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Abstract

It is common knowledge that relational calculus and even SQL are not expressive enough to express

recursive queries such as the transitive closure. In a real database system, one can overcome this problem

by storing a graph together with its transitive closure and maintaining the latter whenever updates to the

former occur. This leads to the concept of an incremental evaluation system, or IES.

Much is already known about the theory of IES but very little has been translated into practice. The

purpose of this paper is to �ll in this gap by providing a gentle introduction to and an overview of some

recent theoretical results on IES.

The introduction is through the translation into SQL of three interesting positive maintenance results

that have practical importance { the maintenance of the transitive closure of acyclic graphs, of undirected

graphs, and of arbitrary directed graphs. Interestingly, these examples also allow us to show the relationship

between power and cost in the incremental maintenance of database queries.

1 Introduction

It is common knowledge that the expressiveness of relational calculus and even SQL is limited. For example,

recursive queries such as the transitive closure cannot be de�ned [2, 23] in these languages. However, in a real

database system, one can try to overcome this problem by storing a graph together with its transitive closure

and maintaining the latter whenever updates (i.e. the insertion or deletion of edges) to the former occur. In other

words, the recursive queries are evaluated and maintained incrementally. The result of such a recursive query

can be thought of as a view of the database and the incremental evaluation of the query as view maintenance.

The above leads to the concept of an incremental evaluation system, or IES.

Incremental evaluation is often seen as merely a means to avoid expensive re-computation. However, from what

we have said above of the transitive closure query, one can see that there is much more to the idea of incremental

evaluation than just a simple view of avoiding re-computation. In particular, we see incremental evaluation also

as a way to do things that could not have been done otherwise. Coming back to transitive closure, it cannot be

expressed in relational databases using SQL without incremental evaluation but can be expressed in relational

databases using SQL in the setting of an incremental evaluation system. In other words, avoidance of the cost

of recomputation is not even the issue here, for the query is not even do-able in SQL without incremental

evaluation in the �rst place!

A salient ingredient in an IES is its ambient language. All maintenance in an IES must be expressible in the

ambient language of the IES. For example, if the IES is a commercial relational database system, then its

ambient language is SQL: it is allowed to use SQL but not C nor other languages to express the maintenance.

This restriction on the ambient language arises from the modeling of the practical constraints imposed by real

systems, mostly for reasons of e�ciency, optimizability, security, and control. At the same time, the use of

restricted ambient language also gives rise to an opportunity to investigate its theoretical limits.
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Much is already known about the theory of IES [9, 19, 11, 12, 17, 14, 13, 16, 8, 22, 27, 26, etc.]. However,

very little has been translated into practice, perhaps for the reason that work on the theory of IES is cast

in an abstract mathematical form and the translation to SQL database systems is not always obvious.1 The

objectives of this paper are two folds: Firstly, we select three interesting positive results that have practical

importance and show how to realize them in commercial SQL database systems. Secondly, we aim to provide

a gentle overview of some recent theoretical results on IES.

The three results that we translate into SQL concern the maintenance of the transitive closure of various kinds of

graphs. The computation of transitive closure is the determination of the existence of a path between nodes in a

graph. Our choice is motivated from two perspectives. Firstly, transitive closure is the canonical representative

of recursive queries. It is known to be inexpressible in relational calculus and SQL [2, 23]. Secondly, transitive

closure has so much practical importance to the extent that several non-standard versions of SQL included special

operators for implementing it.2 Thus a technique for maintaining transitive closure in standard commercial SQL

database systems would be very interesting. We should also emphasize that the approach illustrated in (Section

4 of) this paper can be generalized; in fact, it leads to a uniform way to implement all queries in the polynomial

hierarchy [21] using standard commercial SQL database systems.

Organization

We consider maintaining the transitive closure of three kinds of graphs in commercial SQL database systems:

acyclic directed graphs, undirected graphs, and arbitrary directed graphs.

Acyclic graphs are the focus of Section 2. The transitive closure of these graphs are very easy to maintain in

commercial SQL database systems, requiring no more than the equivalent of pure relational calculus [13]. This

example is also a good illustration of the power of the IES model, because it is well known [2, 23] that pure

relational calculus and even SQL cannot compute from scratch the transitive closure of such graphs.

Undirected graphs are the focus of Section 3. The �rst known technique for maintaining the transitive closure

of undirected graphs using relational calculus (or equivalently, �rst-order logic) as the ambient language was

that of [27]. A more space-e�cient technique using relational calculus was reported later in [14, 15]. The

maintenance of the transitive closure of undirected graphs using SQL is more involved and more expensive than

acyclic graphs. In particular, the maintenance of the transitive closure of acyclic graphs is very economical

on space because all we need to store are the transitive closure and the graph itself, whereas some additional

binary relations must be maintained for the maintenance of the transitive closure of undirected graphs. Such

additional relations are called \auxiliary" relations. These auxiliary relations should not be confused with

temporary intermediate relations: The former are used to store information between updates whereas the latter

are only used to simplify the expression of the SQL queries.

Arbitrary directed graphs are the focus of Section 4. In contrast to the other two classes of graphs, the

maintenance of the transitive closure of arbitrary directed graphs is much more complicated and costly. In fact,

at the time of writing, it is still open whether the transitive closure of such graphs can be maintained using

pure relational calculus [9] after edge deletions. However, a technique for maintaining the transitive closure of

arbitrary directed graphs using SQL was recently discovered [22]. The technique is quite expensive in terms of

space: We need to maintain an auxiliary relation which makes use of up to an exponential number of integers

not appearing in the input graph. In contrast, the maintenance for undirected and acyclic graphs does not make

use of constants not in the input graph.

In Section 5, we discuss the complexity of our three example implementations. We demonstrate that for acyclic

and undirected graphs only a small constant number of joins are required to carry out the maintenance, giving

them considerable performance advantage over typical transitive closure implementations based on iterated

joins.

1We are only aware of one system, called ADEPT [29], that implements incremental maintenance of transitive closure of some

classes of graphs.
2We also note that the SQL3 proposal does include a recursive construct that enables it to express the transitive closure.

