Lindsay E Fitzpatrick

Lindsay E Fitzpatrick
Queen's University | QueensU · Department of Chemical Engineering

Ph.D.

About

15
Publications
4,786
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
395
Citations
Citations since 2016
7 Research Items
301 Citations
201620172018201920202021202201020304050
201620172018201920202021202201020304050
201620172018201920202021202201020304050
201620172018201920202021202201020304050
Additional affiliations
July 2014 - present
Queen's University
Position
  • Professor (Assistant)
February 2013 - January 2014
Georgia Institute of Technology
Position
  • PostDoc Position
Description
  • Investigating stem cell-derived molecular therapies for skin regeneration
September 2006 - December 2012
University of Toronto
Education
May 2008 - September 2012
University of Toronto
Field of study
  • Biomedical Engineering
September 2006 - May 2008
University of Toronto
Field of study
  • Tissue Engineering
September 2001 - April 2006
McMaster University
Field of study
  • Chemical Engineering

Publications

Publications (15)
Article
Full-text available
Implanted biomaterials elicit an immune-mediated foreign body reaction (FBR) that results in the fibrous encapsulation of the implant and can critically impact the performance of some implants. Consequently, understanding the molecular mechanisms that underpin cell-materials interactions that initiate biomaterial-induced inflammation and fibrosis i...
Article
Restrictive barriers and efficient clearance mechanisms make delivery of therapeutics to the back of the eye particularly challenging. An optically transparent, thermally gelling copolymer scaffold that can simply be mixed with an active pharmaceutical ingredient of choice and injected directly into the vitreous chamber has been designed. The poly(...
Article
Inflammation is facilitated largely by macrophages and other white blood cells, which recognize and respond to evolutionarily conserved damage-associated molecular patterns that are released upon tissue injury and cell stress. Damage-associated molecular patterns are known to bind Toll-like receptors (TLRs) and initiate inflammatory responses throu...
Article
The foreign body reaction is a chronic inflammatory response to an implanted biomaterial that ultimately leads to fibrous encapsulation of the implant. It is widely accepted that the host response to implanted biomaterials is largely dependent on the species and conformations of proteins adsorbed onto the material surface, due to the adsorbate’s ro...
Chapter
Chronic wounds that do not heal with standard wound care are a growing public healthcare concern. Wound care costs associated with lower extremity ulcers, such as venous leg ulcers, pressure ulcers, and diabetic foot ulcers, place a signifi cant burden on healthcare systems and severely lower the quality of life for patients. Advanced wound care th...
Article
Full-text available
The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDM) represent bioactive, biocompatible materials consisting of a complex assembly of...
Article
Full-text available
The ability to undergo rapid changes in response to subtle environmental cues make stimuli- responsive materials attractive candidates for minimally invasive, targeted and personalized drug delivery applications. This special report aims to highlight and provide a brief description of several of the significant natural and synthetic temperature-res...
Article
The expression of native sonic hedgehog (Shh) was significantly increased in poly(methacrylic acid-co-methyl methacrylate) bead (MAA) treated wounds at day 4 compared to both poly(methyl methacrylate) bead (PMMA) treated and untreated wounds in diabetic db/db mice. MAA beads also increased the expression of the Shh transcription factor Gli3 at day...
Article
Identifying the critical molecules associated with "biocompatibility" is a grand challenge. Poly(methacrylic acid -co- methyl methacrylate) (MAA) beads improve wound closure and wound vascularity in vivo, but the mechanism of this phenomenon is unknown. We used quantitative real-time PCR to identify the subtle changes in the expression of a small s...
Article
A major obstacle in tissue engineering is overcoming hypoxia in thick, three-dimensional (3D) engineered tissues, which is caused by the diffusional limitations of oxygen and lack of internal vasculature to facilitate mass transfer. Modular tissue engineering is a bio-mimetic strategy that forms scalable, vascularized and uniform 3D constructs by a...
Article
Full-text available
This protocol describes the fabrication of a type of micro-tissues called modules. The module approach generates uniform, scalable and vascularized tissues. The modules can be made of collagen as well as other gelable or crosslinkable materials. They are approximately 2 mm in length and 0.7 mm in diameter upon fabrication but shrink in size with em...
Article
We synthesized two thermoresponsive, bioactive cell scaffolds by decorating the backbone of type I bovine collagen with linear chains of poly(N-isopropylacrylamide) (PNIPAAm), with the ultimate aim of providing facile delivery via injection and support of retinal pigment epithelial (RPE) cells into the back of the eye for the treatment of retinal d...

Network

Cited By

Projects

Projects (2)