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Abstract
Purpose of Review This article gives a brief review on how the jet streams over the Eurasian continent influence the East Asian
monsoon on intraseasonal to interdecadal time scales and discusses the seasonal predictability and change.
Recent Findings The wave train along the Eurasian jet streams is found to be crucial for East Asian monsoon variability.
Interaction of the upper-level Rossby wave train with the Siberian High causes changes in winter monsoon climate over East
Asia. In the case of summer, the Silk Road pattern, embedded in the Asian jet in association with western North Pacific
circulation and the Pacific-Japan pattern, alters the strength and phase of the monsoon. Current coupled models showed limited
skills in seasonal prediction of the Eurasian jet variations and their influences on the East Asian monsoon variability.
Summary The Eurasian jets as conduits for East Asian monsoon variability involve multiple feedbacks. Its interaction with low-
level circulation mostly determines the degree of strength of variations in the monsoon climate. Global warming projections
based on RCP 4.5 and 8.5 in the CMIP5 (the Coupled Model Intercomparison Project phase 5) models indicate that the mean
Asian jet strengthens in future during winter, but no change is reported during summer.

Keywords Asian jet . Polar front jet . East Asian monsoon . Precipitation . Pacific-Japan pattern . Silk Road pattern . Western
North Pacific

Introduction

The East Asian monsoon is one of the most important climate
systems, having a profound influence on the economy in the
heavily populated regions in the world [1–5]. This subtropical

monsoon system covers a large area which includes Korea,
Japan, much of China, and the Western North Pacific (WNP).
The East Asian Winter Monsoon (EAWM) system during
December to February (DJF) is characterized by a prevailing
low-level strong northwesterlies along the east flank of the
Siberian High and northeasterlies over the South China Sea [6,
7]. The most prominent features of the EAWM are cold-core
Siberian High and a warm-core Aleutian Low [6–9]. Winter
monsoon extremes can cause severe weather events over East
Asia, such as rain and snow storms, freezing rain, and cold
waves [10, 11]. During boreal summer (June to August; JJA),
the East Asian SummerMonsoon (EASM) causes heavy rainfall
over East Asia [12, 13]. The EASM features strong humid low-
level southerlies from the Philippine Seas and southwesterlies
from the Bay of Bengal and leads to abundant rainfall over East
Asia. Strong southerly winds entering East Asia are associated
with the WNP subtropical anticyclone in the lower troposphere,
while strong westerlies extending frommid-latitudes to the trop-
ical region (till 25° N) associated with the Asian jet play an
important role in the evolution of the EASM.

The variations of the EAWM/EASM at different time
scales are affected not only by tropical forcing such as El
Niño-Southern Oscillation (ENSO) and sea surface
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temperature (SST) over the tropical Indian Ocean (TIO)
[14–16] but also by high-latitude forcing such as Arctic sea
ice [17–19], Eurasian snow cover [20], the Siberian High [21,
22], and the disturbances along the subtropical Asian jet and
polar front jet over Eurasia [23–27]. Indeed, many researchers
have extensively documented the impacts of ENSO and TIO
SST on the EAWM/EASM variability and well explained the
associated physical mechanisms [14, 28–32]. By contrast, the
high-latitude influence through the jets has been recognized
relatively recently, and a growing body of studies is emerging.
The present study provides a review on how the Eurasian jets
influence the East Asian Monsoon (both winter and summer).

The Asian jet is a Eurasian portion of the subtropical
jet and blows from North Africa through East Asia. To the
north of the Asian jet forms the polar front jet. The Asian
jet is characterized by variabilities on a wide range of
time scales and exerts substantial impacts on the weather
and climate over East Asia. Jet stream features large hor-
izontal and vertical wind shear throughout the troposphere
and lower stratosphere. On the synoptic scale, the jet is
closely linked to many phenomena such as cyclogenesis,
frontogenesis, blocking, storm track activity, and the de-
velopment of other atmospheric disturbances [33]. At lon-
ger time scales, the jet acts as a waveguide for quasi-
stationary Rossby waves [34, 35], promoting disturbances
in the Euro-Atlantic sector to propagate efficiently to East
Asia. In East Asia, jet meanders are associated with the
shift of precipitation bands in the EASM/EAWM [36–40].
Previous studies [41, 42] suggested that the association of
the Asian jet with ENSO is weak, but its association with
extra-tropical North Pacific SSTs is notable. Furthermore,
it has been reported that the Asian jet is linked to varia-
tions of the Hadley circulation [43–45], suggesting the
importance of the interaction with tropical convective ac-
tivities [46, 47]. The latitudinal variation of the Asian jet
over the East Asian region is obvious in winter and sum-
mer seasons (Fig. 1). The present review aims to summa-
rize the recent progress in studying how the Eurasian jets

