
Linda Dengler- Master of Science
- General Manager at Microbify GmbH
Linda Dengler
- Master of Science
- General Manager at Microbify GmbH
Working with methanogenic Archaea and SRB from Costa Rica.
About
6
Publications
2,410
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
113
Citations
Introduction
Current institution
Microbify GmbH
Current position
- General Manager
Additional affiliations
November 2017 - present
Education
November 2017 - October 2022
April 2015 - November 2017
September 2011 - January 2015
Publications
Publications (6)
A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH 4 exclusively from H 2 /CO 2. Cel...
A novel methanogenic strain, CaP3V-MF-L2AT, was isolated from an exploratory oil well from Cahuita National Park, Costa Rica. The cells were irregular cocci, 0.8–1.8 μm in diameter, stained Gram-negative and were motile. The strain utilized H2/CO2, formate and the primary and secondary alcohols 1-propanol and 2-propanol for methanogenesis, but not...
Securing new sources of renewable energy and achieving national self-sufficiency in natural gas have become increasingly important in recent times. The study described in this paper focuses on three geologically diverse underground gas reservoirs (UGS) that are the natural habitat of methane-producing archaea, as well as other microorganisms with w...
Employing deep reservoirs as UGS (underground gas storage) has a long history across continents. In 2018, 689 underground gas reservoirs with a total volume of 417 bcm were in operation worldwide. It is known that many microbial processes take place in the deep underground, even under the conditions of underground gas reservoirs. In this review, we...
Photodynamic inactivation of bacteria (PIB) is based on photosensitizers which absorb light and generate reactive oxygen species (ROS), killing cells via oxidation. PIB is evaluated by comparing viability with and without irradiation, where reduction of viability in the presence of the photosensitizer without irradiation is considered as dark toxic...