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Abstract In many modern enterprises, explicit business process definitions facilitate the

pursuit of business goals in such ways as best practice reuse, process analysis, process

efficiency improvement, and automation. Most real-world business processes are large and

complex. Successfully capturing, analysing, and automating these processes requires process

definition languages that capture a variety of process aspects with a wealth of details. Most

current process modelling languages, such as Business Process Modelling Notation (BPMN),

focus on structural control flows among activities while providing inadequate support for

other process definition needs. In this paper, we first illustrate these inadequacies through

our experiences with a collection of real-world reference business processes from the Aus-

tralian lending industry. We observe that the most significant inadequacies include lack

of resource management, exception handling, process variation, and data flow integration.

These identified shortcomings led us to consider the Little-JIL language as a vehicle for

defining business processes. Little-JIL addresses the afore-mentioned inadequacies with a

number of innovative features. Our investigation concludes that these innovative features

are effective in addressing a number of key reference business process definition needs.
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1 Introduction

As is the case with most other enterprises in modern society, business continually

seeks to get its work done, “faster, better, and cheaper”. In pursuit of these high-level
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abstract goals, the Lending Industry XML Initiative (LIXI), a leading Australian e-

Business industry standardization body that serves the lending industry in Australia,

asked for help from the Australian National ICT Association (NICTA) in investigating

ways in which process specifications might be useful (Georgakopoulos, Hornick et

al. 1995; Eriksson and Penker 2000; Laguna and Marklund 2004). The LIXI e-

business standards are composed of XML-based business data models associated with

message exchange patterns. NICTA’s goal is to use these data models as the basis

for defining business process specifications for LIXI that support highly interoperable

and efficient e-Business transactions within the lending industry. It is expected that

such models will be effective as the basis for improving the speed and quality of real

estate loan transactions, and in reducing their cost. It is expected that these business

process specifications will eventually be mapped to software implementations through

Web services or other technologies. Thus, this work also entails producing reference

implementations using the Business Process Execution Language (BPEL)(OASIS)

and Web services.

While the completion of a real estate loan transaction may seem to be relatively

straightforward, some reflection on it soon demonstrates that it is not. In order for

real estate to change ownership, the buyer, the seller, the bank that will provide

a loan, insurers, valuers, lawyers, real estate registries, and many others must all

become involved. There must be much communication among these parties. Some

of it must be confidential, some of it must be expedited. In addition a great deal of

documentation must be generated, directed, tracked, and ultimately stored. Clearly

the processes by which all of this is done are large and complex. But they become even

more complex when one considers that there are many ways in which complications

can arise. For example, a credit report might be late, or may contain some unwelcome

information. The valuer of the property may be unavailable, may come up with a

disappointing valuation, or may require a larger fee than originally agreed upon.

Indeed, the fact that millions of such transactions take place every year around the

world is remarkable, in view of the complexity of the processes entailed. But it is

clear that there is room for improvement in speed, quality, and cost reduction.

We note, in particular, that these processes are prone to delays that can be

frustrating, that the many parties involved sometimes have misunderstandings about

what should be expected from each other, and the various parties (especially the buyer

and seller) often lack clear insight into the state of the execution of these processes.

LIXI intends to make substantial improvements in this situation, and believes that an

approach to doing so can be built upon a set of e-business standards that are composed

of XML-based business data models (associated with message exchange patterns),

business process specifications, reference architectures, and implementations. A major

focus of NICTA’s work has been upon the LIXI business process specifications. These

are intended to be used as the basis for addressing a number of goals. In particular,

it is desired that LIXI process specifications be effective in:

• Capturing standard and best practices in the lending industry at different levels

of abstraction, in order to help industry participants become better performers.

• Indicating the specific roles that are played by people, hardware, and software

systems within the lending industry eco-system. This might be used to aid in the

training of newcomers, or in order to suggest how automation might be injected into
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the LIXI processes.

• Describing how the various business objects, especially those identified in the

industry data standards, are exchanged among process elements of the eco-system

and transformed within those process elements.

• Serving as the high-level conceptual bases for the subsequent development of

executable business processes, such as web service coordination models and executable

models expressed in the Business Process Execution Language (BPEL).

• Serving as the basis for supporting the evaluation of standards compliance for

different implementations of capabilities that might be incorporated into the standard

processes.

• Suggesting how process steps and resources might be rearranged or reallocated

in order to improve efficiency.

• Analysing sequences of process steps and coordination in order to detect defects.

• Analysing processes for vulnerabilities to fraud, and violations of privacy and

security.

In creating the business process specifications that are needed to support pursuit

of these goals, NICTA has encountered a set of process representation issues that

present significant challenges. The purpose of this paper is to describe the challenges

that NICTA faced, and what NICTA has learned about the characteristics that a

process specification notation requires in order to meet those challenges successfully.

Specifically, in section 2 we describe the difficulties we encountered in attempting

to use the Business Process Modelling Notation (BPMN)(OMG 2006) for the LIXI

project, and we describe how these difficulties indicated specific deficiencies in BPMN.

In section 3 we introduce the Little-JIL process definition language and provide ex-

amples of how features of Little-JIL seem to support successfully addressing many

of the BPMN deficiencies that had been identified. Section 4 provides a summary

and evaluation of our work. Section 5 indicates some related work in process

definition.

2 Challenges for Workflow Process Specification

In creating the business process specifications that are needed to support pursuit

of the goals of the LIXI project, NICTA has encountered a set of issues that present

significant challenges. In particular, our experiences have highlighted the need for a

process specification notation that offers facilities sufficient to support the specifica-

tion of LIXI business processes. In this section we describe the nature of these process

specification notation challenges by using a specific example to emphasize and clarify

many of our points. We then use these observations to indicate some key character-

istics required of a process specification notation if it is to be effective in adequately

specifying processes such as these.

2.1 An Example: Property Valuation

In this section we describe some details of our attempts to use BPMN to specify

a particular LIXI process, namely property valuation.

During a loan application process, a lending organization needs to determine the

market value of the loan-related property. This process is called “valuation” and is

usually conducted by a valuation firm. The process is typically represented by a work-
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flow specification that starts with an initial valuation request. The request contains

information such as the address of the property, the type of valuation (desktop or

curb-side) and the urgency of the request. The request typically progresses through a

number of processing stages. These stages are completed largely within the valuation

firm, although many of them require services and support from parties outside of the

valuation firm. Upon completion of the valuation process, the resulting valuation

report is sent back to the requestor.

While this might sound like a rather straightforward process, our exploration of

its details has demonstrated that it entails numerous additional complexities. Thus,

for example, the process must be open to monitoring and observation as it proceeds.

This is because the valuation request and the downstream activities during the valua-

tion must be visible and accessible to other LIXI business processes. In addition, most

of the valuation activities are long-lasting business transactions whose execution may

require several days. During that time, backchannel messages regarding the progress

of the valuation are exchanged upon requests or status changes. Indeed, during that

time cancellations, and amending requests, such as requests for fee renegotiations

can happen at any time. These activities are essentially sub-transactions that are

nested in various ways within the valuation transaction. Their cancellations entail

compensation activities that can become quite intricate. They may result in variant

execution paths and exceptions affecting the current sub-transactions, the valuation

transaction itself, and potentially the whole gamut of LIXI processes and involved

organizations.

Many of the valuation activities involve human-aided interactions, but this may

depend upon the automation sophistication of particular participants and nature of

the particular activities. Intermediaries who act as proxies of lending institutions and

valuation firms may also be involved. Some intermediaries are legal entities that act

on behalf of multiple valuation firms or lending institutions. Other intermediaries are

simply technical mediators who provide almost transparent infrastructure for trans-

action mediation. In all of these cases, however, it is essential that the process be able

to determine that the performer designated for each activity have the inherent ability

to carry out the activity. In case there is no performer qualified to carry out the activ-

ity, the process must devise an alternative, or proactively notify a cognizant process

participant of the difficulty. We now present details of our efforts to use BPMN to

define this process, and we indicate the specific shortcomings that we encountered in

doing so.