However, majority of systems are still only SQL92 compliant.
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Finally, Section 6 concludes the paper with an account of the more theoretical aspects of IES. In particular, we

contrast results on IES that use pure relational calculus as their ambient language to those that use SQL as

their ambient language.

2 Transitive Closure of Acyclic Graphs

It is appropriate to introduce the practical aspect of IES using a simple interesting example. So we show how

to maintain the transitive closure of acyclic graphs in SQL database systems here. It is a good illustration of

the power of the IES model, because it is well known [2, 23] that pure relational calculus and even SQL cannot

compute from scratch the transitive closure of such graphs.

We base this section on the theoretical work reported in [13, 10]. In particular, the SQL queries given below are

derived from [13, 10]. We assume the following schemas: G(Start; End) for the input graph and TC(Start; End)
for the transitive closure. The interpretation of these two tables is as follow. A tuple (x; y) is in the table G if

and only if there is a directed edge from the node x to the node y in the input graph. A tuple (x; y) is in the

table TC if and only if there is a directed path from the node x to the node y in the input graph. Our problem

is to use SQL queries to maintain the relationship between G and TC described above when an edge is added

to or deleted from the table G.

Maintenance Under Insertions

Suppose an edge (a; b) is inserted. We maintain TC as follows. First all new tuples and possibly some old

ones are constructed and stored in a temporary relation, TC-NEW. Then the truly new tuples in TC-NEW are

merged into TC.

SELECT *

(1) FROM (SELECT Start = TC.Start, End = b

FROM TC

WHERE TC.End = a

UNION

(2) SELECT Start = a, End = TC.End

FROM TC

WHERE b = TC.Start

UNION

(3) SELECT Start = TC1.Start, End = TC2.End

FROM TC AS TC1, TC AS TC2

WHERE TC1.End = a AND TC2.Start = b

) AS T

INTO TEMP TC-NEW

INSERT INTO TC-NEW (Start, End)

(4) VALUES (a, b)

SELECT *

FROM TC-NEW AS T

WHERE NOT EXISTS (SELECT *

FROM TC

WHERE TC.Start=T.Start AND TC.End=T.End)

INTO TEMP DELTA

INSERT INTO TC
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Figure 1: Transitive closure of graph when new edge is inserted

SELECT *

FROM DELTA

Essentially, the new transitive closure is obtained by adding to the old transitive closure the following (Figure 1):

(1) all new paths constructed by adding the new edge (a; b) to the back of an existing path ending at a, (2) all
new paths constructed by adding the new edge (a; b) to the front of an existing path starting at b, (3) all new
paths constructed by inserting the new edge (a; b) between an existing path ending at a and an existing path

starting at b, and (4) the new edge itself.

Maintenance Under Deletions

Suppose an existing edge (a; b) is deleted. The maintenance of TC is a slightly more complicated problem and

some theoretical insight is required in order to see why it can be done using nothing more than SQL or even

pure relational calculus [13].

Step 1: Finding the suspects

We derive and store in a temporary table SUSPECT (Start ;End) all those pairs (x; y) such that there is a path

in the old graph (the one before the deletion) from x to y that goes through the edge (a; b).

SELECT *

FROM (SELECT Start = X.Start, End = Y.End

FROM TC AS X, TC AS Y

WHERE X.End = a AND Y.Start = b

UNION

SELECT Start = X.Start, End = b

From TC AS X

WHERE X.End = a

UNION

SELECT Start = a, End = X.End

FROM TC AS X

WHERE X.Start = b

UNION

SELECT Start = a, End = b

FROM TC AS X

WHERE X.Start = a AND X.End = b)

INTO TEMP SUSPECT
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Step 2: Finding the trusty guys

We derive and store in a temporary table TRUSTY (Start ;End) those paths in TC that are clearly una�ected

by the deletion of the edge (a; b). Obviously, these can be obtained by (1) deleting SUSPECT from TC and (2)

including the other edges of G.

SELECT *

(1) FROM (SELECT *

FROM TC

WHERE NOT EXISTS (SELECT *

FROM SUSPECT

WHERE SUSPECT.Start = TC.Start AND

SUSPECT.End = TC.End)

UNION

(2) SELECT *

FROM G

WHERE G.Start <> a AND G.End <> b)

INTO TEMP TRUSTY

Step 3: Deleting the bad guys

The new transitive closure contains (1) all TRUSTY paths, (2) all paths constructed by concatenating two

consecutive TRUSTY paths, and (3) all paths constructed by concatenating three consecutive TRUSTY paths.

From the result of [13, 10], these constitute all paths that should be in the new transitive closure. To see this,

consider a path in the desired transitive closure going through exactly the nodes x1; x2; :::; xk in the given order.

Suppose there is i < j such that (xi; xj) is in SUSPECT but not in TRUSTY . Then there is a tightest pair

of u and v such that i � u < v � j, and (xu; xv) is in SUSPECT . If v = u+ 1, (xu; xv) is an edge and thus

is in TRUSTY and both (x1; xu) (provided u 6= 1) and (xv ; xk) (provided v 6= k) are in TRUSTY . Thus this

path can be obtained by concatenating up to three TRUSTY paths. If v > u + 1, then both (x1; xu+1) and
(xu+1; xk) are in TRUSTY . Thus this path can be obtained by concatenating two TRUSTY paths. All other

paths are already captured by TRUSTY . So we can simply delete from TC all other paths.

SELECT *

(1) FROM (SELECT *

FROM TRUSTY

UNION

(2) SELECT T1.Start, T2.End

FROM TRUSTY T1, TRUSTY T2

WHERE T1.End = T2.Start

UNION

(3) SELECT T1.Start, T3.End

FROM TRUSTY T1, TRUSTY T2, TRUSTY T3

WHERE T1.End = T2.Start AND T2.End = T3.Start)

INTO TEMP TC-NEW

DELETE FROM TC

WHERE NOT EXISTS (SELECT *

FROM TC-NEW T

WHERE T.Start = TC.Start AND T.End = TC.End)
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Figure 2: An acyclic graph

An Example for the Deletion Case

We illustrate the maintenance by considering deleting the edge (a; b) from the acyclic graph given in Figure 2.