could exhibit a strong impact on the EASM and EAWM
climate and addresses the seasonal predictability and
change of the jets.

The Eurasian Jets and EAWM

An active winter monsoon is accompanied by frequent cold
air outbreaks, known as the cold waves or cold surges, from
the source region––the Siberian cold dome. The cold surges
along with northwesterly monsoon sweep China, Korea,
Japan, and surrounding regions, leading to abrupt temperature
and precipitation changes [7]. In winter, the Asian jet blows
around 25° N (south of Tibet) while the polar front jet is
located around 55° N [48]. The geographically fixed planetary
wave trough over the Far East makes the two jet streams
merge over Japan to form the single Pacific jet [48].

Although the low-level EAWM is located at a different
altitude from the Asian and polar front jet cores, change of
the jets often occurs with variations of winter monsoon and
thereby can be used as a measure of the EAWM [49].
Observed evidence shows that when the Asian jet is strong,
the Asian winter monsoon strengthens, and colder and drier
conditions prevail in East Asia [42, 50]. Meanwhile, a south-
ward shift of the polar front jet often accompanies a cold
winter in northern East Asia [51]. The linkage between the
variability of winter monsoon and the jets is likely because
both are affected by geographically fixed stationary planetary
waves forced by large-scale orography and land-sea thermal
contrasts. On the interannual timescale, both the Asian jet and
the EAWM become weak when the upward propagation of
planetary waves from the troposphere into the stratosphere is
weaker, but their equatorward propagation in the middle and
upper troposphere is stronger, and vice-versa [52]. Similar
phenomena and mechanism can also be observed on the
interdecadal timescales [53]. The change of external forcing
such as snow cover over the Eurasia continent [53, 54] and the
Arctic sea ice [18, 19] may lead to change in the winter

Fig. 1 Latitude-time plot of 200-
hPa mean zonal wind
(Climatology; m/s) averaged over
the region 100° E to 160° E. This
figure based on ERA-interim
(Dee et al. 2011 [118]) data for the
period 1979 to 2014
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monsoon as well as in the Asian and polar front jets simulta-
neously via modulating stationary planetary waves.

Along the polar front jet, a recurrent wave train known as
the Eurasian teleconnection pattern [55, 56] can lead to the
intraseasonal amplification of the Siberian High [27, 48].
When an equivalent barotropic anticyclonic anomaly associ-
ated with the wave train appears over central Siberia and
Mongolia, the circulation could create a cold surface high
ahead of the upper-level anticyclone by enhancing surface
cold advection. The surface cold high anomaly, in turn, may
strengthen the upper-level anticyclone by advecting low po-
tential vorticity poleward. The mutual intensification between
the upper-level Rossby wave train and lower-tropospheric
thermal anomalies can strengthen the cold Siberian High,
which in turn enhances the EAWM circulation and leads to
East Asian cold anomalies [27, 57]. On the interannual time-
scales, the Eurasian pattern is associated with the variability of
the EAWM most tightly among the known atmospheric
teleconnections [16]. On the interdecadal timescales, the
EAWM switched from strong to weak epochs in the late
1980s and from weak to strong epochs in the early 2000s
[58]. These transition times are quite consistent with those of
the Eurasian pattern [56], implying its crucial role in the
interdecadal variations of the EAWM.