Figure 1 shows a top-level view of a BPMN representation of the Valuation

process, using a sub-process (indicated by a “+” symbol) Check property value as

a black box activity associated with information artifacts representing input (Prop

ID) and output (Prop Value) that are connected to processes by dotted arrows.

The starting point of the process is a start event represented as a circle, and the end

point is an end event represented as a circle. Both start and end events are con-

nected to Check property value via solid arrows representing sequence flow. This

sub-process has an intermediate event (circle with a thin, double line) Fee increase

requested attached to its boundary. This event catches exceptions thrown by re-

quests for fee increases that may occur at any time during Check property value,

which results in immediately interrupting this activity and continuing execution with
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Fee increase requested. The exception is subsequently handled through the sub-

process Handle fee increase request, with specified input (Fee Request) and

output (Fee Response) artifacts. After exception handling, control flows back into

Check property value to continue with the valuation with either the same or an

increased valuation fee. Both sub-processes are located within the pool Valuation

Firm, which specifies the business entity executing the valuation process.

Figure 1. Valuation process modelled in BPMN (top-level view)

Figure 2 shows the activities comprising the sub-process Check property value.

These activities are elementary tasks assigned to different internal roles, represented

as different lanes within the pool Valuation Firm. The task Assign valuer is as-

signed to Manager, and the tasks Perform inspection and Propose valuation

response are assigned to Valuer. The task Propose valuation response specifies

an exception, labelled Valuation contested, which is thrown when this task pro-

duces a negative outcome in terms of a rejection of the valuation. In this case, the

exception is handled by a repeated invocation of the sub-process Check property

value. Upon completion of the sub-process Check property value, control returns

to the parent process Valuation.

Figure 3 shows the details of the Handle fee increase request sub-process

from Figure 1. It involves two business entities, represented by the pools Valuation

Firm (with the lane Manager) and Client. It also involves the use of message

passing, which is represented by a dashed arrow that connects the end event of the

pool Valuation Firm with the start event of the pool Client. This is also shown

through the “envelope” icons within these events. Upon completion of the sub-process

Handle fee increase request, control returns to the parent process Valuation.

The diagrams shown here do indeed seem to provide a basic view of the valuation

process. There are, however, a number of ways in which BPMN has restricted our



42 International Journal of Software and Informatics Vol.1, No.1, December 2007

ability to address many of the complexities that are inherent in this process. We

address some of these complexities in the balance of this section.

Figure 2. Sub-Process “Check property value”modelled in BPMN

Figure 3. Sub-Process “Handle fee increase request”modelled in BPMN
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2.2 Language Semantic Issues

In defining processes such as Property Valuation we were struck by the fact

that a wide range of semantic features are needed in order to specify such processes

in suitable detail. Identifying the various activities that must be done, and the order

in which they are to be done, is a most basic requirement. But far more issues must

be addressed if processes such as these are to be specified in detail that is sufficient

for them to be used as the basis for definitive reasoning about the presence or absence

of defects, efficiency concerns, etc. The following is a brief list of the most salient of

these issues.

Dealing with Parties and Agents: One major challenge has to do with

the fact that the LIXI eco-system is so diverse that it is difficult to be precise about

which kinds of entities are to perform the various activities within LIXI processes. To

a considerable extent this is attributable to the fact that the scale of the companies

involved varies widely. Some companies are large and have sophisticated information

processing systems that can automate most tasks while others lack resources, and

thus still rely on fax and manual processing. Because of this, the activities specified

in e-Business standards can map to quite different mixes of systems and people. These

differences may depend upon resource capabilities, availability, mobility, and rules of

allocation of specific process performers to specific activities. These challenges have

indicated the need for a flexible abstraction for defining the process performers, how

they are to be allocated to activities, when they are to be allowed autonomy (and

when they will not be allowed autonomy), and the ways in which they are mandated

to participate in defined processes.

In BPMN this challenging set of representation requirements must be met by

using fixed role-based swim lanes (Russell, Hofstede et al. 2004) to define the partic-

ipation of parties in processes. There is no other way to indicate the participation of

parties in a process. Therefore it is difficult or impossible to indicate how alternative

parties might be selected to perform a task in case a primary party is unavailable.

Thus, in our example Figure 2 shows that the Manager has the task of assigning

the Valuation task to the Valuer. Assuming that there is only one Manager and

one Valuer, this specification may be sufficient. And assuming that both parties are

available to carry out these tasks, no complications should be expected to arise. But

these sorts of complications might well arise. In particular it is easy to see that there

may be many parties capable of carrying out a Valuation, and the Manager may

wish to use some criteria such as cost, skill, and availability to select from among

them. BPMN offers weak facilities for specifying how such a selection might be car-

ried out and how the binding of the selected performer is to be depicted. BPMN may

be used, for example, to specify some sort of auction as the basis for such a selection,

but the static nature of this language would restrict the bidders in such an auction

to a predefined set of Valuers. This seems unduly restrictive. We believe that this

example demonstrates the need for capability-based and other types of rule-based

mechanisms for the selection from among a set of performers whose members may

vary even as the performance of the process proceeds. This, in turn, relies upon the

availability of late-binding semantics for binding the performer that is selected for

binding to an activity.
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Exception Management: The LIXI processes we have worked with are typ-

ically characterized by the need to deal effectively and carefully with a range of con-

ditions that, while not unexpected, cause execution of the process to have to deviate

from the normative flow used to handle trouble-free cases. These exceptional con-

ditions may run the gamut from lack of needed resources, to unwelcome outcomes

from prior step executions, to the violation of stringent timing constraints. In all

such cases, it is necessary to clearly identify the exceptional condition, predict the

place(s) where it may occur, and to specify precisely how the exceptional condition

is to be handled. The need to do this has typically caused process specifications that

were expected to be clear and terse to become large, complicated, and often hard

to understand. Capabilities such as scoping and dynamic exception handler deter-

mination seem to be useful in addressing these needs, but we have found BPMN’s

support of these capabilities to be inadequate. Similarly, the ability to specify ar-

guments to exception handlers and how to proceed with further execution after an

exception is handled seem useful in addressing the exception handling needs we have

encountered. In BPMN, however, these capabilities are limited to structural control

flows and some forms of resource re-allocation (still solely through the use of statically

specified role-based capabilities (Russell, Aalst et al. 2006)).

Thus, for example, in Figure 1, the exception caught by the intermediate event

does not have any arguments associated with it. Although the diagram includes an

input artifact connected to Handle fee increase request, it is not clear how this

artifact relates to the exception. After handling the exception, there is no formal way

of specifying that control is to return to the location within Check property value

where it was thrown. These observations have focused our attention on the need for

language features that can support the clear specification of such exceptions, as well

as the clear specification of how they are to be dealt with. Such language capabilities

seem essential to support the clear and precise specification of processes such as those

arising in the LIXI context.

Elaboration and Abstraction: There are many difficulties in deciding the

level at which LIXI processes should be defined. We found that a manager may have

an idealized view of what is necessary for a process to be performed acceptably well,

but that those charged with the actual performance of a task may understand the need

to perform some tasks, and some sequences of tasks, differently. In such cases, this

difficulty can be resolved by reaching agreements about goals for the performance

of a part of a process, and then allowing performers of its activities to pursue the

goals in their own individualized ways. This suggests the value of a language that can

support the incremental provision of elaborative details of a sub-process, but can also

hide those details as is done with programming language procedural abstractions.