Step 1 The contents of SUSPECT are as follows:

SUSPECT

Start End

0 b

0 1

a b

a 1

c b

c 1

TRUSTY

Start End

0 a

0 c

c a

c b

b 1

Step 2 The contents of TRUSTY are given above.

Step 3 All the good paths are now derived from TRUSTY through zero, e.g. for the case of (0; c), one, e.g. (0; b),
or two joins, e.g. (0; 1), followed by projections. TC is updated by deleting those paths that are not good.

It is more instructive to visualize all the edges other than (a; b) as a sequence of edges.

3 Transitive Closure of Undirected Graphs

In this section we show how to maintain the transitive closure of undirected graphs in SQL. An undirected

graph contains the edge from a node y to a node x whenever it contains the edge from x to y. In contrast to

the acyclic graphs case of the previous section, the transitive closure of these graphs can only be maintained if

we store additional relations which are called auxiliary relations. The auxiliary relations are used to maintain

information between updates to the graph.

The �rst IES that maintains the transitive closure of undirected graph using nothing more than pure relational

calculus was given in [27] and an improved (space-wise optimal) IES was subsequently developed in [14]. The

SQL queries sketched below are mainly derived from the former, except for the explicit maintenance and use of

the total order.

We again assume the following schemas: G(Start;End) for the input undirected graph and TC(Start;End) for
the transitive closure. Since values in a tuple have explicit positions, we assume that G and TC stored are

symmetric. Although each update on G speci�es an (ordered) pair (a; b), the actual changes to G are always

made in terms of both (a; b) and (b; a). The SQL queries given in this section assume that the updates are given

in ordered pairs. Without this assumption the maintenance is much more involved; see [14] for the solution

without this assumption.

To maintain TC, we need to use some auxiliary relations that we must also maintain using SQL:

LESSTHAN(Small;Large) for a total order on all nodes in the graph, FOREST(A;B) for a spanning forest
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of the graph (FOREST is also symmetric), THROUGH(A; V;B) indicating that V is on the unique path from

A to B in FOREST if the nodes A and B are connected. The contents of the auxiliary relations are dependent

on the order of the updates to the graph, i.e. the update history leading to the current graph.

The order relation LESSTHAN is used for choosing an edge from a set of edges satisfying the same condition.

This ordering is needed because a graph can have several distinct spanning forests and our incremental evaluation

system has to select only one of them. It does not matter which one we select, but we do have to select one.

If an ordering on the nodes are available from the underlying relational database system, then we do not need

LESSTHAN. For example, if the nodes are strings then we can use the string comparison operator of SQL

instead of LESSTHAN.

Deriving Transitive Closure From THROUGH

Recall that the table THROUGH is set up to contain a tuple (a;m; b) if and only if a and b are connected and

m is on the unique path from a to b in the spanning forest in FOREST. We can derive the transitive closure of

our undirected graph as a view of THROUGH straightforwardly.

CREATE VIEW TC (Start, End) AS

SELECT DISTINCT Start=A, End=B

FROM THROUGH

We need to demonstrate how to maintain the auxiliary tables LESSTHAN, FOREST, and THROUGH in SQL.

First, we de�ne the following view, GNODES, to hold all nodes in G.

CREATE VIEW GNODES (Node) AS

SELECT Node=Start

FROM G

UNION

SELECT Node=End

FROM G

Note that UNION in SQL removes all duplicates by default.

Maintenance of the Total Order LESSTHAN

The �rst auxiliary relation we maintain after an update to G is LESSTHAN. Recall that LESSTHAN is a total

ordering on the nodes to help us later in choosing an edge from a set of edges satisfying the same condition.

Note that if an ordering on the nodes are available from the underlying relational database system, then we do

not need LESSTHAN. For example, if the nodes are strings then we can use the string comparison operator of

SQL instead of LESSTHAN.

Suppose an edge (a; b) is inserted. We update LESSTHAN by executing Expand(a), Expand(b), Initial(a; b),
where Expand(x) is the following update that makes x larger than all other nodes in the total order, provided

that x is new.

INSERT INTO LESSTHAN (Small, Large)

SELECT Small=Node, Large=x

FROM GNODES

WHERE x NOT IN (SELECT * FROM GNODES)

and Initial (x; y) is the following update which simply inserts (a; b) to LESSTHAN when LESSTHAN is empty.
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INSERT INTO LESSTHAN (Small, Large)

SELECT DISTINCT Small=x, Large=y

FROM G

WHERE NOT EXISTS (SELECT * FROM LESSTHAN)

Suppose an edge (a; b) is deleted from G. We update LESSTHAN by executing Shrink (a), Shrink(b), where
Shrink (x) is the following update that removes x from the total order, provided the node x no longer exists.

DELETE FROM LESSTHAN

WHERE x NOT IN (SELECT * FROM GNODES)

AND (Small=x OR Large=x)

Maintenance of FOREST AND THROUGH under Insertions

Suppose a new edge (a; b) is inserted. We �rst update LESSTHAN as described above. There is a need to

change FOREST only if the inserted edge connects two previously disconnected trees (or equivalently a and b
were not previously connected). Therefore we maintain FOREST as follows:

INSERT INTO FOREST

SELECT A=Start, B=End

FROM G

WHERE NOT EXISTS (SELECT *

FROM THROUGH

WHERE A=a AND B=b)

AND (Start=a AND End=b OR Start=b AND End=a)

The queries for adjusting THROUGH resembles in a way the maintenance of TC of directed graphs after the

insertion of edges. However, THROUGH is symmetric, i.e. if (x; v; y) is in THROUGH then so is (y; v; x); this
complicates the expression. To make it simple, we �rst create the following temporary relation.

