∥X∥F
[25], where X is the original

tensor and X̂ is the reconstructed tensor from the TT format.
We select 12 groups of experiments based on two scales
(order = 8, 9), two prescribed accuracies (e = 1e−2, 1e−1),
and three densities (d = 1, 1e − 4, 1e − 5). It shows that
the practical approximation errors of ITTD and NTTD are
nearly equal and ITTD is slightly larger than NTTD. That
is because ITTD executes two approximative operations in
the TT decomposition for the incremental tensor and the
compression for the ultimate TT cores, and NTTD executes
the approximative operation only in the TT decomposition
for the updated tensor. However, all approximation errors
are less than the prescribed accuracies. When the prescribed
accuracy is 1e − 2, their practical approximation errors in
Figs. 13(b)(c)(f) and Figs. 13(a)(d)(e) is 1e − 14 and 1e − 3.
When the prescribed accuracy is 0.1, their practical approx-
imation errors are less than 0.1 and the average difference
between ITTD and NTTD is only 0.005.

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
(a) order=8,d=1

tensor size (10
7
*)

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
(b) order=8,d=1e-4

tensor size (10
7
*)

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
(c) order=8,d=1e-5

tensor size (10
7
*)

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
(d) order=9,d=1

tensor size (10
8
*)

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
(e) order=9,d=1e-4

tensor size (10
8
*)

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1
(f) order=9,d=1e-5

tensor size (10
8
*)

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

Fig. 13. The comparisons of approximation error between ITTD and
NTTD under different situations.

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 12

5.2.3 Comparison of Storage Space
The comparisons of storage space between ITTD and NTTD
under different situations are depicted in Fig. 14. It illus-
trates that ITTD and NTTD can save large amount of storage
space compared with the original tensor, except for the first
incremental update. The phenomenon are consistent with
the storage analysis in section 4.5.2, namely, the advantage
of TT decomposition in storage will become more prominent
with the increment of the tensor order (N) and dimension-
ality (I). And if the prescribed accuracy is specified, we
can find that the smaller the density is, the larger storage
space the ITTD and NTTD save. That is because that the
TT ranks become smaller when the data are sparser if the
prescribed accuracy is specified. Besides, Fig. 14 shows
that the differences of storage space between ITTD and
NTTD are very subtle and nearly equal. Note that ITTD and
NTTD take up less storage space with the increase of tensor
size. That is because that ITTD once again compresses the
original tensor during the compression for the updated TT
cores, NTTD also compresses the reconstructed tensor again
during the TT decomposition for the updated tensor.

2 3 4 5 6 7 8 9 10
0

5

10
x 10

7 (a) order=8,d=1

tensor size (10
7
*)

s
to

ra
g

e

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

original

2 3 4 5 6 7 8 9 10
0

5

10
x 10

7(b) order=8,d=1e-4

tensor size (10
7
*)

s
to

ra
g

e

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

original

2 3 4 5 6 7 8 9 10
0

5

10
x 10

7 (c) order=8,d=1e-5

tensor size (10
7
*)

s
to

ra
g

e

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

original

2 3 4 5 6 7 8 9 10
0

5

10
x 10

8 (d) order=9,d=1

tensor size (10
8
*)

s
to

ra
g

e

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

original

2 3 4 5 6 7 8 9 10
0

5

10
x 10

8(e) order=9,d=1e-4

tensor size (10
8
*)

s
to

ra
g

e

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

original

2 3 4 5 6 7 8 9 10
0

5

10
x 10

8 (f) order=9,d=1e-5

tensor size (10
8
*)

s
to

ra
g

e

ITTD,eps=1e-2

NTTD,eps=1e-2

ITTD,eps=1e-1

NTTD,eps=1e-1

original

Fig. 14. The comparisons of storage space between ITTD and NTTD
under different situations.

From the abundant experimental results, it is obvious
that ITTD is significantly superior to NTTD in execution
time on the premise of guaranteeing the nearly identi-
cal approximation error and storage space. The advantage
is beneficial to improve the analysis efficiency for cyber-
physical-social big data.