In addition, as a business-to-business process standard, LIXI business processes

are required to specify cross-boundary transactions and should thus leave private busi-

ness processes behind organizational boundaries where they can provide their owners

with competitive advantage. However, we found real difficulties in deciding where

to draw those organizational boundaries. Indeed there is a subtle balance between

promoting interoperability through prescriptive standards and allowing innovation

through minimal prescription. Thus, this also argues for the use of a language that

supports flexibility in decisions about how and where to add elaborative detail, and
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in supporting flexibility in deciding which process information is disclosed and ex-

changed.

Thus, levels of abstraction are of paramount importance in the specification of

LIXI business processes. Abstraction specification capabilities must enable specifica-

tion of references to internal private business processes and detailed process imple-

mentations as well as communications among different stakeholders. Every activity

must be decomposable. BPMN offers abstraction only through sub-workflows, which

do not offer adequate abstraction and decomposition semantics. Thus, for exam-

ple, sub-workflows do not incorporate semantics that enable the sub-process to be

specialized or tailored in accordance with different contexts that may be established

by the processes within which they are elaborated. In particular, BPMN does not

incorporate parameter binding semantics that could be used to implement context-

sensitive elaboration. The desirability of such process specification language features

was clearly indicated by our work on specifying LIXI processes.

Reconciliation of Control and Data Flow: As noted above, LIXI seeks

to develop both business process specifications, and data model standards that are

based upon the consistent use of a controlled vocabulary and XML schemas. There

is then a resultant need by LIXI managers, participants, and developers for facilities

that assure that these representations are consistent with each other. At the least,

LIXI requires support for generating cross-referencing of the data artifacts that are

used to annotate process specification control flows with the data items defined in

the LIXI data models. LIXI process representations should also express the precise

data and artifacts used by each activity and should use names and notations that are

consistent with those in the LIXI data models.

BPMN creates some obstacles to doing this clearly and completely. In particu-

lar, BPMN requires that the flow of artifacts between activities can be specified only

as annotations on control flow edges, and can take place only within defined scopes.

But our work in defining LIXI processes demonstrated that this requirement is too

restrictive. We encountered cases where data artifacts must flow between two activi-

ties that are distant from each other in terms of process control flow. In these cases

it was necessary to show the artifacts must then move through many intermediate

activities that do not deal with these artifacts. In some cases, the artifacts should

indeed not even be seen by these activities in order to preserve their confidentiality.

Thus, for example, in our valuation example we note that there are situations in which

the valuer may need to pass or receive a message from an entity that is not an ac-

tive participant in the valuation process (eg. the valuer’s manager). BPMN requires

that such messages pass hierarchically, which requires the passing of such messages

through activities that have no need for the information, and that may indeed vio-

late privacy requirements by having access to the information. Clearly, it would be

desirable to incorporate a more flexible specification mechanism to allow specifying

that data artifacts must flow directly between activities, regardless of their control

flow proximity.

In addition, we note that a LIXI data model will necessarily have to indicate

the decomposition of larger data aggregates into smaller subunits. Indeed the con-

solidation and decomposition of such larger aggregates can be expected to take place

through process control. Unfortunately, BPMN lacks facilities for showing how pro-
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cess activities perform such consolidation and decomposition, as it treats all data

artifacts as being atomic. Thus, for example, in valuation it is usually the case that

many factors are taken into consideration, and the eventual valuation is obtained

by considering, consolidating, and structuring large amounts of information. The

quantitative value of a property is typically supported by a large quantity of highly

structured information including details of the property, its history, surroundings, and

market forces. Ideally BPMN would be useful in indicating how the various activities

and sub-process structures are used to create those many items of information and

structure them into the final artifact aggregates. But as BPMN supports only the

annotation of atomic data artifacts, it is quite difficult to use BPMN to define the

way in which structures of BPMN activities contribute to the creation of (potentially

different) complex structures of artifacts.

Transaction Management: The LIXI business processes are large, complex

and long-lasting. A real estate loan process lasts weeks if not months during its

application stage and requires servicing and refinancing spanning decades. The long-

lasting nature demands process definition capabilities for being precise about the

constraints that must be met and about compensational policies that are needed

when these constraints are not met. Indeed, many LIXI processes are best thought of

as long transactions. These long-lasting transactions are often decomposed into sets

of nested sub-transactions that may themselves be long-lasting(Russell, Holfstede, et

al. 2007). In such cases, the compensation policies may become particularly complex,

and may vary depending upon contexts and scopes. This is complicated further by

the fact that some LIXI transactions are performed by participants from different

groups and organizations. This creates a more acute need for clear communication

and understandings of such issues as rollback and compensation.

All of this points to the need for process language features that can support the

specification of long transactions and nested transactions. The lack of such features as

integral parts of BPMN required that we attempt to create them out of the semantic

features that are available. The resulting process definitions are less clear, precise,

and accurate because of this.

Variation: The variety of participants in these processes leads to still further

difficulties in that we have found that these participants often disagree about both

the nature of the process and their objectives for it. Thus, for example, it is not

unusual for parties in LIXI to want complexity to reside in others’ parts of the over-

all process, and to want information to be shared, but they often do not want to

share their own information. Technical solution companies provide and favour inter-

mediary gateways and custom-built applications, while smaller parties typically want

commoditized applications and to remove intermediaries. This makes it very diffi-

cult for a LIXI reference business process to be defined by a single structured static

process. Thus, attempts to arrive at one fixed all-encompassing process definition

often seemed unrealistic, leading us to believe that instead it might be preferable to

define a collection of variants on a core process, or a process family, in order to span

an expectable spectrum of variation in processes that are caused by factors such as

environmental constraints.

In BPMN, however, expressiveness of process variability is limited to static

structural enumeration of possibilities. Some amount of variation can indeed be
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achieved through parameterisation of the specification of activities, achieved through

implicit data sharing. But this is a relatively weak capability. Far more preferable

would be an approach that supports the specification of overall process properties or

pre/post/invariants for individual activities, and the use of such properties and in-

variants to generate variants. The absence of such features in BPMN limits its power

to specify the breadth of process variation that our experiences in LIXI indicate to

be necessary.

Observation and Monitoring: There are a number of reasons why LIXI

processes must be readily observable. First, as noted above, the participants in the

processes (especially the buyer and seller) have strong interests in seeing that the

needed transactions are taking place in a timely fashion. In addition, however, as the

real estate industry is subject to considerable amounts of governmental supervision, it

is also important for regulators to have clear visibility into the transactions. For these

reasons, it is important for LIXI processes to incorporate features that can facilitate

such scrutiny. Features that support the checking of adherence to stated properties

are useful in meeting such needs. The flexibility to insert such checks at specified

strategic points in the process also supports such needs.

Timing: As has been noted, a key goal of this project is to improve the speed

at which LIXI processes execute, thereby reducing the amount of time required to

conclude real estate transactions. Thus it seems essential to include specifications

about time in the definition of a LIXI process. Specification of the time limits on

executions of steps in the process seems important, and mechanisms for dealing with

violations of those time limits also seem important. BPMN incorporates some support

for specification of timing considerations. Our experience, however, indicates that

the existing capabilities are not sufficiently powerful to support the specification of

important features of LIXI processes.

Scaling to Handle Size and Complexity: We have found that the processes

to be specified for LIXI are invariably very large and very complex. We had expected

the processes to be large, encompassing many steps, dealing with a wide range of

artifacts, and entailing the coordination of many types of participants. However, we

were surprised to find that the processes were larger still. Indeed much of the apparent

size of these processes seems to stem from the large number of intricacies in dealing

with the many complications that may arise in carrying out a process that seems

quite straightforward, until examined in close detail. This observation underscores

the importance of using a process specification language that can scale up to support

the specification of large and complex processes.

2.3 Other Critical Issues

If, as previously suggested, the top-level goals of our work are to help the Aus-

tralian real estate loan industry carry out its work “faster, better, and cheaper”, then

the foregoing list of process specification semantic issues is only the beginning of a list

of desiderata for specification notations. Incorporation of these semantic features into

a suitable process specification language should enable us to specify LIXI processes

acceptably well. But it is important to recognize that such a specification, while use-

ful and important in its own right, must also serve as the basis for other activities,

such as analysis. The need to support these additional activities creates additional
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desiderata for the process specification language. In this section we address two such

desiderata.

