Lingjing Hu

Lingjing Hu
Capital Medical University | CCMU · Yanjing Medical College

About

13
Publications
1,293
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
119
Citations
Introduction
Lingjing Hu currently works at the Yanjing Medical College, Capital Medical University. Lingjing does research in Artificial Intelligence, Data Mining and Neuroradiology. Their current project is 'Neuroimage Analysisi for Disease Prediction'.

Publications

Publications (13)
Preprint
Full-text available
Inferring causal structures from time series data is the central interest of many scientific inquiries. A major barrier to such inference is the problem of subsampling, i.e., the frequency of measurements is much lower than that of causal influence. To overcome this problem, numerous model-based and model-free methods have been proposed, yet either...
Chapter
Fusing data from multiple modalities provides more information to train machine learning systems. However, it is prohibitively expensive and time-consuming to label each modality with a large amount of data, which leads to a crucial problem of semi-supervised multi-modal learning. Existing methods suffer from either ineffective fusion across modali...
Preprint
Full-text available
The prediction and selection of lesion features are two important tasks in voxel-based neuroimage analysis. Existing multivariate learning models take two tasks equivalently and optimize simultaneously. However, in addition to lesion features, we observe that there is another type of feature, which is commonly introduced during the procedure of pre...
Preprint
Full-text available
Fusing data from multiple modalities provides more information to train machine learning systems. However, it is prohibitively expensive and time-consuming to label each modality with a large amount of data, which leads to a crucial problem of semi-supervised multi-modal learning. Existing methods suffer from either ineffective fusion across modali...
Article
Full-text available
In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structura...
Article
Background : Mild cognitive impairment (MCI) patients are a high-risk group for Alzheimer's disease (AD). Each year, the diagnosed of 10–15% of MCI patients are converted to AD (MCI converters, MCI_C), while some MCI patients remain relatively stable, and unconverted (MCI stable, MCI_S). MCI patients are considered the most suitable population for...
Chapter
Recent studies found that in voxel-based neuroimage analysis, detecting and differentiating “procedural bias” that are introduced during the preprocessing steps from lesion features, not only can help boost accuracy but also can improve interpretability. To the best of our knowledge, GSplit LBI is the first model proposed in the literature to simul...
Preprint
Full-text available
Recent studies found that in voxel-based neuroimage analysis, detecting and differentiating "procedural bias" that are introduced during the preprocessing steps from lesion features, not only can help boost accuracy but also can improve interpretability. To the best of our knowledge, GSplit LBI is the first model proposed in the literature to simul...
Conference Paper
In voxel-based neuroimage analysis, lesion features have been the main focus in disease prediction due to their interpretability with respect to the related diseases. However, we observe that there exist another type of features introduced during the preprocessing steps and we call them “Procedural Bias”. Besides, such bias can be leveraged to impr...
Article
Full-text available
In voxel-based neuroimage analysis, lesion features have been the main focus in disease prediction due to their interpretability with respect to the related diseases. However, we observe that there exists another type of features introduced during the preprocessing steps and we call them "\textbf{Procedural Bias}". Besides, such bias can be leverag...
Article
Generalized fused lasso (GFL) penalizes variables with l1 norms based both on the variables and their pairwise differences. GFL is useful when applied to data where prior information is expressed using a graph over the variables. However, the existing GFL algorithms incur high computational costs and do not scale to high-dimensional problems. In th...
Article
Full-text available
Neuroimage analysis usually involves learning thousands or even millions of variables using only a limited number of samples. In this regard, sparse models, e.g. the lasso, are applied to select the optimal features and achieve high diagnosis accuracy. The lasso, however, usually results in independent unstable features. Stability, a manifest of re...

Network

Cited By