SELECT *

FROM (SELECT A=N.Node, V=N.Node, B=N.Node

FROM GNodes N

UNION

SELECT *

FROM THROUGH)

INTO TEMP T-STAR

Using T-STAR we apply the following updates.

INSERT INTO THROUGH

(1) SELECT A=T1.A, V=N.Node, B=T2.B

FROM GNODES AS N, T-STAR AS T1, T-STAR AS T2

WHERE T1.B=a AND T2.A=b AND N.Node=T1.V

UNION

(2) SELECT A=T1.A, V=N.Node, B=T2.B

FROM GNODES AS N, T-STAR AS T1, T-STAR AS T2

WHERE T1.B=a AND T2.A=b AND N.Node=T1.V AND N.Node=T2.V

UNION

(3) SELECT A=T1.B, V=N.Node, B=T2.A

FROM GNODES AS N, T-STAR AS T1, T-STAR AS T2

WHERE T1.B=a AND T2.A=b AND N.Node=T1.V
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Figure 3: \Connecting" two paths using the new edge

UNION

(4) SELECT A=T1.B, V=N.Node, B=T2.A

FROM GNODES AS N, T-STAR AS T1, T-STAR AS T2

WHERE T1.B=a AND T2.A=b AND N.Node=T1.V AND N.Node=T2.V

Parts (1) and (2) above \connect" paths using the new edge (a; b) (see Figure 3), while Parts (3) and (4) make

THROUGH symmetric.

Maintenance of FOREST AND THROUGH under Deletions

Suppose an existing edge (a; b) is deleted. We proceed by �rst updating LESSTHAN. If (a; b) is in FOREST,

we remove it. Deleting (a; b) from FOREST may cause one tree to split into two. When this happens, there

can be none or several edges in G which connect these two trees. For the former, we only need to eliminate

relevant tuples in THROUGH to complete the maintenance. For the latter, we �rst delete relevant tuples (to

(a; b)) from THROUGH; then we pick a replacement edge and insert it into FOREST; �nally we insert tuples

that are relevant to the replacement edge. The procedure of inserting the replacement edge is identical to the

maintenance of FOREST and THROUGH upon an insertion and thus the details are omitted. We describe the

deletion and replacement edge selection steps in the following.

Step 1: Identify a replacement edge

In the case when the deleted edge (a; b) is in FOREST, we select a replacement edge and put it into a temporary

relation REP. This is done in two steps. First we �nd all possible replacement edges.

SELECT *

FROM G

WHERE EXISTS (SELECT DUMMY = 1

FROM THROUGH AS T1, THROUGH AS T2

WHERE T1.A=Start AND T1.V=a AND T1.B=b AND

T2.A=a AND T2.V=b AND T2.B=End)

AND EXISTS (SELECT *

FROM FOREST

WHERE A=a AND B=b)

INTO TEMP REP-ALL

We then pick the smallest edge in REP-ALL according to the total order LESSTHAN and store it in REP.

Note that REP has exactly one edge. Note that if the underlying relational database provides an ordering on

the nodes, then this piece of SQL codes can be replaced by using the appropriate comparison operation in SQL.
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SELECT DISTINCT Start, End

FROM REP-ALL AS R, LESSTHAN

WHERE NOT EXISTS (SELECT *

FROM REP-ALL AS R1, LESSTHAN AS LT

WHERE R1.Start=LT.Small AND R.Start=LT.Large

OR (R1.Start=R.Start AND

R1.End=LT.Small AND R.End=LT.Large)

AND Small=Start AND Large=End

INTO TEMP REP

Step 2: Delete relevant edges in THROUGH

Intuitively, if a tuple (x; v; y) in THROUGH such that the edge (a; b) is on the unique path between x; y, the
tuple must be deleted. This happens exactly when THROUGH contains both (x; a; b) and (a; b; y).

SELECT *

(1) FROM (SELECT T.*

FROM THROUGH AS T, THROUGH AS T1, THROUGH AS T2

WHERE T1.V=a AND T1.B=b AND T2.A=a AND T2.V=b

AND T1.A=T.A AND T2.B=T.B

AND EXISTS (SELECT * FROM FOREST WHERE A=a AND B=b)

UNION

(2) SELECT T.*

FROM THROUGH AS T, THROUGH AS T1, THROUGH AS T2

WHERE T1.V=a AND T1.B=b AND T2.A=a AND T2.V=b

AND T1.A=T.B AND T2.B=T.A

AND EXISTS (SELECT * FROM FOREST WHERE A=a AND B=b))

INTO TEMP DELTA

DELETE FROM THROUGH

SELECT *

FROM DELTA

Again, Part (2) above is to delete tuples that are symmetric to those deleted in Part (1).

Step 3: Insert the replacement edge

The step to insert the edge in REP into FOREST and maintain THROUGH is almost identical to the insertion

case.

Step 4: Delete (a; b) from FOREST

The �nal step is to delete (a; b) from FOREST.

DELETE FROM FOREST

WHERE A=a AND B=b OR A=b AND B=a
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An Example

It should be pointed out that G, FOREST, and the �rst and last columns of THROUGH are symmetric and

we only show half of the edges for clarity; furthermore, LESSTHAN is not symmetric and only the chain part

is shown.

Suppose our graph G is as follows.

G

Start End

a b

c d

c e

d e

LESSTHAN

Small Large

a b

b c

c d

d e
...

FOREST

A B

a b

c e

d e

THROUGH

A V B

a a/b b

c c/e e

d d/e e

c c/d/e d

Then the corresponding LESSTHAN, FOREST, and THROUGH relations can be as above. We use the notation

(a; a=b; b) as a shorthand for the two tuples of (a; a; b) and (a; b; b).

Suppose we now insert the edge (b; c). Since both nodes are already in G, LESSTHAN is not modi�ed. Our

maintenance algorithm will add the following tuples into the remaining two relations:

+FOREST

A B

b c

+THROUGH

A V B

a a/b/c c

a a/b/c/e e

a a/b/c/e/d d

b b/c c

b b/c/e/ e

b b/c/e/d d

The edge (b; c) is inserted into the FOREST relation because it connects two previously disconnected trees.