Wave trains along the Asian jet waveguide also exert sig-
nificant influence on the EAWM. Some extreme wintertime
rainfalls [59•, 60], snowfalls [61], and temperature anomalies
[26••, 62] in East Asia are associated with wave train-like
circulation anomalies along the Asian jet. North Atlantic
Oscil la t ion (NAO)– induced divergence over the
Mediterranean is considered as an important source for the
wave train [63]. When the NAO induces anomalous upper-
level convergence over the Mediterranean Sea, perturbations
along the subtropical Asian jet form a wave train with a zonal
wavelength of approximately 75° (Fig. 2). There is a cyclone
over South China and an anticyclone over Japan, which may
lead to persistent rainfall and anomalous warmth in respective
regions [26••, 63].

Wave activities in the two waveguides arise mainly due
to atmospheric internal variability. But some observed
studies suggest that the external forcing such as SST
[26••, 64], sea ice [18], and snow cover [19, 54] anoma-
lies may also contribute to the formation of the wave
trains. For example, SST anomalies in the equatorial east-
ern Pacific [26••] and east-west SST contrast in the North
Atlantic [66] may help in the formation of the wave train
into the Asian jet. The SST anomalies in the mid-latitude
North Atlantic may excite the Eurasian pattern along the
polar front jet by altering the low-level baroclinicity and
synoptic high-frequency eddies [56, 65••]. Further analy-
sis should be carried out to identify the external factors
for the wave activities in the two waveguides, as they are
useful for predicting the EAWM.

The Eurasian Jets and EASM

In summer, the Asian jet blows along the northern periphery
of the upper-tropospheric Tibetan/South Asian high and is
centered on 40° N (Fig. 3a). Seasonal northward migration
of the Asian jet in the East Asian sector from early to mid-
summer significantly affects rainfall locally. The north–south
displacement of the Asian jet is thus a reliable indicator of
Asian monsoon onset and retreat [66]. Over East Asia, the
jet stream is identified with the surface front that produces
extensive Meiyu (in China), Changma (in Korea), and Baiu
(in Japan) rains [12, 67–69]. The Asian jet co-varies with the
location of the Meiyu–Changma–Baiu rain band over East
Asia. This jet anchors the zonally prolonged rain band by
advection of warm air, organizing ascending motions and
directing transient weather disturbances from the upstream
[70]. In addition, the ageostrophic secondary circulation asso-
ciated with the upper-tropospheric jet promotes convection to
its south, forming the rain band [71]. Intraseasonal anomalies
of 200-hPa zonal wind manifest in the weak and slightly
southward extension of the jet over East Asia during the active
phase of theWNP rainfall, and vice-versa for monsoon breaks
[72, 73]. Meridional displacements of the Asian jet over East
Asia are associated with day-to-day variability in mid-
tropospheric temperature advection because the upper-
tropospheric jet stream traps the transient eddies, leading to
enhanced rainfall in the Yangtze-Huaihe River valley [74].

On interannual timescales, many studies have suggested
that the meridional displacement of the East Asian jet bears
a close relationship to the EASM precipitation [38–40]. An
equatorward displacement of the Asian jet causes precipitation
to increase over south-central China, while a poleward shift of
the jet brings heavier precipitation over north China [37,
75–77]. The equatorward (poleward) jet displacement is also
accompanied by southward retreat (northward extension) of
the surface subtropical high over theWNP, bringing the anom-
alously cold (warm) condition to Korea and Japan [78].
Summer time tropical cyclone activity over the WNP is close-
ly related to the location and intensity of the Asian jet on the
interannual time scale [79].

