About
28
Publications
2,438
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,093
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (28)
The journal retracts the article titled “Combined Effect of Silica Nanoparticles and Benzo[a]pyrene on Cell Cycle Arrest Induction and Apoptosis in Human Umbilical Vein Endothelial Cells” [...]
Exposure to fine particulate matter (PM2.5) is closely linked with cardiovascular diseases. However, the underlying mechanism of PM2.5 on cardiac function remains unknown. This study was aimed to investigate the role of microRNA-205 (miR-205) on PM2.5-induced myocardial inflammation and cardiac dysfunction. PM2.5 increased the levels of reactive ox...
Increasing environmental exposure to silica nanoparticles (SiNPs) and limited cardiotoxicity studies posed a challenge for the safety evaluation and management of these materials. This study aimed to explore the adverse effects and underlying mechanisms of subacute exposure to SiNPs on cardiac function in rats. Results from echocardiographic, ultra...
As the main components of fine particulate matter (PM2.5), silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) have attracted increasing attention recently. However, co-exposure to SiNPs and B[a]P causes pulmonary injury by aggravating toxicity via an unknown mechanism. This study aimed at investigating the toxicity caused due to long-term co-e...
Background:
Long-term exposure to fine particulate matter (PM2.5) can causally contribute to progression of atherosclerosis, risk of ischemic heart disease and death, but the underlying mechanism is little known. Since DNA methylation impacts the process of heart disease, it might be useful in exploring potential mechanistic pathways linking PM2.5...
Background
Safety evaluation is a prerequisite for nanomaterials in a wide range of fields, including chemical industries, medicine or food sciences. Previously, we had demonstrated that SiNPs could trigger the thrombotic effects in vivo, but the underlying mechanisms remain unknown. This study was aimed to explore and verify the role of miR-451a o...
Background
The harmful effects following the release of nanomaterials into environment are of great concern today.
Purpose
In this study, subacute effect due to co-exposure to low-dose silica nanoparticles (SiNPs) and lead acetate (Pb) on cardiovascular system was detected in Sprague Dawley male rats.
Materials and Methods
Histopathological and u...
Background
As a promising nanocarrier in biomedical fields, silica nanoparticles (SiNPs) could transfer from the circulatory system to multiple organs. Among these, blood–liver molecular exchange is a critical factor in biological response to NPs. However, the potential effect of SiNPs on hepatic lipid metabolism is unclear. In this study, we emplo...
PM2.5 exposure is strongly linked to cardiac disease. Subtle epigenetic or transcriptional alterations induced by PM2.5 might contribute to pathogenesis and disease susceptibility of cardiac disease. It is still a major challenge to identify biological targets in human genetics. Human cardiomyocytes AC16 was chosen as cell model. Epigenetic effect...
The released nanoparticles into environment can potentially interact with pre-existing pollution, maybe causing higher toxicity. As such, assessment of their joint toxic effects is necessary. This study was to investigate the co-exposure cardiac toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg). Factorial design was used to determin...
Autophagy dysfunction is a potential toxic effect of nanoparticles. Previous studies have indicated that silica nanoparticles (SiNPs) induce macroautophagy/autophagy dysfunction, while the precise mechanisms remain uncertain. Hence, the present study investigated the molecular mechanisms by which SiNPs enhanced autophagosome synthesis, which then c...
Although the strongly causal associations were between fine particulate matter (PM2.5) and cardiovascular disease, the toxic effect and potential mechanism of PM2.5 on heart was poorly understood. Thus, the aim of this study was to evaluate the cardiac toxicity of PM2.5 exposure on human cardiomyocytes (AC16). The cell viability was decreased while...
Fine particulate matter (PM2.5) has been listed as an important environmental risk factor for human health. However, the systemic biological effects on metabolic responses induced by PM2.5 and its components were poorly understood. This study was aimed to evaluate the toxicity of different components of PM2.5 at molecular level via metabolomics app...