The contents of LESSTHAN, FOREST, and THROUGH will remain the same when (a; c) and (a; e) are subse-
quently inserted to G. The new graph G is shown below.

G

Start End

a b

a c

a e

b c

c d

c e

d e

Now suppose (a; b) is deleted from the current G (shown above). There is no need to change LESSTHAN. For

FOREST and THROUGH, the algorithm will perform the following steps.

Step 1: REP-ALL will contain (a; c) and (a; e), and REP has the smaller edge of the two, (a; c).

Step 2: The following tuples and their symmetries are deleted from THROUGH:
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�THROUGH

A V B

a a/b b

a a/b/c c

a a/b/c/e e

a a/b/c/e/d d

Steps 3 and 4: The replacement edge is inserted into FOREST and THROUGH is updated accordingly using

the insertion algorithm. The deletion edge (a; b) is deleted from FOREST. The resulting relations are as

follows.

G

Start End

a c

a e

b c

c d

c e

d e

LESSTHAN

Small Large

a b

b c

c d

d e
...

FOREST

Start End

a c

b c

c e

d e

THROUGH

A V B

a a/c c

a a/c/b b

a a/c/e e

a a/c/e/d d

b b/c c

b b/c/e/ e

b b/c/e/d d

c c/e e

c c/d/e d

d d/e e

4 Transitive Closure of Arbitrary Directed Graphs

Arbitrary directed graphs are the most complicated graphs considered in this paper. In this section we present

SQL queries for maintaining the transitive closure of these graphs. In contrast to acyclic graphs, it is not possible

to use SQL queries to maintain the transitive closure of arbitrary directed graphs without using auxiliary

relations [8]. Also, in contrast to undirected graphs, it is not known whether it is possible to maintain the

transitive closure of arbitrary directed graphs using pure relational calculus. So we have to consider using more

powerful features of SQL that we have managed to avoid in the two previous sections|aggregate functions

and GROUPBY operator. These are features that makes SQL strictly more powerful than pure relational calculus

[23, 25].

We use the technique from [22] to maintain the transitive closure of arbitrary directed graphs by SQL queries.

The idea is to maintain complete information of all possible paths between the nodes of the graph. A path can

basically be represented by its start node, its end node, and the set of all its intermediate nodes. To keep all

the paths, it may appear that we need to store a nested relation, which of course cannot be done directly in a

�rst-normal form relational database.

The trick around this little problem is to generate some unique numbers to identify each path. Then a path

that is identi�ed by the number i and starts at x, ends at y, and going through intermediate nodes n1, ...,
nk can be represented by the set of tuples (i; x; y; n1), ..., (i; x; y; nk). Since the numbers identifying di�erent

paths are di�erent, all these sets of tuples can be stored in the same table. As to how to generate these unique

numbers, we just use the standard arithmetics and aggregate functions available in a typical commercial SQL

database system!

In the rest of this section, we present the SQL queries for realizing the above solution to the problem of

maintaining the transitive closure of arbitrary graphs. These queries are translated from theoretical results in

[22].

We again use the schemas G(Start; End) and TC(Start; End) to represent the input graph and

its transitive closure. In addition, we use two auxiliary relations R(Pnum; St; End; IntS; IntD) and
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DUMMY (Pnum; St; End; IntS; IntD). In both R and DUMMY , the attributes are interpreted as follow:

Pnum is the number assigned to uniquely identify a path; St is the �rst node of the path; End is the last node
of the path; IntS and IntD are two consecutive nodes on the path (IntS is source, IntD is destination.)

The auxiliary relation R is maintained in such a way that it contains a tuple (k; x; y; a; b) if and only if the path

whose number is k starts from x, ends in y, and goes through the edge from a to b. The relation DUMMY
contains exactly one tuple (0; NULL;NULL;NULL;NULL) that is needed to handle computation of MAX

aggregate function when R is empty.

In what follows, pairing(x; y) is the pairing function on natural numbers:

pairing(x; y) =
(x+ y)(x+ y + 1)

2
+ y

Deriving Transitive Closure From R

Given the property of R, the transitive closure of G can be easily derived from R.

CREATE VIEW TC AS

SELECT DISTINCT Start= St, End = End

FROM R

It remains to explain how we maintain the auxiliary table R in SQL.

Maintenance Under Deletions

Suppose an existing edge (a; b) is deleted. Then R is reconstructed trivially by deleting every path that goes

through (a; b).

SELECT Pnum

FROM R

WHERE IntS = a AND IntD = b

INTO TEMP DEADPATH

DELETE FROM R

WHERE Pnum IN DEADPATH

Maintenance Under Insertions

Insertion is more complicated, mostly because SQL is not well designed [5, 4]. Suppose a new edge (a; b) is
inserted into G. The reconstruction of R requires the following 8 steps.

Step 1

Create a temporary table V1(Pair;Comp1;Comp2; St; End). The attributes of this view are interpreted as

follow: Pair is a number identifying a new path that is being created by concatenating paths whose numbers

in R are Comp1 and Comp2, via the new edge (a; b); St is the �rst node of the path; and End is the last node

of the path. The purpose of this view is to generate new numbers to identify new paths formed by the linking

of two old paths by the new edge (a; b).
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SELECT DISTINCT

Pair = pairing (R1.Pnum, R2.Pnum),

Comp1 = R1.Pnum,

Comp2 = R2.Pnum,

St = R1.St,

End = R2.End

FROM R R1, R R2

WHERE R1.End = a AND R2.St = b

INTO V1

Step 2

Create the �rst set to be inserted into R, given by paths formed by connecting two existing paths using the edge

(a; b). The numbers that uniquely identify these new paths have already been created in V1 of the previous

step. All we need to do now is for each such new path, (1) add all intermediate edges of the its two component

paths and (2) add (a; b) as an intermediate edge linking the two components. This step is accomplished by the

SQL query below.