An important external driver of the East Asian jet and the
EASM is the wave-like pattern embedded in the Asian jet,
called the Silk Road pattern (SRP, Fig. 3b) [24]. The SRP
can be regarded as the Eurasian sector of the summertime
circumglobal teleconnection pattern [80]. Yet, instead of a free
Rossby wave train, the SRP can maintain itself through its
efficient extraction of kinetic and available potential energy
from the background flow through barotropic and baroclinic
energy conversions, leading to the dominance of a particular
zonal phase [81, 82]. The SRP has an equivalent barotropic
structure with significant circulation anomalies reaching the
lower troposphere to affect the WNP subtropical high and the
EASM rainfall [81, 83]. Various studies have indicated that
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the SRP significantly affects climate over China, Korea, and
Japan on the interannual timescales [24, 80, 84–87]. The
Arctic sea ice change is an important source of the wave train
along the Asian Jet waveguide, which can, in turn, influence
the EASM. Some studies found that the reduced spring Arctic
sea ice leads to an enhancement of summer rainfall in north-
east China [88], central China between the Yangtze River and
the Yellow River [89], Indochinese Peninsula, and the
Philippines and decreased rainfall over Meiyu–Changma–
Baiu front zone [90]. The aforementioned studies suggested
that spring Arctic sea ice anomalies modulate the atmospheric
circulation via Eurasian wave train and influence the EASM.

On the interdecadal timescales, the SRP features a barotropic
wave train along the Asian jet, resembling its interannual coun-
terpart, with a secondaryweakwave train along the polar front jet
[91•]. As a result, the meridional scale of the interdecadal SRP is
larger than its interannual counterpart. The SRP shows two re-
gime shifts in themid-1970s and late-1990s [91•, 92••]. The latter

shift explains over 40% of the observed rainfall reduction and
warming over Northeast Asia, highlighting its crucial role in the
recent decadal climate variations over East Asia [87, 91•, 93].
The mid-1970s shift is suggested to have arisen from the
favorable background state after the mid-1970s that pro-
jects more onto the SRP via the positive feedback be-
tween the SRP and the rainfall over subtropical South
Asia. The interdecadal variations of the SRP show some
linkage to North Atlantic SST, but the mechanism of this
linkage remains unclear [92••]. The interdecadal changes
in northeast Asia climate are associated with the propaga-
tion of an atmospheric Rossby wave along the Asian Jet,
and this interdecadal circumglobal teleconnection is close-
ly associated with the AMO [91•, 93–95]. However, it has
been suggested that SST in the North Atlantic and the
North Pacific may indirectly affect the decadal variations
in SRP by modulating South Asian rainfall [92••].
Further, in-phase Pacific Decadal Oscillation (PDO) and

Fig. 2 The regression of
geopotential height (contours; m)
at 250-hPa (a), 500-hPa (b), and
850-hPa (c) on the PC1 of the
EOFmodes of 250-hPa monthly v
(December, January, and
February) in the domain (0–45°
N, 0–120° E) from 1979 to 2013
in NCEP-DOE reanalysis
(Kanamitsu et al. 2002 [119]).
Vectors are the wave fluxes.
Shades denote the climatological
zonal wind speed (m/s) at
200 hPa. The figure is similar to
that of Hu et al. (2018) [26••]
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AMO with opposite sign of SST anomalies alter the wave-
guide in the eastern Mediterranean region and modulate
the Indian summer monsoon rainfall anomalies [96].
These rainfall anomalies, in turn, interact with the
teleconnection wave train induced by the PDO and
AMO, leading to a mer id ional dipole mode of
interdecadal precipitation anomalies over eastern China.

As in winter, the polar front jet in summer also allows
wave trains to propagate along [97, 98]. Previous studies
noticed that the amplification of the surface Okhotsk high
and anomalously cool summer over Japan and Northeast
Asia are often associated with some wave-like distur-
bances along the summertime polar front jet over
Eurasia [82, 97]. The British–Baikal Corridor (BBC) pat-
tern is a teleconnection pattern with a meridionally con-
fined, zonal wavenumber-5 structure that extends from the
North Atlantic to Siberia [99••]. It affects climate along its
route including precipitation over East Asia. Internal at-
mospheric dynamics dominate interannual variability of
the BBC pattern, including barotropic energy conversion
and the multiscale interactions among the climatological
mean flow, the low-frequency anomalies, and the
synoptic-scale transient eddies. No clear external forcing
for the BBC pattern has been identified so far.

