Lillian Lee

Lillian Lee
University of Melbourne | MSD · Department of Chemical and Biomolecular Engineering

About

24
Publications
2,730
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
573
Citations
Introduction
Additional affiliations
June 2011 - present
University of Melbourne
Position
  • PostDoc Position
May 2010 - April 2011
Rensselaer Polytechnic Institute
Position
  • PostDoc Position
January 2006 - December 2009
University of Melbourne
Education
December 2010
University of Melbourne
Field of study
  • Chemical and Biomolecular Engineering
December 2004
University of Melbourne
Field of study
  • Chemistry

Publications

Publications (24)
Article
Microcentrifugation constitutes an important part of the microfluidic toolkit in a similar way that centrifugation is crucial to many macroscopic procedures, given that micromixing, sample preconcentration, particle separation, component fractionation, and cell agglomeration are essential operations in small scale processes. Yet, the dominance of c...
Article
Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable...
Article
The ability to drive efficient micromixing on a microfluidic platform is crucial for a wide range of lab-on-a-chip applications. Here, we investigate the ability of acoustic waves generated on different geometric surfaces (concave and convex) to enhance the micromixing efficiency in droplet acoustomicrofluidic systems, and, concomitantly, to reduce...
Article
This feature article provides a review of recent work on the synthesis of biopolymer-shelled microbubbles using various techniques with a particular focus on ultrasonic methodology that offers advantages over other conventional methods for tuning their physical and functional properties. A detailed discussion on the role of surface chemistry in fab...
Article
Full-text available
The high surface area and porosity, and limitless compound and network combinations between the metal ions and organic ligands making up metal–organic frameworks (MOFs) offer tremendous opportunities for their use in many applications. While numerous methods have been proposed for the synthesis of MOF powders, it is often difficult to obtain orient...
Article
Full-text available
Seeds, which are high in protein and essential nutrients, must go through a hydration process before consumption. The ability to rapidly increase water absorption can significantly reduce the soaking time as well as the amount of energy needed for cooking seeds. Many studies in the literature employ high-power (102 W) low-frequency (104 Hz) ultraso...
Article
While many microfluidic devices have been developed for sensing and others for actuation, few devices can perform both tasks effectively and simultaneously on the same platform. In piezoelectric sensors and actuators, this is due to the opposing operating requirements for sensing and actuation. Sensing ideally requires narrow resonant peaks charact...
Article
New crystal morphologies, previously undiscovered, for both organic and inorganic materials are obtained by Leslie Y. Yeo and co-workers, as discussed in article number 1602040, as a consequence of the unique intermediate evaporation rate regime to which aerosol droplets, generated from a microfluidic nebulization platform utilizing a recently disc...
Article
A novel acoustic microfluidic nebulization platform is demonstrated, which, due to its unique ability to access intermediate evaporation rate regimes—significantly faster than that in slow solvent evaporation but considerably below that achieved in spray drying, is capable of producing novel crystal morphologies that have yet to be reported in both...
Article
We report the design and assembly of DNA multilayer films with programmable degradation properties. The nanostructured DNA films are assembled through the layer-by-layer (LbL) assembly technique and can be programmed to degrade by subsequently introducing DNA strands of specific sequences. The strands preferentially hybridize to the building blocks...
Article
Full-text available
Cell lytic enzymes represent an alternative to chemical decontamination or use of antibiotics to kill pathogenic bacteria, such as listeria. A number of phage cell lytic enzymes against listeria have been isolated and possess listericidal activity; however, there has been no attempt to incorporate these enzymes onto surfaces. We report three facile...
Data
Full-text available
Supplementary Information
Article
Full-text available
AcT (perhydrolase) containing paint composites were prepared leading to broad-spectrum decontamination. AcT was immobilized onto multi-walled carbon nanotubes (MWNTs) and then incorporated into latex-based paints to form catalytic coatings. These AcT-based paint composites showed a 6-log reduction in the viability of spores of Bacillus cereus and B...
Article
DNA films are of interest for use in a number of areas, including sensing, diagnostics, and as drug/gene delivery carriers. The specific base pairing of DNA materials can be used to manipulate their architecture and degradability. The programmable nature of these materials leads to complex and unexpected structures that can be formed from solution...
Article
Full-text available
The continuous assembly of polymers (CAP) via atom transfer radical polymerisation (ATRP) is reported as an efficient approach for the preparation of dense, cross-linked, nanoscale engineered films as surface coatings, hollow capsules and replica particles. These films can be reinitiated to allow the preparation of thicker films without loss of fil...
Article
DNA strand length has been found to be an important factor in many DNA-based nanoscale systems. Here, we apply molecular dynamics simulations in a synergistic effort with layer-by-layer experimental data to understand the effect of DNA strand length on the assembly of DNA films. The results indicate that short (less than 10 bases) and long (more th...
Article
Layer-by-layer assemblies based on deoxyribonucleic acid (DNA) hybridization have potential for various bio-and nanotechnology applications because of their programmability, biodegradability, and ability to control the structure of the assemblies on the nanometer scale. Herein, we investigate the growth and salt stability of DNA films by the optica...
Article
DNA multilayer films are promising candidates for a plethora of applications, including sensing, diagnostics, and drug/gene delivery. Fabricated solely from DNA, the use of salt in forming DNA multilayers is crucial in promoting and maintaining hybridization of complementary base pairs by minimizing the repulsive forces between the oligonucleotides...
Article
A study was conducted to demonstrate the controlled degradation of DNA films and capsules when using a restriction enzyme that recognized a degraded a specific sequence within the DNA assemblies. It was also demonstrated that the approach provided a mechanism for the specific release of of an encapsulated protein within the capsules. The study demo...
Article
We report the synthesis and characterization of DNA-grafted poly(N-isopropylacrylamide) (PNIPAM) micelles, their assembly into multilayered thin films, and the subsequent generation and poly(ethylene glycol) (PEG) functionalization of DNA-PNIPAM microcapsules. Multilayer films were assembled by sequentially depositing DNA-grafted PNIPAM micelles co...
Article
DNA films are promising materials for diverse applications, including sensing, diagnostics, and drug/gene delivery. However, the ability to tune the stability of DNA films remains a crucial aspect for such applications. Herein, we examine the role of oligonucleotide length on the formation, and salt and thermal stability, of DNA multilayer films us...
Article
Colloidal particles prepared by using the layer-by-layer technique are increasingly finding application in diagnostics, drug delivery, and sensing. Herein, we outline methods for applying three established techniques, confocal laser scanning microscopy (CLSM), flow cytometry, and differential interference contrast (DIC) microscopy, to characterize...

Network

Cited By