SELECT *

FROM (

(1) SELECT DISTINCT

Pnum = V1.Pair,

St = V1.St,

End = V1.End,

IntS = R.IntS,

IntD = R.IntD

FROM V1, R

WHERE (R.Pnum = V1.Comp1 AND R.St = V1.St AND R.End = a)

OR (R.Pnum = V1.Comp2 AND R.St = b AND R.End = V1.End)

UNION

(2) SELECT DISTINCT

Pnum = V1.Pair,

St = V1.St,

End = V1.End,

IntS = a,

IntD = b

FROM V1)

INTO TEMP VINS1

Step 3

Create a temporary table TEMP1 to give us all the paths we have found so far. This is a preparatory step for

generating new numbers to identify the remaining new paths. The use of the DUMMY table is necessary to

ensure that this view is nonempty.

SELECT *

FROM (

SELECT * FROM VINS1

UNION

SELECT * FROM R

UNION

SELECT * FROM DUMMY)
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INTO TEMP TEMP1

Step 4

Find the maximum path number in TEMP1 and calculate a safe lower bound NewId for new path numbers.

This lower bound is needed before we can generate new numbers to identify the remaining new paths.

SELECT DISTINCT Id = pairing (1+Pnum, Pnum)

FROM TEMP1

WHERE Pnum = (SELECT MAX(Pnum) FROM TEMP1)

INTO TEMP NewId

Step 5

Create the temporary table VINS2 to account for the edge (a; b) considered by itself as a path.

SELECT Pnum = NewId.Id,

St = a,

End = b,

IntS = a,

IntD = b,

FROM NewId

INTO TEMP VINS2

Step 6

Create new paths that are constructed by adding the new edge (a; b) in front of an existing path. Every such

new path contains exactly (1) all nodes from the existing path and (2) the new edge (a; b).

SELECT *

FROM (

(1) SELECT DISTINCT

Pnum = pairing(R.Pnum, NewId.Id),

St = a,

End = R.End,

IntS = R.IntS,

IntD = R.IntD

FROM R, NewId

WHERE R.St = b

UNION

(2) SELECT DISTINCT

Pnum = pairing(R.Pnum, NewId.Id),

St = a,

End = R.End,

IntS = a,

IntD = b

FROM R, NewId

WHERE R.St = b)

INTO TEMP VINS3
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Step 7

Create a new view VINS4 to account for path which are formed by appending the new edge (a; b) to the tail of
an existing path. Every such new path contains exactly (1) the nodes from the exiting path and (2) the new

edge (a; b).

SELECT *

FROM (

(1) SELECT DISTINCT

Pnum = pairing(R.Pnum, NewId.Id),

St = R.St,

End = b,

IntS = R.IntS,

IntD = R.IntD

FROM R, NewId

WHERE R.End = a

UNION

(2) SELECT DISTINCT

Pnum = pairing(R.Pnum, NewId.Id),

St = R.St,

End = b,

IntS = a,

IntD = b

FROM R, NewId

WHERE R.End = a)

INTO TEMP VINS4

Step 8

All new paths are now accounted for. We simply insert all of them into R to �nish o� the update.

INSERT INTO R

SELECT * FROM VINS1

UNION

SELECT * FROM VINS2

UNION

SELECT * FROM VINS3

UNION

SELECT * FROM VINS4

An Example for the Insert Case

Assume that the graph in G contains two edges (x; a) and (b; y). Then the table R is:

Pnum St End IntS IntD

1 x a x a

2 b y b y

Suppose we want to insert the new edge (a; b). Here is the step-by-step account of the process.

Step 1 Create V1 which contains one tuple (6; 1; 2; x; y), here 6 = pairing(1; 2).
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Step 2 Create VINS1. The �rst select statement produces (6; x; y; x; a) and (6; x; y; b; y). The second select

produces (6; x; y; a; b). So we get

Pnum St End IntS IntD

6 x y x a

6 x y b y

6 x y a b

Step 3 Create TEMP1 as the union of R, VINS1, and DUMMY .

Step 4 NewId contains pairing(7; 6) = 97.

Step 5 Create VINS2, which contains one tuple (97; a; b; a; b).

Step 6 Create VINS3 corresponding to paths that start with (a; b). The identi�er of the only such path is

pairing(2; 97) = 5047. So we get VINS3 as

Pnum St End IntS IntD

5047 a y b y

5047 a y a b

Step 7 Create VINS4 corresponding to paths that end with (a; b). The identi�er of the only such path is

pairing(1; 97) = 4948. So we get V INS4 as

Pnum St End IntS IntD

4948 x b x a

4948 x b a b

Step 8 Insert all of them into R. The updated value of R is

Pnum St End IntS IntD

1 x a x a

2 b y b y

6 x y x a

6 x y b y

6 x y a b

97 a b a b

5047 a y b y

5047 a y a b

4948 x b x a

4948 x b a b

After that, the transitive closure TC can be extracted as the projection of the new value of R onto the St and
End attributes:

Start End

x a

b y

x y

a b

a y

x b
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Remark

One may notice that path identi�ers grow very fast. One can introduce some extra steps to renumber the paths.

This can be done as follows.

First we create a mapping NM3 from the old Pnum's to new consecutive numerical identi�ers. This can be

accomplished in three extra steps using GROUPBY and the standard aggregate function COUNT of SQL.

CREATE VIEW NM1(Pnum) AS

SELECT DISTINCT Pnum

FROM R

CREATE VIEW NM2(Pnum) AS

SELECT First = s.Pnum, Second = r.Pnum

FROM NM1 s, NM1 r

WHERE s.Pnum <= r.Pnum

SELECT First = NM2.First, Second = COUNT(NM2.Second)

FROM NM2

GROUPBY First

INTO TEMP NM3

NM1 is a copy of all the Pnum's currently in used. NM2 pairs each Pnum to those Pnum's that are less than

it. Then we can simply do a GROUPBY and COUNT on NM2 to generate the table NM3 which maps each old

Pnum to its \rank" (ie. the number of existing Pnum's less than that old Pnum.) These ranks can then be

used as our new consecutive numerical identi�ers. Continuing with our example, this yields:

First Second

1 1

2 2

6 3

97 4

4948 5

5047 6

Finally, we use a join to apply this mapping to renumber the Pnum's.