Clarity: The preceding list of semantic features needed in order to support

the adequate specification of LIXI processes suggests the desirability of a large and

complex process specification language. But it is important to also recognize the need

for such a language to be clear and transparent. Ultimately the processes that we

define in this project must be made very accessible to loan industry representatives,

because these representatives are the people who must certify that the specifications

are accurate reflections of the actual processes. This establishes a requirement that

the process specifications be readable and understandable by people who may lack a

strong background in technology.

We have found that the elicitation of LIXI processes is an iterative process in

which specifiers read documents and interview domain experts first, then create speci-

fications of the processes, but then must validate that their specifications are accurate.

Validation of the process specifications entails presenting them to the domain experts

in order to elicit either confirmation of accuracy, or observation of inaccuracies. Either

requires that the domain experts are able to grasp details of the process specifications.

It is simply not possible for this to happen if the process specifications are in notations

that cannot be understood by loan industry experts.

These observations strongly suggest the value of graphical or pictorial specifica-

tions. Indeed we have noted that many of the most commonly used process specifi-

cation notations encompass at least some graphical notations.

Rigor: While the use of some sort of graphical notation seems important in

order to support clarity and comprehensibility, this must not be at the expense of

sufficient rigor to support reasoning. We note that quality and speed improvements

are key goals of this project. Thus we must be able to subject process specifications to

analyses whose objectives include determination of the presence or absence of defects

and the presence or absence of such timing concerns as bottlenecks. There are a large

number of analytic approaches that can be used to reason about process specifications,

but if the results of such analytic reasoning are to be definitive, then the process

specifications themselves must be stated in terms of a rigorous formalism(Cobleigh,

Clarke et al. 2000; Chen, Avrunin et al. 2006). Lack of rigor in process specifications

leads to lack of definitiveness in analytic results.

In this paper we advocate the use of process specifications that are stated through

the use of a process specification notation that is well defined, and suitable for rigorous

analyses that yield definitive results. We distinguish such process specifications by re-

ferring to them as process definitions, intending to emphasize that process definitions

are process specifications that are stated in terms of a rigorously defined specification

notation.

3 A Comparison Between the Use of Little-JIL and BPMN for Defining

Business Processes

In order to address the business process definition needs we have identified, we

sought more powerful process definition languages from the research community. In

this section we demonstrate the potential contribution of such a research process
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definition language. This section introduces the Little-JIL process definition language

and then demonstrates its use in defining the valuation process. The section concludes

with a summary of the ways in which this language offers advantages over BPMN in

the areas noted in section 2.

3.1 An Overview of Little-JIL

Little-JIL is a language originally developed for defining the processes by which

software is developed and maintained. Indeed it has been used to define processes for

guiding novices in developing Object-Oriented designs (Cass, Osterweil et al. 2005),

and for describing the concept of rework in software development (Cass, Osterweil

et al. 2003). In addition, however, Little-JIL has also been used to define medical

processes (Clarke, Chen et al. 2005; Henneman, Cobleigh et al. 2007; Osterweil,

Avrunin et al. 2007), scientific data processing processes(Ellison, Osterweil et al.

2006; Boose, Ellison et al. 2007), electronic government processes (Osterweil, Schweik

et al. 2004; Clarke, Gaitenby et al. 2006), and processes for the design of mechanical

objects (Shao, Lin et al. 2007). Wise (Wise 2006) provides full technical details of

the language.

A Little-JIL process is defined by specifying three components: an artifact col-

lection, a resource repository, and a coordination specification. Each addresses a

different area of concern. The artifact collection contains the various items, initial,

intermediate, and final, that are the focus of the activities carried out by the process.

The resource repository specifies the agents and other capabilities that are available

to support performance of the activities. The coordination specification ties these

together by specifying precisely which agents, aided by which supplementary capa-

bilities, will perform which activities upon which artifacts at which exact time(s).

Because of its central role in specifying all of this, the coordination diagram is gener-

ally the central focus of a Little-JIL process definition.

A Little-JIL coordination diagram is depicted as a hierarchical decomposition

of steps, although a Little-JIL step definition is best thought of as a procedural

abstraction. Each step has a name and a set of badges to represent its various features.

Thus, for example, a step’s interface badge represents the type of agent that is to be

responsible for execution of the step. The interface badge also represents the flow

of arguments between the step and its parent, and the step and its children. Other

badges represent control flow among sub-steps, the exceptions the step handles, etc. A

step with no sub-steps is called a leaf step and represents an activity to be performed

by an agent, without any guidance from the process definition. It is important to

note that even though Little-JIL is a pictorial language, its semantics are precisely

defined in terms of a finite state machine meta-modelling notation. Specifically, the

behaviour of each of Little-JIL’s step kinds is defined precisely using a detailed finite

state machine. These finite state machines define the precise ways in which each

step kind performs such key activities as the binding of parameters, acquisition of

resources, and communication with substeps and ancestor steps.

We have found that a number of features of Little-JIL make it rather unique,

and are particularly useful in addressing the needs of the LIXI project. Among the

key features of Little-JIL that distinguish it from most process specification languages

are 1) its use of abstraction to support scalability and clarity, 2) its use of scoping
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to make the use of step parameterisation clear, 3) its facilities for specifying both

artifact and data flow in a single notation, 4) its extensive capabilities for defining

how to handle exceptional conditions, and 5) the clarity with which iteration can be

specified and controlled. These capabilities allow Little-JIL to address many of the

previously enumerated process definition needs relatively more successfully. To make

this clearer, we now show how Little-JIL can be used to define part of the valuation

process that was introduced in the previous section of this paper.

3.2 A Little-JIL Definition of the Valuation Process

The purpose of this process, as noted above, is to show how managers, valuers,

and clients collaborate to arrive at a valuation of a property. As will be seen, this

entails some iteration, and must take into account the participation of various agents,

as well as the possibility of handling contingencies of various kinds. Figure 4 defines

the high level of this process, which we refer to as Check Property Value. We define

this as a hierarchical decomposition into three substeps, Assign Valuer, Perform

Inspection, and Propose Valuation Response. The right arrow in the Check

Property Value step bar indicates that these three substeps are to be executed

in sequence. Little-JIL also supports specifying that substeps can be executed in

parallel (denoted by two parallel lines in the step bar), and the Perform Inspection

substep (elaborated in Figure 5) is an example. The substeps of a parallel step can

be executed in any order, including any arbitrary interleaving.

Figure 4. Valuation process modelled in Little-JIL

As is the case in BPMN, annotations on the edges (in the case of Little-JIL

these edges are those that are between the parent step and its children) can be used

to define the flow of process artifacts (but, note that the flow of artifacts can also

be specified in other ways, as we shall see shortly). Thus, in particular, note that

the process begins with the flow of an artifact, Property Input Information,

from Check Property Value to Assign Valuer (the downward arrow indicates

that this artifact is passed from parent to child). Execution of the next substep,
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Perform Inspection, also receives Property Input Information as an input,

and in addition produces Inspection Data as an output (note the upward pointing

arrow next to this artifact). Note that the elaborated Perform Inspection step in

Figure 5 also has a channel declaration, channel (denoted by the two-sided arrow),

that carries artifacts that are of type Data (denoted by : Data). Channels allow

for communication between steps that are not directly connected in the coordination

hierarchy and are accessible by all steps within the scope of the step where they are

declared, in this case the Add Inspection Data Item and Compile Inspection

Data steps. The first substep, Add Inspection Data Item, writes to the channel,

and the latter, Compile Inspection Data, reads from it (Little-JIL incorporates

annotations to specify this, but these annotations are omitted from this diagram for

the sake of avoiding clutter).