5.3 Case Study on CPSS Data

To further verify the performance of the proposed frame-
work and ITTD approach on CPSS data, another group
of experiments are conducted. The real-world CPSS data
derive from the public traffic system in Guangzhou city of
China. The dataset consists of 8 million bus card records
generated by 2 million users and 4 bus lines from Aug.
1st, 2014 to Dec. 31st, 20141. Firstly, we removed some
incomplete bus card records. Then we integrate the remain-
ing records (including bus lines, card types, traffics, time,
etc.) and other data (including weather, temperature, etc.)
to the fusion data. Afterwards, the characteristics of these
data is analyzed, such as the value range, mean, variance,

1. https://tianchi.aliyun.com/competition/information.htm?spm=
5176.100067.5678.2.IsTw3H&raceId=231514

etc. Finally, the original CPSS tensor is constructed after
preprocessing these CPSS data.

TABLE 1
The description of each order of bus traffic tensor

Order Dimensionality Description
Line 4 bus No. 6,10,11,15

Cardtype 3 student card, old card,
ordinary card

Traffic 60 traffic is in 0 ∼ 1200,
interval is 20

Weather 6 sunny, cloudy, light rain,
moderate rain, heavy rain, snow

Temp 10 temperature is in −10◦C ∼
40◦C, interval is 5◦C

Hour 24 1, 2, · · · , 24
Month 12 Jan., Feb., · · · , Dec.
Day 7 Mon., Tues., · · · , Sun.

Therefore, we construct an 8th-order tensor X ∈
R4×3×60×6×10×24×12×7 according to the fusion data. The
corresponding information of each order of tensor X is
explained in Table 1, and the entry of tensor X repre-
sents the swiped count. In the experiment, the stream-
ing data tensor will be appended to the original tensor
along the day order. To compare their performance of
ITTD and NTTD, the data during the first week in Au-
gust are selected as the test data. The initial tensor size
is 4× 3× 60× 6× 10× 24× 12× 1, and every incremental
tensor size is 4× 3× 60× 6× 10× 24× 12× 1, it will be
gradually appended to the original tensor until the ultimate
tensor size reaches 4× 3× 60× 6× 10× 24× 12× 7 after
6 increments. Afterwards, we conduct a series of experi-
ments according to four different prescribed accuracies (i.e.,
eps = 0, 1e − 5, 1e − 2, 1e − 1) and compare the execution
time, approximation error, and storage space of ITTD and
NTTD. The comparisons are illustrated in Fig. 15, where
the X-axis represents the day order of tensor and Y-axis
represents the execution time, approximation error, and
storage space, respectively.

It can be seen from Figs. 15(a)∼(d) that ITTD outper-
forms NTTD in the execution time and the superiority
becomes more prominent with the increase of tensor size. If
the truncation is applied (e.g., Figs. 15(b)∼(d)), the execution
time of ITTD maintains a linear growth and even remains
nearly constant with the increase of tensor size, however,
NTTD keeps an exponential growth. Figs. 15(e)∼(h) show
the comparisons of approximation errors between ITTD
and NTTD, we can see that the average approximation
errors are much less than the prescribed accuracies and
their differences are nearly negligible. For example, their
average difference of approximation errors is 1e− 14 when
the prescribed accuracy is 1e−5. Figs. 15(i)∼(l) demonstrate
the comparisons of storage space between ITTD and NTTD.
Note that the Y-axis represents the logarithm of the storage
space. We can see that ITTD and NTTD maintain the same
order of magnitude. As shown in Fig. 15(i), the storage space
of ITTD and NTTD slightly exceed that of the original tensor
when the prescribed accuracy is zero (i.e., eps = 0), that is
because no truncation is applied during SVDs. However, the
storage space of ITTD and NTTD are far less than that of the
original tensor when the truncation is applied in SVDs (i.e.,
eps = 1e− 5, 1e− 2, 1e− 1 in Figs. 15(j)∼(l)). Experimental