The co-exposure toxicity mechanism of ultrafine particles and pollutants on human cardiovascular system are still unclear. In this study, the combined effects of silica nanoparticles (SiNPs) and/or carbon black nanoparticles (CBNPs) with Pb(AC)2 compared with particulate matter (PM)2.5 were investigated in human myocardial cells (AC16). Our study d...
There is compelling evidence that exposure to particulate matter (PM) is linked to lung tumorigenesis. However, there is not enough experimental evidence to support the specific mechanisms of PM2.5-induced DNA damage and cell cycle arrest in lung tumorigenesis. In this study, we investigated the toxic effects and molecular mechanisms of PM2.5 on br...
Silica nanoparticles (SiNPs) have been found to pass through biological barriers and get distributed in the human body. They induce cell apoptosis via various mechanisms in body organs. To understand these mechanisms, we carried out systematic review of in vitro studies on SiNPs-induced cell apoptosis. Office of Health Assessment and Translation ap...
Air pollution has been shown to increase cardiovascular diseases. However, little attention has been paid to the combined effects of PM and air pollutants on the cardiovascular system. To explore this, a high-throughput sequencing technology was used to determine combined effects of silica nanoparticles (SiNPs) and MeHg in zebrafish. Our study demo...
With rapid development of nanotechnology and growing environmental pollution, the combined toxic effects of SiNPs and pollutants of heavy metals like lead have received global attentions. The aim of this study was to explore the cardiovascular effects of the co-exposure of SiNPs and lead acetate (PbAc) in zebrafish using microarray and bioinformati...
The safety evaluation of silica nanoparticles (SiNPs) are getting great attention due to its widely-used in food sciences, chemical industry and biomedicine. However, the adverse effect and underlying mechanisms of SiNPs on cardiovascular system, especially on angiogenesis is still unclear. This study was aimed to illuminate the possible mechanisms...
Cardiovascular system is demonstrated the main target of PM2.5 and the objective of this study was to explore the toxic effect and molecular mechanisms caused by PM2.5 in primary human umbilical vein endothelial cells (HUVECs) using microarray and bioinformatics analysis. The results showed that 591 genes were differentially expressed triggered by...
The fine particulate matter (PM2.5) in air pollution is a major public health concern and now known to contribute to severe diseases, therefore, a comprehensive understanding of PM2.5-induced adverse effects in living organisms is needed urgently. This study was aimed to evaluate the toxicity of PM2.5 on multi-organ systems in a zebrafish (Danio re...
Air pollution has been a major environment-related health threat. Most of the studies on PM2.5 toxicity have verified on the cardiovascular system and endothelial cells. However, researches on PM2.5-induced myocardial-related toxicity are limited. This study aims to fully understand the toxic effects of PM2.5 on human myocardial cell (AC16) and exp...
Particulate matter (PM) such as ultrafine particulate matter (UFP) and the organic compound pollutants such as polycyclic aromatic hydrocarbon (PAH) are widespread in the environment. UFP and PAH are present in the air, and their presence may enhance their individual adverse effects on human health. However, the mechanism and effect of their combin...
Systemic metabolic effects and toxicity mechanisms of ambient fine particulate matter (PM2.5) remain uncertain. In order to investigate the mechanisms in PM2.5 toxicity, we explored the endogenous metabolic changes and possible influenced metabolic pathways in rats after intratracheal instillation of PM2.5 by using a ¹H nuclear magnetic resonance (...
Both ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, thus increasing their chances of exposure to human in the daily life. However, the study on the combined toxicity of UFP and PAHs on respiratory system is still limited. In this study, we examined the potential interactive effects of si...
Exposure to PM2.5 has been strongly linked with the disturbance of endothelial function. However, the underlying mechanism of PM2.5 on vascular endothelial cells is still poorly understood. This study was aimed to explore the toxic effect and underlying mechanism of PM2.5 on vascular endothelial cells. The decreased of cell viability and increased...