Thus, Add Inspection Data Item receives Property Input Information

as input from its parent and produces a datum of type Data as output. However,

instead of passing the output to its parent, Add Inspection Data Item writes the

output to channel, from which Compile Inspection Data reads it as input. Note

that this causes this data to flow directly between these two steps. This enables the

process to keep the data from being accessible by the Perform Inspection step,

which could entail a violation of privacy requirements. On the other hand, note that

Compile Inspection Data produces Inspection Data as output, but in this case,

the process definition specifies that this artifact is passed on to its parent step making

use of hierarchical data flow specification semantics.

Figure 5. Perform inspection step elaboration

Note also that the edges of both of these steps have an additional annotation,

namely a plus sign. This indicates that each of these steps may be executed multiple

times and must be executed at least once. Thus, Perform Inspection effectively

consists of adding single inspection data items to a channel in the Add Inspection

Data Item step and pulling these data from the channel and compiling them in the

Compile Inspection Data step. This is an example of how Little-JIL can be used to

define how a higher-level data aggregate can be built by composing it out of lower-level

artifacts. The structure of the higher-level aggregate in this example is not specified
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directly, but can be specified by elaboration of the details of the Compile Inspection

Data step. Note that Little-JIL can be used to define the process for constructing

complex aggregates whose structure might be arbitrarily complex, as defined in the

artifact repository that is an integral part of a Little-JIL process definition.

Note also that the specification of artifact flows in Little-JIL is done both by

annotating edges as shown, and also by specifying the input/output behaviour of a

step by attaching to the step’s external interface icon (the round circle atop each

step) an enumeration of the artifacts that are taken as input artifacts, and those that

are produced as output artifacts. As noted above, it is useful to think of a Little-JIL

step definition as an abstract procedural specification. Thus these annotations can

be thought of as parameter specifications that, when instantiated and bound to the

procedural abstraction transform it into a procedure invocation instance, with the

artifact instances being taken as the arguments to the procedure instance. This is

a principal abstraction mechanism in Little-JIL. As with typical abstraction mecha-

nisms, it facilitates the reuse of procedural specification information, and serves to

reduce the size of process definitions, thus supporting scalability.

Figure 4 also shows that each step is annotated with a specification of the type

of agent that is required in order to perform the step. Thus, note that the agent

for Assign Valuer is of type Manager, while the agent for Perform Inspection

is of type Valuer. In all cases, these specifications indicate the type, rather than

the specific instance, that is required to perform the step. The type specification is

passed at runtime by the Little-JIL interpreter to a resource repository that uses the

specification to select the specific agent that will be assigned to perform the step.

Both Figure 4 and 5 also show that each step incorporates the ability to handle

exceptions. Thus, note that Check Property Value and Perform Inspection

each has substeps, connected to the parent by edges emanating from the X on the

right of the step bar. Each such edge is annotated (using bold face type) by the type

of the exception that triggers execution of the step on its end.

Note, for example that an exception handler substep of the Perform Inspection

step in Figure 5 is in place to handle the Request Fee Increase exception. In this

case, the exception is raised by the execution of one of the substeps of Perform

Inspection and arises when the agent decides that the fee offered for the valuation

is inadequate. This exception is handled by another step, namely the Handle Fee

Increase Request step, and in this case we see that its invocation has defined

arguments, namely Fee Request (as an input) and Fee Response (as an output).

Finally note that the specification of the type of the exception also includes an arrow

that points to the right, which indicates that, once the exception has been handled,

control returns to the location where the exception was raised. This is as needed,

indicating that the outcome of the request was a response to the request for a fee

increase, at which time execution must resume. This also demonstrates how Little-

JIL makes use of scoping for precise and powerful exception handling—since the

exception is thrown in the context of Perform Inspection, it is also handled within

that scope instead of at the root step.

Note also that Handle Fee Increase Request is a step that is defined in further

detail by the diagram shown in Figure 6, illustrating the use of hierarchical decompo-

sition, but also indicating that the elaboration is indeed an invocation of a procedure,
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taking the indicated artifacts as its arguments. Thus, note that the annotations on

the circular external interface icon show that the arguments are assigned as the values

of the parameters, Request (an input), and Fee Response (an output). This step is

decomposed into two substeps, and one exception handler substep. The first substep

is Manager Discussion, and the second substep is Client Consideration. Each

is labelled with an appropriate type of agent and the appropriate artifact flow speci-

fications. Note that each has a postrequisite (denoted by a triangle pointing upward)

that specifies what is to be done in case the agent does not go along with the request.

Each postrequisite throws the Request Denied exception, which is handled as the

invocation of the procedure that is represented by the appropriately labelled exception

handler. In this case, there is no step required to handle the exception, only the bind-

ing of the value of the Fee artifact to the Fee Response artifact (this is indicated

by the documentation shown in italics), and by the right arrow at the end of the ex-

ception edge, which indicates that after this binding, control continues as though the

parent step, Handle Fee Increase Request, has concluded, at which time control

is returned to the part of the process depicted in Figure 5. Finally note that if nei-

ther substep raises an exception, then the second substep, Client Consideration,

terminates by binding the value of the Request argument artifact as the value of

the Fee Response artifact, properly reflecting that the request has been approved.

Figure 6. Handle Fee Increase Request modelled in Little-JIL

The diagram in Figure 4 demonstrates yet another important feature of Little-

JIL, namely the ability to assign deadlines to individual steps in order to specify

timing requirements and limitations. In this case, the Propose Valuation Re-

sponse step has a deadline associated with it, stating that the step must complete

within one day of the time at which execution of the step started. If the deadline

expires and the step has not completed, a Deadline Expired exception is thrown.

In this case, the exception is handled by having the Manager contact the Valuer to

discuss the delay and then, at the discretion of the Manager, recursively invoking

the Propose Valuation Response step. Note that such a recursive invocation will

occur within a context that is set by the prior failure(s) of the step on previous invo-

cation(s). In this case, the Manager is giving the Valuer another day to complete
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the Valuation Response. The process specifies as an alternative (note that this

exception handler, which is not shown here due to lack of space, is defined as a choice

step) that the Manager could also recursively invoke the Check Property Value

step (i.e. thereby reassigning the valuation to a different Valuer). In either case, the

process specifies that all information about the Valuer agent who missed the deadline

is appended to the Property Input Information artifact in order to provide more

complete information about the context in which the reassignment is made. This

example also illustrates the availability of context in Little-JIL’s exception handling

mechanism. Thus, for example, when the Check Property Value step is reinvoked,

the information about the Valuer who missed the deadline is part of the invocation

context, and so it is available to the Manager. Presumably when he or she executes

the Assign Valuer step within the new context, this contextual information will be

used to assure that the job is not reassigned to the original Valuer.

This availability of context is also apparent in the case of a Valuation Con-

tested exception being thrown, in this case by executing the postrequisite (indicated

by an upward pointing triangle) of the Propose Valuation Response step and

getting a negative outcome (i.e. that that valuation has been rejected). Figure 4 has

attached to it an informal comment (indicated by the use of italics) noting that this

postrequsite is in fact an entire step, Evaluate Valuation Response, and that it

is to be executed by an agent of type Manager. When a Valuation Contested

exception is thrown, information about the rejection is included in rejection ratio-

nale. The response to this outcome is the execution of the step at the end of the

exception handling step bearing the Valuation Contested label. Note that this step

is a recursive invocation of the Check Property Value step, which passes as input

the original information contained in Property Input Information, appended with

the rejection rationale. Thus, the step is reinvoked in the context of the rejection

of the valuation, thereby enabling the agent assigned to perform the reevaluation

to understand that this is being done in the context of this rejection. Finally note

that there is a check mark under the Valuation Contested label, which indicates

that once the exception has been handled, control continues as though the parent,

Check Property Value, has completed. This also effects the rolling up of the nested

recursion.