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 13

1 2 3 4 5 6 7
day

0

100

200

300

400

tim
e

(s
)

(a) eps=0

ITTD
NTTD

1 2 3 4 5 6 7
day

0

5

10

15

20

tim
e

(s
)

(b) eps=1e-5

ITTD
NTTD

1 2 3 4 5 6 7
day

0

5

10

15

20

tim
e

(s
)

(c) eps=1e-2

ITTD
NTTD

1 2 3 4 5 6 7
day

0

5

10

15

20

tim
e(

s)

(d) eps=1e-1

ITTD
NTTD

1 2 3 4 5 6 7
day

2

4

6

8

10

ap
pr

ox
im

at
io

n
er

ro
r

×10-15 (e) eps=0

ITTD
NTTD

1 2 3 4 5 6 7
day

0.5

1

1.5

2

ap
pr

ox
im

at
io

n
er

ro
r

×10 -14 (f) eps=1e-5

ITTD
NTTD

1 2 3 4 5 6 7
day

0.5

1

1.5

2

ap
pr

ox
im

at
io

n
er

ro
r

×10 -14 (g) eps=1e-2

ITTD
NTTD

1 2 3 4 5 6 7
day

0

0.02

0.04

0.06

0.08

0.1

ap
pr

ox
im

at
io

n
er

ro
r

(h) eps=1e-1

ITTD
NTTD

2 3 4 5 6 7
day

0

2

4

6

8

10

12

st
or

ag
e

(i) eps=0

ITTD NTTD original

2 3 4 5 6 7
day

0

2

4

6

8

10

12

st
or

ag
e

(j) eps=1e-5

ITTD NTTD original

2 3 4 5 6 7
day

0

2

4

6

8

10

12

st
or

ag
e

(k) eps=1e-2

ITTD NTTD original

2 3 4 5 6 7
day

0

2

4

6

8

10

12

st
or

ag
e

(l) eps=1e-1

ITTD NTTD original

Fig. 15. The comparisons between ITTD and NTTD on CPSS data from execution time, approximation error, and storage space perspectives.

results demonstrate that the proposed ITTD approach also
demonstrably outperforms the NTTD in reducing the exe-
cution time on real-world data.

6 CONCLUSIONS

In this paper, we present an effective processing framework
based on tensor networks to represent, store, analyze, and
handle cyber-physical-social big data. Tensor networks have
some outstanding advantages in big data analysis, such
as powerful data compression, distributed data storage,
ubiquitous tensor computation, etc. TT decomposition, as
the simplest yet efficient format of tensor networks, is
illustrated in detail and applied to handle cyber-physical-
social big data. Besides, given that the cyber-physical-social
big data are generally generated in a streaming way, this
paper also proposes an incremental tensor train decompo-
sition approach to avoid the repeated computation for the
history data. A wealth of experimental results demonstrate
that the proposed ITTD approach outperforms NTTD in
execution time on the premise of guaranteeing the nearly
equal approximation error and storage space. The proposed
processing framework and incremental decomposition ap-
proach are conducive to improving the cyber-physical-social
big data analysis efficiency under ubiquitous computing
environment.

In the future, we shall extend ITTD to meet the multi-
order incremental scenarios by improving the implemen-
tation approach for achieving the TT format of the zero-
padding tensor in multi-order incremental cases. Besides,
we shall study the parallel computation of tensor operations
in TT format without transforming TT cores to the original
tensor by exploiting the mathematical characteristics of TT

format and taking advantage of the distributed TT cores. Fi-
nally, we shall further study the TTcore-based data analysis
methods and their practical applications.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Nos. 61867002 and 71704160) and
Fundamental Research Funds for the Central Universities
(No. 2018KFYXKJC046).

REFERENCES

[1] R. Mitchell and I.-R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing Surveys,
vol. 46, no. 4, pp. 55–84, 2014.