Predictability of the Eurasian Jet Variability
and Impacts

Coupled ocean-atmospheric general circulation models
(CGCMs) are useful for the prediction of the interannual var-
iation of the Asian jet [100] and impact on East Asia monsoon
[101, 102]. CGCMs show good skills in predicting the first
two empirical orthogonal function (EOF) modes of summer
upper-tropospheric circulation in the Northern Hemisphere
[103]. Here, we examine hindcast data from seasonal predic-
tion models participating in the APEC Climate Center
(APCC) seasonal forecast to study the predictability of sum-
mer and winter Asian jet and its influence on East Asian mon-
soon. Table 1presents a brief summary of the models used in
the study. Multi-model ensemble (MME) mean is defined as a
simple average of the model runs with equal weighting. One-
month lead forecasts initialized in May and November are
used to evaluate summer and winter predictability, respective-
ly. An EOF analysis of the 200-hPa zonal wind over the region
(40° E to 160° E and 20° N to 60° N) is used to identify the
major modes of the Asian jet variability both in winter and
summer for the observations and MME mean.

Most of the models simulate well the major mean circula-
tion features related with the EAWM such as the upper

Fig. 3 a Climatological mean
zonal wind (m/s), b interannual
standard deviation of meridional
wind (m/s), and c the vorticity
anomalies regressed onto the PC1
of 200-hPa meridional wind over
[20°–60° N, 30°–130° E]. All at
200 hPa for JJA. Green arrows
show wave-activity flux formu-
lated by Takaya and Nakamura
(2001) [120]. Data used here is
based on ERA-interim for 1979–
2014. Reproduced from Kosaka
et al. (2009) [81] with updated
data
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troposphere jet stream, the sea level pressure contrast between
the cold Siberian High and the warm Aleutian Low, and the
prominent low-level northerly wind along the eastern coast
[104]. The leading mode (EOF-1) of 200-hPa zonal wind in
DJF in the observations is dominated by a positive loading
along the jet axis extending from the Tibetan Plateau to the
WNP and with negative loading on either side. In observa-
tions, this leading mode accounts for 32% of the total variance
and is related to the variation in Asian winter jet intensity
[105] (Fig. 4a). A strong Asian winter jet is associated with
an intensified EAWM. Associated with an anomalous low-
level anticyclone over East Asia in EOF-1, dry conditions
are seen over south-central China (Fig. 4c). None of the
models including the MME mean can properly represent the

leading EOF pattern associated with the winter Asian jet (Fig.
4b). Positive loading along the jet axis and negative loading to
the south are somewhat captured by MME but signals are
completely missing to the north. This mode accounts for
74% of the MME mean-variance. Rainfall patterns over East
Asia associated with EOF-1 are somewhat different in the
MME mean and individual models than in observations.
Correlation of the corresponding principal components
(PC1s) between models and observations (Fig. 4e) is margin-
ally significant in some models (Table 1), consistent with
[104]. Although most models capture the main seasonal mean
circulation over East Asia reasonably well, they still suffer
from difficulty in predicting the interannual variability of the
EAWM.

Figures 5 a and b show the spatial patterns of the leading
EOF mode (EOF-1) of JJA 200-hPa zonal wind in the obser-
vations and the MMEmean, both of which feature meridional
displacements of the Asian jet. These modes account for 28%
and 69% of the total variance in the observations and the
MME mean, respectively. However, the magnitude of EOF-
1 signals is weak in the MME mean compared to the obser-
vations, suggesting the dominance of the variability unpredict-
able at monthly to seasonal leads. The wave-like pattern along
the Asian jet from central Asia to Japan is apparent in merid-
ional wind anomalies. This wave train pattern is embedded
with anomalous anticyclonic, cyclonic, and anticyclonic cir-
culations along the jet, similar to the SRP. The anomalous

Fig. 4 a The first EOF pattern of
200-hPa zonal wind (shaded)
along the Asian Jet during winter
(DJF) and correlation of PC-1
with 200-hPa winds (vectors) and
meridional wind component
(green contours) and c correlation
of PC-1 with precipitation
(shaded) and 850 hPa winds
(vectors) for observations. b
Same as in (a) but forMME and d
same as in (c) but forMME. e PC-
1 corresponds to the EOF-1 for
the observations, individual
models, and MME