In this short example, we see that Little-JIL is capable of clearly and tersely

capturing very complex control flow variation, and meshing it successfully with arti-

fact flow. The handling of the request for a fee increase indicates this nicely, showing

how a variety of decisions will affect both data and control flow. It also shows how

powerful exception handling helps a great deal. In this case we show how the excep-

tion can arise in different places, but is directed to the same exception handler, which

itself has further exception handling capability. Despite this structure, it is clear how

execution is guided back to the right location before proceeding.

3.3 Comparison to BPMN

The preceding discussion of the Little-JIL definition of the Valuation process

has suggested some ways in which this language offers advantages. In this section we

summarize and expand upon those advantages, addressing the issue areas raised in

section 2.
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Dealing with Parties and Agents: As noted above, BPMN does not have

facilities for stating clear definitions of resources. Thus, its mechanism for specifying

agents is very primitive. In particular, there is no way to specify dynamic agent allo-

cation based on capabilities; rather, there is a static ‘role’ feature, achieved through

pools (e.g. for different organizations) or swimlanes (e.g. for different departments

within an organization). Agent specification is very important in our highly complex

LIXI processes since dynamic allocation of agents based on their capabilities and the

execution context facilitates resource management and optimisation. By enabling

substitutability of agents at run-time, the process can often proceed satisfactorily

even if a specific agent is unavailable, as long as there is another agent who has the

necessary capabilities to provide the services requested. This feature is very important

for modelling real business processes since task assignment changes occur regularly in

practice and should be considered as an integral part of the process.

Our example has shown that dynamic assignment of agents to steps in Little-

JIL is an inherent part of this language. Each Little-JIL step must incorporate a

specification of the capabilities required for its completion. One such specification

is of the agent, namely the entity responsible for execution of the step. In Little-

JIL this is a specification of a type, rather than an instance. At runtime this type

specification is passed to a resource manager, whose job is to receive the request for

a type of agent and then use that request to query its base of resource instances

for one that is suitable for meeting the request. In general, a given request might be

satisfied by any one of a number of resource instances. It is assumed that the resource

manager is responsible for maintaining information that specifies details such as the

behaviours, capacities, and quality characteristics of the various resource instances.

Differences in behaviours and other characteristics can then be used by the resource

manager to enable it to thereby be better able to select the resource instance that is

best suited to meet a request. As this examination and selection of resource instances

is done at runtime, the selection of the agent instance can reflect the state of the

process execution, details of availability of agents, etc. Indeed agent behaviours,

such as skill level, capacity, and other behavioural characteristics may themselves

change during process execution. If this information is maintained and updated in

the resource repository, then agent selection decisions are still better able to adapt

to changing process execution conditions. Thus, a resource management system that

maintains careful, complete, and up-to-date specifications of its resource instances is

an important component of an executing Little-JIL process.

BPMN makes use of message passing to show artifact flow, but the addition of

artifacts do not alter the process with respect to its meanings or analysis. Thus,

additional event constructs have to be used to ascertain process properties relating to

the dataflow. Artifact flow and resources are an integral part of a Little-JIL process

definition and significantly alter the process meaning.

Exception Management: In the previous section we noted that LIXI pro-

cesses, like most other processes, must often deviate from straightforward processing

in order to deal with contingencies and abnormal situations. Doing so is non-trivial,

involving at least 1) the recognition of the need to deviate from normal processing,

2) a prescription for how to deal with the abnormal situation, and 3) specification of

how to resume processing after handling of the abnormality. Our example contains
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only a small sample of such exceptional situations. We found that LIXI processes

have a plethora of them. As noted above, BPMN has very few facilities for dealing

with exceptions, thereby making it difficult to specify actual processes in the needed

full detail.

Little-JIL provides powerful exception-handling mechanisms. As noted above

any step may throw an exception. In addition each step may (optionally) be pre-

ceded by a pre-requisite and/or followed by a post-requisite. Each requisite can also

throw an exception. Exceptions in Little-JIL are typed. Thus a step and/or requi-

site can potentially throw more than one type of exception. Exceptions are caught

by exception handlers that are also typed in order to assure that the right handler

handles the right exceptions. Exception handlers in Little-JIL are defined as substeps

of a parent step and handle exceptions that arise in the scope that is defined by the

parent step. Thus Little-JIL exception handlers are context-aware, and can provide

more tailored and specific exception handling services. Parameters are also thrown

when a Little-JIL exception occurs, thereby enabling the exception handler to be

given details of the exceptional situation, and adding to its versatility and ability to

provide tailored responses to the exceptional situation. In addition, Little-JIL offers

a choice of four different continuation semantics (complete, continue, rethrow, and

restart, two of which–complete and continue–are illustrated in Figure 4), allowing the

specification of four different ways in which execution can continue after the exception

has been handled.

Elaboration and Abstraction: BPMN provides good support for elabora-

tion in the form of sub-processes, which are effective in allowing for the incremental

provision of increasing levels of process detail. We note, however, that BPMN process

activities and sub-processes are not true abstractions. Although it might be desirable

to instantiate them in multiple usage contexts, in which their functioning would be

adapted to the context, this is not possible in BPMN. BPMN sub-processes do not

provide capabilities for scoping, parameter passing and control from parent processes.

Ultimately, this impairs the readability of the flowchart format that BPMN uses.

Processes in Little-JIL are also hierarchical decompositions of steps. But Little-

JIL steps function very much as procedures. Thus, a Little-JIL step definition can be

reinvoked multiple times, and from different contexts. The step definition incorpo-

rates a specification of the input and output artifacts, which function very much as

procedure parameters. Each step invocation establishes a context, and contexts may

differ in a variety of ways. For example each step invocation provides a different collec-

tion of arguments that are to be passed into and out of the step. Different invocations

also provide different sets of exception handlers, thereby supporting the specification

of different reactions to a given exception type in different contexts. Different step

invocations may also have different agents.

The availability of powerful abstraction capabilities in Little-JIL provides the

expected advantages of comprehensibility and reusability. Reusability in turn leads

to terseness without loss of clarity, and hence to scalability. Our experiences in using

Little-JIL seem to have benefited from these advantages.

Reconciliation of Control and Data Flow: In the previous section we

noted that BPMN has limited capabilities for integrating data flow specifications.

Data flows can be represented only as annotations along control flow edges in BPMN.
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In Little-JIL, however, the artifacts that annotate edges are arguments to the pro-

cedures represented by the step at the bottom of the edge. This provides a strong

basis for understanding just how the process activities are dealing with artifacts. In-

deed, substeps are essentially subprocedures in Little-JIL, which makes it particularly

convenient to represent the way in which lower level activities deal with the compo-

nents of higher level artifacts that are aggregates. As noted above BPMN does not

support such representation of how its activities deal with data aggregates and their

components.

In addition, it has been noted that the complexity of some processes sometimes

requires that artifacts be shared between activities that are not directly connected

within a BPMN coordination diagram. Creating artificial scopes in order to allow

for such sharing of data results in the data being available to intermediate activities,

which may be undesirable, and be confusing to read. Instead, Little-JIL provides a

channel mechanism to allow data flow to cut across the coordination hierarchy (as

illustrated in Figure 4). Channels provide flexibility for defining large processes with

complex data sharing protocols, while keeping the process definition clearer and easier

to understand.

Transaction Management: We previously noted that many of the LIXI pro-

cesses can be viewed as transactions, but that they are typically long transactions that

often have sub-transactions nested within them. Thus, for example, the valuation pro-

cess can readily be viewed as a transaction, which terminates with a valuation being

delivered and payment being provided to the valuer. Nested within that transaction

are other sub-transactions, one of which is modification of the amount of payment

to the valuer. This sub-transaction may be undertaken when the valuer is unhappy

with the amount of payment. The sub-transaction must terminate before the valu-

ation transaction does. If the sub-transaction ends without an agreement, then the

valuation transactions containing it must abort. We have encountered a number of

other examples of transactions, many of them nested, in the LIXI processes.