[2] J. Zeng, L. T. Yang, and J. Ma, “A system-level modeling and
design for cyber-physical-social systems,” ACM Transactions on
Embedded Computing Systems, vol. 15, no. 2, pp. 35–61, 2016.

[3] J. Wan, D. Zhang, S. Zhao, L. T. Yang, and J. Lloret, “Context-aware
vehicular cyber-physical systems with cloud support: architecture,
challenges, and solutions,” IEEE Communications Magazine, vol. 52,
no. 8, pp. 106–113, 2014.

[4] D. Zhang, S. Zhao, L. T. Yang, M. Chen, Y. Wang, and H. Liu,
“Nextme: localization using cellular traces in internet of things,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp. 302–
312, 2015.

[5] S. Jiang, X. Qian, T. Mei, and Y. Fu, “Personalized travel sequence
recommendation on multi-source big social media,” IEEE Transac-
tions on Big Data, vol. 2, no. 1, pp. 43–56, 2016.

[6] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big
data,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 1, pp. 97–107, 2014.

[7] L. Kuang, L. T. Yang, and Y. Liao, “An integration framework on
cloud for cyber physical social systems big data,” IEEE Transactions
on Cloud Computing, 2015.

IEEE TRANSACTIONS ON BIG DATA, VOL. **, NO. **, APRIL ** 2017 14

[8] I. Babuška, F. Nobile, and R. Tempone, “A stochastic collocation
method for elliptic partial differential equations with random
input data,” SIAM Journal on Numerical Analysis, vol. 45, no. 3,
pp. 1005–1034, 2007.

[9] A. Cichocki, “Tensor decompositions: a new concept in brain data
analysis?” Journal of Control, Measurement, and System Integration,
vol. 47, no. 7, pp. 507–517, 2011.

[10] H. Kasai, W. Kellerer, and M. Kleinsteuber, “Network volume
anomaly detection and identification in large-scale networks based
on online time-structured traffic tensor tracking,” IEEE Transaction-
s on Network and Service Management, vol. 13, no. 3, pp. 636–650,
2016.

[11] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on
Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[13] J. Håstad, “Tensor rank is NP-complete,” Journal of Algorithms,
vol. 11, no. 4, pp. 644–654, 1990.

[14] I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the curse of
dimensionality, or how to use svd in many dimensions,” Society
for Industrial and Applied Mathematics, vol. 31, no. 5, pp. 3744–3759,
2009.

[15] W. Hackbusch and S. Kühn, “A new scheme for the tensor rep-
resentation,” Fourier Analysis and Applications, vol. 15, no. 5, pp.
706–722, 2009.

[16] L. Grasedyck and W. Hackbusch, “An introduction to hierarchical
(h-)rank and tt-rank of tensors with examples,” Computational
Methods in Applied Mathematics, vol. 11, no. 3, pp. 291–304, 2011.

[17] B. N. Khoromskij, “O(dlogN)-quantics Approximation of N-d
Tensors in High-dimensional Numerical Modeling,” Constructive
Approximation, vol. 34, no. 2, pp. 257–280, 2011.

[18] A. Cichocki, “Era of big data processing: A new approach
via tensor networks and tensor decompositions,” arXiv preprint
arXiv:1403.2048, 2014. [Online]. Available: http://arxiv.org/abs/
1403.2048

[19] B. N. Khoromskij and I. V. Oseledets, “Qtt approximation of
elliptic solution operators in higher dimensions,” Russian Journal
of Numerical Analysis and Mathematical Modelling, vol. 26, no. 3, pp.
303–322, 2011.

[20] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V.
Savostyanov, “Computation of extreme eigenvalues in higher
dimensions using block tensor train format,” Computer Physics
Communications, vol. 185, no. 4, pp. 1207–1216, 2014.

[21] D. Kressner and A. Uschmajew, “On low-rank approximability of
solutions to high-dimensional operator equations and eigenvalue
problems,” Linear Algebra and its Applications, vol. 493, pp. 556–572,
2016.

