About
41
Publications
28,831
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
953
Citations
Introduction
Please visit my personal website: http://www.rs-lilinyuan.com/
Current institution
Publications
Publications (41)
Remote sensing via unmanned aerial vehicles (UAVs) is becoming a very important tool for augmenting traditional spaceborne and airborne remote sensing techniques. Commercial RGB cameras are often the payload on UAVs, because they are inexpensive, easy to operate and require little data processing. RGB images are increasingly being used for mapping...
The canopy bidirectional reflectance distribution function (BRDF) plays a pivotal role in estimating the biophysical parameters of plants, whereas soil background anisotropy creates challenges for their retrieval. Soil optical properties affect canopy anisotropic characteristics, especially in open-canopy areas. However, the remote sensing of backg...
Leaf chlorophyll content (LCC) retrieval from remote sensing imagery is essential for monitoring vegetation growth and stress in the agroforestry industry. Many remote sensing inversion methods for estimating LCC primarily rely on 1D radiative transfer models (RTMs) that abstract canopies into horizontal layers or simple geometric primitives. Yet,...
Accurate image segmentation is essential for image-based estimation of vegetation canopy traits, as it minimizes background interference. However, existing segmentation models often lack the generalization ability to effectively tackle both ground-based and aerial images across a wide range of spatial resolutions. To address this limitation, a cros...
Excessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree mortality, e.g., derived from national inventories, are very sparse, not standardized and not spatially explicit. Earth observation data...
Anomalies displaying significant deviations between terrain elevation products acquired from spaceborne full-waveform LiDAR and reference elevations are frequently observed in assessment studies. While the predominant focus is on “normal” data, recognizing anomalies within datasets obtained from the Geoscience Laser Altimeter System (GLAS) and the...
Monitoring crops with high spatio-temporal resolution satellites provides valuable observations to ensure food security in the global change context. This study focuses on estimating the Green Area Index (GAI) to monitor wheat crops with a spatial resolution of 3 m and daily satellite observations from the SuperDove constellation. With an easier ac...
Understanding post-fire forest recovery is critical to the study of forest carbon dynamics. Many previous studies have used multispectral imagery to estimate post-fire recovery, yet post-fire forest structural development has rarely been evaluated in the Great Xing’an Mountain. In this study, we extracted the historical fire events from 1987 to 201...
Vegetation cover fraction (fCover) and related quantities are basic yet critical vegetation structure variables in various disciplines and applications. Ground- and aerial-based proximal and remote sensing techniques have been widely adapted across multiple spatial extents. However, the definitions of fCover-related nomenclatures have not yet been...
To improve the simulation accuracy of vegetation canopy reflectance in optical bands, the Radiosity Applicable to Porous IndiviDual objects (RAPID) model has been upgraded to better deal with branches in the latest RAPID4. Previous versions of RAPID (RAPID1 and RAPID3) neglected branches in porous objects in optical bands, while RAPID2 emphasized t...
Leaf reflectance is widely used to retrieve leaf chlorophyll content (Cab) and parameterize canopy radiative transfer models. Measurements of broadleaf reflectance are typically made by using integrating sphere devices, but the approach is generally limited in conifer needle measurements due to the narrow needle coverage relative to the sample port...
The clumping effect is the main issue causing the heterogeneity in vegetation canopies and the underestimation of leaf area index (LAI) obtained using indirect measurement methods. Significant efforts have been exerted to correct for the clumping effect and derive the true LAI. Recent research has shown that the fractal dimension (FD) is directly r...
Fire disturbance has been one of the main reasons for the alteration of forest succession trajectory and forest composition in the Daxing’anling Mountain of Inner Mongolia. Therefore, predicting the dynamic process of post-fire regrowth is critical for understanding the specific forest succession trajectory of this region. The 3-PGmix model (i.e.,...
Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical met...
Accurate wall-to-wall estimation of forest crown cover is critical for a wide range of ecological studies. Notwithstanding the increasing use of UAVs in forest canopy mapping, the ultrahigh-resolution UAV imagery requires an appropriate procedure to separate the contribution of understorey from overstorey vegetation, which is complicated by the spe...