Neither BPMN nor Little-JIL has adequate facilities for specifying transactions.

BPMN offers facilities for a small number of fixed responses (such as execution of

a rollback exception handler) to contingencies, but lacks important dimensions of

flexibility. Little-JIL offers more facilities that seem more useful as they provide for

greater flexibility. Little-JIL’s exception management facilities, for example, offer

a way to provide for a wider variety of approaches to compensation and rollback

that could be used to provide features of many kinds of transactions. In addition,

Little-JIL’s substep semantics, combined with exception management can be used

to synthesize specific nested transaction capabilities. We note, however, that even

in Little-JIL these features must be specifically created. It seems far preferable to

have transaction semantics incorporated as an integral well-defined part of a process

definition language. Such semantics would be of considerable value in defining LIXI

processes such as Valuation.

Variation: As noted earlier, our experience suggests that there are often sit-

uations in which different performers have different views of the same process, and

indeed may wish to carry out the process differently. In the case of the valuation

example, we have shown one specific way of performing this process, but acknowledge

that there are indeed other ways in which it could be done. To some extent these
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differences can be concealed as elaborations of activities that are simply not shown.

In other cases, however, such variations as differences in ordering of activities, ways

of handling exceptions, and strategies for substituting for unavailable performers can-

not (and indeed should not) be concealed. For these reasons it seems useful for a

process notation to incorporate mechanisms that support the specification of process

variation.

Little-JIL provides several mechanisms to accommodate design-time variations

since static enumeration of the different variants is not only impractical but it also

results in cumbersome processes that are very difficult to analyse. As previously

mentioned, a Little-JIL process definition consists of a coordination specification, an

artifact collection, and a resource repository. Since there is a clear separation of

concerns, it is easy to achieve variation by making changes to each of these three

elements, for example by making changes in agent behaviour, artifact structure, and

task elaborations(Simidchieva, Clarke et al. 2007).

Since every step in Little-JIL is assigned to an agent who will execute it, alter-

natives in the specification of the agent, or in the description of the agent’s behaviour

will change the process thereby creating process variation. Likewise, the artifact col-

lection is an integral part of a Little-JIL process definition and changing the structure

of an artifact, also creates process variation. Artifacts can be modified by adding or

removing different fields according to the context. For example, one valuation pro-

cess may wish to accord anonymity to the valuer, and another may not. This type of

variation can be achieved in Little-JIL simply by either excluding or including a field

in the valuation report that contains the name of the valuer.

Both BPMN and Little-JIL can accommodate the desire for variation in the ways

in which the lowest level activities in a process decomposition are defined. In BPMN

the bottom sub-processes are to be performed in ways that are not specified, presum-

ably leaving the performers latitude to create their own process variants. Similarly,

leaf steps in Little-JIL are not decomposed further so when an agent is assigned to

execute a leaf step, there are no restrictions and the agent has full freedom in deciding

on how to execute the step. In both cases, creating variants by task elaboration is

achieved by interchanging an elaborated sub-process for a bottom level sub-process.

Observation and Monitoring: In both BPMN and Little-JIL it is possible

to observe the progress of process execution and thereby monitor the process. In

either case this can be done by embedding in the process specific activities that

report on status and progress. Little-JIL has specific language features designed

to facilitate this. In particular, each step may have a specified pre-requisite and

post-requisite. Requisites are designed specifically to monitor for adherence to, or

violation of, stated conditions. Thus they seem to strongly facilitate process execution

monitoring. It is expected that requisites will embody executable checks for adherence

to desired conditions, either those required for safe execution of a step, or those

required as evidence of adequate performance of the step. Violation of a requisite

activates another Little-JIL language feature designed to facilitate monitoring, namely

the invocation of an exception. Thus requisite violation will cause the immediate

performance of an exception handler that might send a message, or create some other

auditable record that can provide a full description of the event. All of this remains

possible in BPMN, but requires the use of lower level language features that make
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this more difficult and harder to read.

Timing: We note that every process has timing constraints of some sort. In

the LIXI environment, these constraints can be severe, some of them reflecting leg-

islative mandates for promptness and responsiveness. Neither BPMN nor Little-JIL

provides adequate facilities for dealing with timing constraints in processes. Little-

JIL provides the ability to state a deadline for the performance of a step. This seems

useful for assuring that the lowest level activities are not allowed to languish. In case

the deadline time expires, a timer exception is thrown which enables the process to

proceed forward through the execution of the appropriate exception handler. Unfor-

tunately, however, Little-JIL does not incorporate any facilities for interrupting the

agent that is executing the step whose time limit has expired, nor for retrieving any

resources that had been allocated to that step. Thus, Little-JIL offers some useful ca-

pabilities, but far more powerful and flexible timing specification and control features

are needed.

Scaling to Handle Size and Complexity: The brief example included in

this paper is not a good vehicle for indicating the need for scaling, or effective ap-

proaches for supporting it. Valuation is only one small process within the far larger

and more complex process for seeking, approving, extending, and then servicing a

mortgage loan. Our work has explored many of other sub-processes of this large pro-

cess, and this work has made it clear that these processes become very large very

quickly, and that their size can be a significant obstacle to human comprehension.

Thus mechanisms for supporting the scalability of process definitions are needed.

Earlier we have indicated that Little-JIL incorporates mechanisms for imple-

menting abstraction and that they seem effective in supporting scalability. Certainly

experience with programming language design strongly indicates that languages of-

fering strong support for abstraction tend to also support scalability correspondingly

strongly. Our early experiences in reuse of process steps in Little-JIL suggests that

these lessons from programming languages are also applicable in the domain of process

definition languages.

Clarity: BPMN uses a flowchart representation to depict processes. Flowcharts

and much of the other BPMN notation are very intuitive to business users. The lan-

guage also incorporates a variety of constructs for different types of events, gateways,

and activities, as well as different connectors for control and data flow. This re-

sults in pictorial depictions of processes that users find quite comfortable and easy to

understand.

Little-JIL uses a pictorial notation that bears little resemblance to the more usual

flowgraph, finite-state machine, or Petri Net notations. It uses a very small set of

constructs, which are combined in different ways to define process steps and compose

them into higher levels of process abstraction, thereby offering convenient ways to deal

with higher levels of process complexity. The expressiveness of Little-JIL does not

seem to us to be compromised by its smaller set of fundamental constructs. Moreover,

this feature makes Little-JIL easy to learn so that a beginner developer would not

be at a disadvantage because he or she is not familiar with all the constructs the

language may offer. In addition, our observation has been that newcomers to this

notation find it relatively easy to learn so that they are able to participate actively in

reviews of Little-JIL process definitions usually within the first hour of their exposure
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to it.

Rigor: We have noted that a top-level goal of our project is to produce process

definitions that help the Australian loan industry perform its work “faster, better, and

cheaper”. Our view is that this entails the use of process definitions as devices for

the direct support of iterative incremental (loan industry) process improvement. The

canonical process improvement loop begins with creation of a process, then continues

with evaluation of the process aimed at identifying defects, efficiency obstacles, etc.,

then proceeds to removal of such defects and obstacles from the process, and reeval-

uation to assure that the removal has succeeded while nevertheless not introducing

subsequent defects.

This summary of the process improvement process makes it clear that analysis

of process representations is a central activity. This, in turn, emphasizes the im-

portance of having process definitions that are defined precisely, because definitive

analysis is possible only when the meaning of a process representation is precise and

unambiguous.

We have found that BPMN is not sufficiently precisely defined, as it incorporates

a number of constructs whose interpretation is ambiguous. As a consequence BPMN

process definitions cannot be subjected to definitive analysis, and are correspondingly

less useful in the sort of process improvement process that we have outlined.