UPDATE R

SET Pnum = NM3.Second

FROM R, NM3

WHERE R.Pnum = NM3.First

This update results in the following value of R, where Pnum now takes on small consecutive values.
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Pnum St End IntS IntD

1 x a x a

2 b y b y

3 x y x a

3 x y b y

3 x y a b

4 a b a b

6 a y b y

6 a y a b

5 x b x a

5 x b a b

5 Complexity

We re-iterate the main point of this paper: There is much more to the idea of incremental evaluation than the

view that it is merely a means to avoid expensive re-computation. For example, transitive closure cannot be

expressed in relational databases using SQL without incremental evaluation but can be expressed in relational

databases using SQL, in the setting of an incremental evaluation system. In other words, avoidance of the

cost of recomputation is not even the issue here, for the query is not even do-able in SQL without incremental

evaluation in the �rst place!

Nevertheless, it is still useful to consider the complexity of our incremental evaluation systems. For this purpose

it is useful to make comparisons with some typical algorithms that compute transitive closure of graphs from

scratch. A fairly standard database-style algorithm is based on iterated joins, which essentially repeats the

query SELECT Start=G.Start, End=TC.End FROM G, TC WHERE G.End = TC.Start INTO TC as many times as

there are edges in G. Note that while this query is in SQL, the process that iterates it must be programmed

in an external language such as C. The time complexity of this algorithm is O(n3) for a dense graph having

n edges. In the presence of appropriate indices, the complexity can be reduced to O(n2 logn). A standard

nondatabase-style algorithm is the Warshall algorithm [28]. Note that this is a main-memory algorithm and

thus extra work is required if the graph resides in a database. The cost of this algorithm is O(v3) for a graph

having v vertices, which is approximately n3=2 for a dense graph having n edges.

Let us begin with acyclic graphs. The cost of inserting a new edge can be estimated in terms of the number of

joins as follows (we can ignore the cost of other operations, as the cost of joins dominates the overall cost.) 1

join is required to calculate TC-NEW, 1 join is required to calculate DELTA (since the existence test has the

cost of a join), giving us two joins in total. The cost of deleting an existing edge can also be estimated in terms

of the number of joins. 1 join is required to calculate SUSPECT, 1 join is required to calculate TRUSTY, 3

joins are required to calculate TC-NEW (actually, this one can be easily optimized to 2 joins), 1 join is required

to carry out the �nal deletions, giving us 6 joins in total. Assuming that the graph is dense so that the number

of edges in G and TC are both approximately n, then the cost of maintaining the transitive closure of acyclic

graphs under our setting is at worst approximately 6n2, as all relations involved in our 6 joins would also be

approximately n edges in size. This is considerably better than the cost of the standard database-style transitive

closure algorithm. However, it is slightly poorer than the Warshall algorithm. In the presence of suitable indices

(which we can easily create), the cost of a join over a pair of relations of size n is O(n logn). Then the cost

of our incremental evaluation system is reduced to approximately 6n logn, which is better than the standard

database algorithm with indices as well as the Warshall algorithm.

Let us now consider the undirected graphs. We ignore the cost of maintaining LESSTHAN, since in real life,

nodes in the graphs are atomic objects like strings and numbers, for which an order can be obtained from

the underlying relational database system. The cost of inserting a new edge is estimated as follows. No join

is required to calculate FOREST, no join is required to calculate T-STAR, 8 joins are required to update

THROUGH, giving us 8 joins in total. The cost of deleting an existing edge is estimated as follows. 1 join

is required to calculate REP-ALL, 1 join is required to calculate REP (assuming the use of LESSTHAN is
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replaced by the appropriate comparison operation of the underlying database system), 4 joins are used to

compute DELTA, no join is needed to update FOREST, 8 joins to update THROUGH (this part was not

shown), giving a total of 14 joins. Assuming that the graph is dense so that the number of edges in G and TC
are both approximately n. Then the number of edges in THROUGH is approximately n3=2. Even though the

joins involve THROUGH, a careful inspection shows that only about n of these n3=2 in THROUGH are involved

in these joins, since these joins are always preceded by selections. Thus the cost of maintaining undirected

transitive closure under our incremental setting is about 14n2, as all the relations involved in our 14 joins would

also be about n edges in size. Even for moderate n, this is still better than the cost of the standard database-

style transitive closure algorithm. However, it is not as good as the Warshall algorithm. In the presence of

suitable indices, the cost of our incremental evaluation can be reduced to approximately 14n logn, which is

better than the standard database-style transitive closure algorithm as well as the Warshall algorithm.

So we see that our incremental evaluation systems for acyclic and undirected transitive closure have two advan-

tages: They are expressible using nothing more than SQL and they are also relatively more e�cient than typical

transitive closure algorithms based on re-computation. For the case of arbitrary directed graphs, the complexity

of our incremental evaluation system is not so good. In a dense graph, the number of paths is exponential with

respect to the number of edges in the graph. So for dense graphs, the size of R, which stores all possible paths,

would also be exponential. As a consequence, the worst-case cost in terms of time is also exponential. The

point of our incremental evaluation system for the transitive closure of arbitrary graphs is thus a theoretical

one: It is possible to compute the transitive closure of arbitrary graphs in SQL in an incremental setting.

6 Theory of Incremental Evaluation Systems

Having discussed the SQL queries of IES for transitive closures, let us give a brief overview of the theory of

IES. We �rst recall the concept of IES. Suppose we have a query Q. An IES(L) for maintaining the query Q
is a system consisting of an input database I , an answer database A, an optional auxiliary database, and a

�nite set of maintenance functions that correspond to the di�erent kinds of permissible updates to the input

database. These maintenance functions take as input, the corresponding update, the input database, the answer

database, and the auxiliary database; and they collectively produce as output the updated answer database and

the updated auxiliary database. There are only two requirements: the condition A = Q(I) must be maintained,

and the maintenance functions must be expressible in the language L. (L is called the ambient language of

the IES.) We only consider queries from 
at relations to 
at relations; and in this paper permissible updates

are restricted to the insertion and deletion of a single tuple. A further restriction is also imposed so that the

constants that appear in the auxiliary database must also appear in the database or in the answer or in some

�xed set.