Table 1 Details of the APCC models used in this study

Model Organization Resolution Ensemble size

CCSM3 APCC/Korea T85L26 10

MSC MSC/Canada T63/L31 10

CANCM3 MSC/Canada T63/L31 10

CANCM4 MSC/Canada T63/L31 10

GMAO NASA/USA 288 × 181 grid L72 11

CFSV2 NCEP/USA T62/L64 20

PNU PNU/Korea T42L18 5

POAMA BOM/Australia T47L17 33
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upper-level anticyclone associated with SRP over Japan and
central and north China [83] extends to the lower level with an
equivalent barotropic structure, with local reduction of rainfall
(Fig. 5c). The MME zonal wind anomalies and the wavetrain
pattern are apparently displaced southward and eastward, re-
spectively, compared to the observational counterparts
(Fig. 5a and b).

In association with the shift of the jet, changes in low-level
circulation and precipitation patterns are noted in the MME
mean. Individual models also show such shifts in precipitation
and low-level circulation (figure not shown). South of the
low-level anticyclonic circulation is a strong cyclonic circula-
tion, covering parts of the WNP and South China Sea (Fig.
5c). The meridional alignment of these circulation anomalies
over the WNP region is similar to the Pacific–Japan (PJ) pat-
tern [106, 107]. It is notable that in all the models and the
MME mean the Asian jet anomalies, SRP, and the PJ pattern
are displaced from observational counterparts. These unreal-
istic shifts limit the skill in predicting the EASM rainfall var-
iations associated with the Asian jet. Furthermore, only two
out of eight models (POAMA and MSC_CANCM4) show
reasonable skill in predicting the Asian jet variation, as shown
by the PC-1 (Fig. 5e) correlation between models and obser-
vations (Table 2). Previous studies noted that current coupled
models have very limited skills in predicting the SRP even at
one-month lead forecast [102, 108]. This would limit the skills
of CGCMs in predicting variability of the Asian jet in summer.

Overall, most of the coupled models examined show certain
skill in predicting the variability of the Asian jet during sum-
mer but fail during winter. As a consequence of poor winter
prediction, the model rainfall patterns over East Asia are
disorganized.

Future Projections in CMIP5 Simulations

This section discusses the Coupled Model Intercomparison
Project phase 5 (CMIP5) [109] MME ability in simulating
the Asian jet in the present climate and its changes in
Representative Concentration Pathway (RCP) 4.5 and
RCP8.5 scenarios based on 24 models (Table 3). The MME

Fig. 5 Same as in Fig. 4 but for
the boreal summer season (JJA)

Table 2 Observed PC-1
correlation with individ-
ual models andMME for
both winter and summer
seasons for the period
1983–2010

Model JJA DJF

APCC 0.36 0.41

MSC_CANCM3 0.32 0.46

MSC_CANCM4 0.43 0.13

MSC 0.39 0.22

NASA 0.32 0.13

NCEP 0.25 0.38

PNU 0.31 0.39

POAMA 0.43 0.29

MME 0.43 0.33
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mean simulates jet characteristics very well in the historical
period both in winter and summer (not shown). MME projec-
tions show that the mean jet strengthens along 45° N just north
of jet core by 4 to 5m/s (3 to 4 m/s) in RCP 8.5 scenarios at the
end (middle) of the twenty-first century during winter over
East Asia (Fig. 6a and b). As a result, a slight poleward shift
in the jet core is apparent in future projections. This shift may
influence the wave train along the jet and hence the EAWM.A
poleward shift in the future projection of westerly jet over the
North Pacific has been reported earlier and is attributed to
latitudinal temperature gradient [110].