Little-JIL, on the other hand, is a rigorously defined language. The central lan-

guage abstraction, the step, is defined in terms of finite state automata. The automata

define precisely the way in which a step sequences such activities as binding of ar-

guments, execution of requisites, handling of exceptions, and sequencing of substeps.

Accordingly a Little-JIL process definition can be used to create a variety of structures

whose analysis can then cast direct light upon the presence or absence of defects from

the Little-JIL process definition. For example, a Little-JIL process can be translated

into the form of a (very large and complex) flowgraph that can then be subjected

to finite-state verification aimed at the detection of event sequence errors (Cobleigh,

Clarke et al. 2000). A Little-JIL process definition can also be used to automatically

generate a fault-tree that can be used as the basis for Fault Tree Analysis (FTA) or

Failure Mode Effects Analysis (FMEA)(Chen, Avrunin et al. 2006).

4 Discussion and Conclusions

Our brief example has illustrated a number of challenging desiderata for process

definition languages. We summarize them very briefly in this section.

One such desideratum is the need to separate the specification of how an activity

is to be performed from the specification of the agent who is to perform it. In partic-

ular, our example has shown the value of making clear that a specified capability is

what is needed by a particular step, but leaving the identification of the agent to be

accomplished by late binding at runtime. Thus we see that Little-JIL’s capabilities

for Dealing with Parties and Agents are a major improvement over the more

static capabilities in BPMN. The example also indicates the complex Exception

Management needs of LIXI processes, and likewise demonstrates that powerful ex-

ception management capabilities such as Little-JIL’s are needed here. The example

only begins to show the value of incorporating abstraction into a process language,

indicating the value of thinking of an activity (represented in Little-JIL as a step)
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as a procedure. In this example we see the value of parameter passing and the use

of scoping, and demonstrate that these are achieved clearly and naturally when an

elaboration of an activity is viewed as a real abstraction, rather than simply as an

elaboration that adds details. All of these features add greatly to the ability of Little-

JIL to represent important forms of process Variation that are lacking in BPMN,

and in most other process languages that we have investigated. These same features

also seem to make the Reconciliation of Process and Data Flow views of our

processes clearer. Thus we see how some of the key semantic features incorporated

into Little-JIL seem effective in addressing some of the major areas of need identified

early in this paper.

Indeed, our experience suggests that there is further value to be derived from

Little-JIL language features. We note in particular that the use of abstraction in

Little-JIL fosters reuse, clarity, and terseness of expression of complex process content.

We have also found that the ability to specify concurrency is extremely important,

as are other Little-JIL language semantic capabilities that we do not elaborate upon

here due to the lack of space in this paper.

On the other hand, it is important to emphasize that there are other process

definition features that are still not sufficiently provided by Little-JIL or other process

languages that we have examined. In particular, we note that there seems to be benefit

in thinking of many LIXI processes as transactions that may be nested in complex

ways. It would be a great benefit to have a process definition language in which such

processes can be defined as transactions, with the appropriate transaction semantics

provided by the language. Little-JIL can be thought of as providing a toolbox for

constructing such transactions, but this is not nearly as satisfactory as having the

semantics provided (and assured) by the language itself.

In addition, we note that few process definition language offer significant fea-

tures for supporting the specification and enforcement of timing constraints. This

is particularly surprising in view of the fact that virtually all processes have timing

constraints. Such constraints are particularly important in LIXI processes, and we

have been surprised that these needs are not well met by either BPMN or Little-JIL.

We will continue to use BPMN models in some aspects of our LIXI process

definition work, mainly because of its status as an international standard and because

of its abundant tooling support in graphical modelling. On the other hand, in order

to meet all the needs that a process definition has to support, and to address unique

challenges in the highly dynamic and variable nature of process definitions in domains

such as LIXI (i.e. industry-wide reference processes or highly adaptable processes), a

more sophisticated process definition language is needed. Our initial experience with

Little-JIL has met nearly all of these needs. Further work will be done to fully explore

the advanced features of Little-JIL.

In addition, we note that preliminary work indicates that Little-JIL’s strong

semantic basis renders processes defined in the language amenable to analysis by

powerful finite state verification tools, as has been indicated in the previous section.

The use of such tools seems to us to offer the clearest path towards effective use of

process definitions to support making LIXI processes “faster, better, and cheaper”.

Thus we will also explore leveraging the use of these analysis tools by applying them

to Little-JIL definitions of LIXI processes.
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5 Related Work

Despite possible perceptions to the contrary, we must note here that BPMN ac-

tually seems relatively expressive in comparison to other workflow languages. Indeed

a systematic comparison shows that traditional block-based workflow languages, such

as UML activity diagrams(OMG), BPEL(OASIS), and XML Process Definition Lan-

guage (XPDL)(WfMC), are more or less similar to BPMN. Indeed, because of the

non-executable and informal nature of BPMN, it is often considered to be more ex-

pressive than these other notations. But, as the foregoing has indicated, BPMN still

lacks key expressive capabilities that are needed in order to specify LIXI processes.

This suggests the need for new languages capable of addressing increasing numbers

of the demanding needs just summarized.

Indeed there is no shortage of other workflow languages. Among those that have

been proposed are those by (Alonso, Günthör, et al. 1996; Sheth, Georgakopoulos,

et al. 1996; Rusinkiewicz and Georgakopoulos 1999; Hagen and Alonso 2000; Fischer

2006). One very recent effort in this area is YAWL(Aalst and Hofstede 2005) and

NewYAWL(Russell, Hofstede, et al. 2007). NewYAWL incorporates more resource

and exception handling capabilities, and incorporates a number of other important

features that are missing from most workflow languages. In addition E-services frame-

works BPEL 1.1(OASIS) (Lazcano and Alonso 2001 )(Rusinkiewicz and Georgakopou-

los 1999) have also been used as the basis for defining processes centred on marshalling

internet-accessible resources to do work or produce products in pursuit of goals that

are also quite similar to those of our project. This should not be surprising as the

real estate loan industry is indeed an e-services industry.

We note that the languages used in these domains bear some striking similarities

to software process languages. In particular, a great many of these languages are

based upon flowgraph representations, most are effective in defining artifact flows,

and most make some provision for hierarchical decomposition. Studying these simi-

larities seems to yield interesting and important insights into the nature of processes,

and basic process language desiderata. The weaknesses of these languages are no

less important and illuminating, however. Thus, we note that most of these lan-

guages lack effective mechanisms for representing exceptions and their handling, for

defining resources and their utilization, and for representing real-time behaviours and

constraints. Ultimately, consideration of the needs for such features should lead to

languages that should be more effective in supporting pursuit of the goals in these

domains (Osterweil 1997; Rolland 1998; Osterweil, Sondheimer et al. 2006).

That pursuit has led us to consider process definition languages, many of which

have emerged from work on the rigorous definition of the processes by which software

is developed. There is a long history of work in this area, and we note that many

languages and diagrammatic notations have been evaluated as vehicles for defining

software processes. It was suggested that processes be defined using a procedural

language (Sutton, Heimbigner, et al. 1995). In MARVEL/Oz (Ben-Shaul and Kaiser

1994)processes were defined using rules. SLANG .(Bandinelli, Fuggetta et al. 1993)

used modified Petri Nets to define processes.

We also note that there has been a great deal of work on the analysis of software

artifacts. Most of this work has been focused on analysis of code or models of systems.

Finite-state verification, or model checking, techniques (eg. http://www.omg.org/
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technology/documents/modeling spec catalog.htm#UML), work by constructing a fi-

nite model that represents all possible executions of the system and then analysing

that model algorithmically to detect executions that violate a particular property

specified by the analyst. Other approaches involve the creation and analysis of Fault

Trees (Cobleigh, Clarke et al. 2000; Chen, Avrunin, et al. 2006) to study the rip-

ple effects of failures to perform activities correctly, and the use of discrete event

simulations as the basis for evaluating possible changes in resource allocation.
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