Canopy radiative transfer (RT) modeling is critical for the quantitative retrieval of vegetation biophysical parameters and has been under intensive research over the decades. RT models of discontinuous canopies, such as three-dimensional (3D) RT models, posed challenges for the early one-dimensional (1D) hypothesis. Although 3D RT models have high...
The demand for Leaf Area Index (LAI) retrieval from spaceborne full-waveform LiDAR increases due to its direct sampling of the three-dimensional forest structure at a near-global scale. However, the nonrandomness (i.e., clumping effect) of canopy composition limits the reliability of LAI derived from two common methods. They either assume a homogen...
Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this study, we proposed a hybrid model, which combines 3D RTMs and transfer...
Terrain reflected solar radiation in snow‐covered mountains is nonnegligible in investigations of the energy budget. However, it has so far not been investigated thoroughly, especially with regard to the influence of snow cover. Several parameterization approaches have been raised but not yet evaluated in a more uniform and quantitative manner. Bas...
Accurate and rapid estimation of canopy cover (CC) is crucial for many ecological and environmental models and for forest management. Unmanned aerial vehicle-light detecting and ranging (UAV-LiDAR) systems represent a promising tool for CC estimation due to their high mobility, low cost, and high point density. However, the CC values from UAV-LiDAR...
Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategie...
Accurate estimates of canopy cover (CC) are central for a wide range of forestry studies. As direct measurements are impractical, indirect optical methods have often been used to estimate CC from the complement of gap fraction measurements obtained with restricted-view sensors. In this short note we evaluated the influence of the image pixel resolu...
Occlusion effect, an inherent problem of terrestrial laser scanning (TLS) measurements, limits the potential of TLS data in tree attribute estimation. Multiple scans seek to mitigate this effect to provide enhanced scan completeness. However, the numbers and locations of the scans (i.e., the scan design) are usually determined via a subjective asse...
Vegetation cover estimation for overstory and understory layers provides valuable information for modeling forest carbon and water cycles and refining forest ecosystem function assessment. Although previous studies demonstrated the capability of light detection and ranging (LiDAR) in the three-dimensional (3D) characterization of forest overstory a...
Accurate and efficient measurement of leaf angle distribution (LAD) is important for characterizing canopy structures and understanding solar radiation regimes within the plant canopy. The main challenge for obtaining LAD is measuring the orientations of individual leaves rapidly and accurately in complex field conditions. In this letter, we propos...
Three-dimensional (3D) radiative transfer modeling of the transport and interaction of radiation through earth surfaces is challenging due to the complexity of the landscapes as well as the intensive computational cost of 3D radiative transfer simulations. To reduce computation time, current models work with schematic landscapes or with small-scale...
Estimation of daily downward shortwave radiation (DSR) is of great importance in global energy budget and climatic modeling. The combination of satellite-based instantaneous measurements and temporal extrapolation models is the most feasible way to capture daily radiation variations at large scales. However, previous studies did not pay enough atte...
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g.,...
A novel method for registering imagery with Light Detection And Ranging (LiDAR) data is proposed. It is based on the phenomenon that the back-projection of LiDAR point cloud of an object should be located within the object boundary in the image. Using this inherent geometrical constraint, the registration parameters computation of both data sets on...
Questions
Questions (6)
Dear all,
I would like to find a solution to separate green tree pixels from background using UAV images taken over forest area. Generally, forest floor/background is complex with containing soil, rocks, grass/shrub, moss and so forth. Moreover, many shaded ground areas casted by trees introduce more difficulty for image segmentation. All above mentioned induce big challenges for extracting green tree pixels from RGB even multispectral images.
I want to conduct Ground synchronization of VIIRS. unfortunatelly,I don't know how to acquire its overpass. Please help me .
Thanks
Li
Hi, Guys,
Anyone who could recommend a website consisting of global ground validation site distribution map of some satellite product.
Thanks a lot
Dear all, I want to discuss how much error caused by central projection of extracting vegetation cover using the method of photograph. As we all known, the definition of vegetation cover points that parallel projection is necessary for assessing veg cover. However, central projection will bring error for evaluating veg cover. Could anyone recommend some papers about this topic. Thanks a lot.
First, I can estimate LAI at several viewing zenith angles by the equation of Nilson 1971,utilizing digital photos taken from different angles . of course, it needs some assumption. Second, I would like to calculate the final LAI as the output value through above, however, I don't konw how to do this. Please someone help me .