[22] J. R. Bunch and C. P. Nielsen, “Updating the singular value
decomposition,” Numerische Mathematik, vol. 31, no. 2, pp. 111–
129, 1978.

[23] X. Zhou, J. He, G. Huang, and Y. Zhang, “SVD-based incremental
approaches for recommender systems,” Journal of Computer and
System Sciences, vol. 81, no. 4, pp. 717–733, 2015.

[24] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos,
“Incremental tensor analysis: Theory and applications,” ACM
Transactions on Knowledge Discovery from Data, vol. 2, no. 3, p. 11,
2008.

[25] L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo, and G. Min, “A tensor-
based approach for big data representation and dimensionality
reduction,” IEEE Transactions on Emerging Topics in Computing,
vol. 2, no. 3, pp. 280–291, 2014.

[26] N. Lee and A. Cichocki, “Fundamental tensor operations for
large-scale data analysis in tensor train formats,” 2014. [Online].
Available: http://arxiv.org/abs/1405.7786

[27] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states,
projected entangled pair states, and variational renormalization
group methods for quantum spin systems,” Advances in Physics,
vol. 57, no. 2, pp. 143–224, 2008.

[28] R. Orús, “A practical introduction to tensor networks: Matrix
product states and projected entangled pair states,” Annals of
Physics, vol. 349, pp. 117–158, 2014.

[29] A. Cichocki, “Tensor networks for big data analytics and
large-scale optimization problems,” arXiv preprint arXiv:1407.3124,
2014. [Online]. Available: http://arxiv.org/abs/1407.3124

[30] S. Handschuh, “Numerical methods in tensor networks,” PhD
thesis, University of Leipzig, 2015.

Huazhong Liu received the BS degree in Com-
puter Science from the School of Computer Sci-
ence and Technology, Jiangxi Normal University,
Nanchang, China, in 2004, and the MS degree
in Computer Science from the College of Math-
ematics and Computer Science, Hunan Normal
University, Changsha, China, in 2009. Currently,
he is pursuing the PhD degree at the School of
Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan,
China. His research interests include big data,

cloud computing, Internet of Things, and scheduling optimization.

Laurence T. Yang received the BE degree in
Computer Science and Technology from Ts-
inghua University, China, and the PhD degree
in Computer Science from University of Victoria,
Canada. He is a professor with the School of
Computer Science and Technology, Huazhong
University of Science and Technology, China,
and with the Department of Computer Science,
St. Francis Xavier University, Canada. His re-
search interests include parallel and distributed
computing, embedded and ubiquitous/pervasive

computing, and big data. His research has been supported by the Na-
tional Sciences and Engineering Research Council, Canada (NSERC),
and the Canada Foundation for Innovation (CFI).

Yimu Guo received the BS degree in Computer
Science from the College of Information, LiaoN-
ing University, Shenyang, China, in 2015, and
the MS degree in Computer Science from the
School of Computer Science and Technology,
Huazhong University of Science and Technolo-
gy, Wuhan, China, in 2017. His research inter-
ests include big data and parallel computing.

Xia Xie received the BE degree in Comput-
er Science and the PhD degree in Computer
System Architecture from Huazhong Universi-
ty of Science and Technology, Wuhan, China,
in 2002 and 2006, respectively. She is an as-
sociate professor at Services Computing Tech-
nique and System Lab, Big Data Technology and
System Lab, Cluster and Grid Computing Lab,
and School of Computer Science and Technolo-
gy, Huazhong University of Science and Tech-
nology, Wuhan, China. Her research interests

include Big Data Mining, Performance Evaluation.

Jianhua Ma received the MS degree from
the National University of Defense Technology,
Changsha, China, in 1985, and the PhD degree
from Xidian University, Xian, China, in 1990. He
is currently a Professor with the Faculty of Com-
puter and Information Sciences, Hosei Univer-
sity, Tokyo, Japan. He has published over 200
papers and edited over 20 books/proceedings
and over 20 journal special issues. His current
research interests include multimedia, networks,
ubiquitous computing, social computing, and cy-

ber intelligence.