In summer, the MME shows no significant change in jet
strength under RCP 8.5 over East Asia (Fig. 6c and d). A
recent study points out that the future change in the continental
Meiyu precipitation location is insignificant, which is related
to weak changes in the jet position [111•]. Some changes are
notable in the strength of westerlies south of jet core west of
the Tibetan Plateau, indicating an equatorward shift. However,
its robustness needs to be confirmed. In the mid-range scenar-
io (RCP4.5), changes in the mean Asian jet are similar to
RCP8.5 but weaker. CMIP5 models display large inter-
model spread in simulations of the East Asian jet [112].
CMIP5 MME captures the spatial pattern of the Asian jet
variability but underestimates the magnitude [113], affecting

rainfall change uncertainties over East Asia. Recent studies
also suggested the presence of uncertainty in projected chang-
es in Asian–Australian monsoon circulation, which has been
attributed to the inter-model difference of western Pacific SST
warming [114, 115]. In addition, the significant bias in the
tropical SST and related teleconnection characteristics can
cause uncertainty in the CMIP5 future projections of the
Northern Hemisphere boreal summer upper-level circulation
[116]. This indicates that projected future changes in mean jet
must be considered with caution due to the involvement of
large uncertainties in CMIP5 models.

Conclusions

The main purpose of this study is to provide an overview of
the current understanding of the Eurasian jet streams’ influ-
ence on the East Asian monsoon variability. Predictability of
the winter and summer Eurasian jet variations and impacts are
discussed. Further, the mean Asian jet changes in global
warming scenarios using CMIP5 MME are presented.

The wave train patterns along the Asian jet are crucial
for the East Asian monsoon variability. The wave activities
along the jet are caused by atmospheric internal variability

Table 3 Details of 24 CMIP5 models used for the analysis with respective centers, model names, and their grid sizes. One (r1i1p1) ensemble for each
model is used in this study

S.
No

Modeling center (or group) Model name Grid size

1 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology (Australia) ACCESS1.0 192 × 144

2 Beijing Climate Center (China) BCC-CSM1-1
BCC-CSM1-1-m

128 × 64
320 × 160

3 College of Global Change and Earth System Science, Beijing, Normal University (China) BNU-ESM 128 × 64

4 Canadian Centre for Climate Modelling and Analysis (Canada) CanESM2 128 × 64

5 Centre National de Recherches Météorologiques (France) CNRM-CM5 256 × 128

6 Commonwealth Scientific and Industrial Research Organization (Australia) CSIRO-Mk3.6.0 192 × 96

7 NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M

144 × 90
144 × 90
144 × 90

8 NASA Goddard Institute for Space Studies (USA) GISS-E2-H
GISS-E2-H

144 × 89
144 × 89

9 Met Office Hadley Centre (UK) HadGEM2-AO
HadGEM2-ES

192 × 144
192 × 144

10 Institute for Numerical Mathematics (Russia) INM-CM4 180 × 120

11 Institut Pierre-Simon Laplace (France) IPSL-CM5A-LR
IPSL-CM5A-MR

96 × 96
96 × 96

12 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology (MIROC) (Japan)

MIROC5
MIROC-ESM
MIROC-ESM-CHEM

256 × 128
128 × 64
128 × 64

13 Max Planck Institute for Meteorology (Germany) MPI-ESM-LR
MPI-ESM-MR

192 × 96
192 × 96

14 Meteorological Research Institute (Japan) MRI-CGCM3 320 × 160

15 Norwegian Climate Centre (Norway) NorESM1-M 144 × 96
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and external forcing such as NAO, Indian summer mon-
soon, and Atlantic Nino [80, 117]. The EAWM variations
associated with the polar front jet emerge through interac-
tions of the upper-level Rossby wave train with the
Siberian High. On the other hand, the EASM is affected
by the SRP and the PJ pattern through the Asian jet [70, 71,
83, 102]. The Asian Jet interaction with low-level circula-
tion is important in determining monsoon variations.
Coupled models simulate mean jet features fairly well both
in winter and summer but they, individually and in MME
mean, show limited skills in predicting Asian jet variations
and their impacts on the EAWM/EASM. In spite of the
considerable progress made in the sub-seasonal to seasonal
predictions of monsoon climate, seasonal predictions of the
Asian jet variability and associated impacts are still inade-
quate. Future projections based on 24 CMIP5 models indi-
cate that the mean jet strengthens slightly in RCP 4.5 and
8.5 scenarios in winter, with little change noticed in sum-
mer. Further investigations are needed into variations of
the Eurasion jet streams and their impact on the East
Asian monsoon rainfall.
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