The earliest formulation of IES is [18]; successive re�nements were given in [11, 17, 15]. These papers considered

the �rst-order incremental evaluation system, IES(FO), which uses �rst-order logic to express maintenance

functions. It is thus equivalent to IES where pure relational calculus is used as the ambient language. A closely

related formalism is dynamic �rst-order, DynFO, of [27]. While DynFO is similar to IES(FO) in many aspects,

there are some important di�erences between the two, see [27, 15] for comparison. Here, we will use IES(FO)

for illustration.

For each relation symbol R, we use Ro to refer to the instance of R before an update, and Rn the instance of R
after the update (here `o' stands for old and `n' for new). Consider the view even that is de�ned to be f1g if the

relation R has even cardinality and fg if R has odd cardinality. While even is well known to be inexpressible in

relational calculus [1], it can be expressed in IES(FO). The update function for even when a tuple t is deleted
from R is given by

evenn(1) i� (Ro(t) ^ :eveno(1)) _ (:Ro(t) ^ eveno(1)):

The update function when a tuple t is inserted into R is given by

evenn(1) i� (Ro(t) ^ eveno(1)) _ (:Ro(t) ^ :eveno(1)):

The IES(FO) that we used to maintain even as above is also called a space-free IES(FO), because it does not
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make use of any auxiliary relations. It is sometimes necessary to use auxiliary relations. We write IES(FO)k to

mean the subclass of IES(FO) where auxiliary relations of arities up to k can be used. That is, each auxiliary

relation has at most k attributes. In general, we write IES(L)k to mean the subclass of IES(L) where 
at

auxiliary relations of arities up to k can be used.

Much is already known about IES(FO). The transitive closure of acyclic graphs can be maintained in space-free

IES(FO) [13]. The transitive closure of undirected graphs can be maintained in IES(FO)3 [27] and even in

IES(FO)2 [14]. In a failed attempt to prove the strictness of the IES(FO)k hierarchy, Dong and Wong proved

that equi-cardinality of relations of arbitrary arities can be maintained in IES(FO)2 [19]. Dong and Su [14]

showed that the IES(FO)k hierarchy is strict for k � 2.

More recently, using a result of Cai [3], Dong and Su showed in [15] that the IES(FO)k hierarchy is strict for

every k. That is, for every k > 0 there is a query Q that can be maintained with the help of auxiliary relations

of arity up to k, but cannot be maintained with the help of auxiliary relations of arity up to k � 1, when the

ambient language is the relational calculus. However, their example query that proved the strict inclusion of

IES(FO)k in IES(FO)k+1 had input arity 6k. Even more recently, Dong and Zhang [20] separated IES(FO)k
from IES(FO)k+1 using an example query of arity 3k + 1. However, it is open if there is an IES(FO) for

transitive closure of arbitrary directed graphs. It is also open whether the IES(FO)k hierarchy remains strict if

we restrict to queries having �xed input arity. For example, it is not known if the IES(FO)k hierarchy is strict

when restricted to graph queries.

Besides these unresolved problems, IES(FO) has the further problem of not properly re
ecting the power of

practical relational systems. This is because IES(FO) uses relational calculus as its ambient language, while

practical relational systems use SQL, which is more powerful than relational calculus. This motivated Libkin

and Wong to study incremental evaluation systems where the ambient language is NRCaggr, a theoretical

reconstruction of SQL based on a nested relational calculus [23]. We use the notation IES(NRCaggr) to denote

the incremental evaluation system where both the input database and the answer are 
at relations, but the

auxiliary database may involve nested relations. We use the notation IES(SQL) when the auxiliary database is

also restricted to 
at relations. The rationale for the IES(SQL) is that it approximates more closely what could

be done in a relational database, which can store only 
at tables. With features such as nesting of intermediate

data (as in GROUPBY) and aggregates, the ambient language has essentially the power of SQL, hence the

notation.

Many questions about the power of IES(SQL) have been answered recently. Dong, Libkin, and Wong showed

that space-free IES(SQL) is unable to maintain transitive closure of arbitrary graphs [8]. In a later paper, they

also proved that transitive closure of arbitrary graphs remains unmaintainable in IES(SQL) even in the presence

of auxiliary data whose degrees are bounded by a constant, or are extremely small compared to the size of the

input database [9]. On the positive side, Libkin and Wong recently showed that if the bounded degree constraint

on auxiliary data is removed, transitive closure of arbitrary graphs becomes maintainable in IES(SQL) [22]. In

fact, this query (and even the alternating path query which is complete for polynomial-time) can be maintained

in IES(SQL)2, because the IES(SQL)k hierarchy collapses to IES(SQL)2, that is, IES(SQL)k = IES(SQL)2 for

k � 2 [22].

Another result of Libkin and Wong [22] states that IES(NRCaggr) and IES(SQL) are equivalent. That means

the restriction to 
at tables does not incur a loss in power. Since many problems have a clearer and simpler

implementation in IES(NRCaggr), this equivalence gives us a way to \port" such theoretical implementations

to the more realistic platform of commercial SQL database systems.

One can also ask what exactly is the limit of the power of IES(SQL)? Results aimed at answering this question

have recently become available [24]. On the positive side, all relational queries expressible in second-order logic,

and hence having the polynomial-hierarchy data complexity [21], are maintainable in IES(SQL) in a uniform

manner. On the negative side, this is very close to the upper bound on the power of IES(SQL). From these

results and the practical examples from earlier sections, we conclude that practical relational databases, as well

as more advanced systems like Kleisli [6], possess remarkable power (through maintenance) in a way that was

little suspected before.
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