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Abstract Organic nitrogen (N) can be directly taken up
by many plants, particularly under low-temperature and
N-limited conditions. The natural environment of
Wollemia nobilis, shady conditions and shallow, acidic
soils with high organic matter, led to the hypothesis that
organic N might be a potential N source, although this
species is living in a subtropical area. A pot experiment
was carried out to investigate whether W. nobilis seedlings
have the capability to take up intact organic N and wheth-
er the uptake of organic N contributes significantly to N
acquisition for W. nobilis. Three 15N-labeled N forms,
ammonium (NH4-N), nitrate (NO3-N), or glycine, were
injected into soils separately, and the tissues of plants
were then harvested 6 and 48 h after injection. Our results
demonstrated that W. nobilis, a subtropical species, has the
capability to take up intact glycine as indicated by the
enrichment of 13C and 15N in fine roots at a nearly 1:1
ratio. The uptake rate of glycine-N was faster than that of
inorganic N, but which was only restricted in the short
term (6 h). The absorbed glycine-N reduced quickly (in
48 h), indicating that organic N uptake did not contribute
greatly to N acquisition for W. nobilis.
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Introduction

Growing evidence of direct uptake of organic nitrogen (N)
by plants has been obtained from studies on various plant
community types (Näsholm et al. 2009). These ecosystems
included mostly those under low-temperature conditions,
such as arctic sedge, alpine tundra, and boreal forest
(Chapin et al. 1993; Näsholm et al. 1998; Persson et al.
2006). However, studies on the species in tropical or sub-
tropical communities are still limited, particularly in the
southern hemisphere, although there have been several
Australian species being studied (Schmidt and Stewart
1999; Warren 2006; Kahmen et al. 2009; Pfautsch et al.
2009; Warren 2009).

Wollemi pine (Wollemia nobilis W. G. Jones, K. D.
Hill, and J. M. Allen), a newly discovered coniferous tree
species in the Araucariaceae family (Jones et al. 1995), was
once flourished in the Jurassic and Cretaceous periods (Hill
1997). It is only found naturally in the Blue Mountains ap-
proximately 150 km northwest of Sydney, Australia (Offord et
al. 1999), where there is a warm region with high humidity
(Benson and Allen 2007). How this ancient species sur-
vived is a mystery. It has been known that the soil is
very shallow and sandstone-derived boulder alluvium
with high organic matter content, but low nutrient levels
(Offord et al. 1999; Benson and Allen 2007), plus
extremely acidic pH in the range 3–4 (Benson and
Allen 2007). Amino acids (simple form of organic N)
are often presented in significant amounts in acidic
organic soils (Taylor et al. 2004). Such soil may contain
relative more organic N than fertile soils, which led to
the hypothesis that dissolved organic N might be one
alternative N source for W. nobilis, and the use of
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multiple N sources might be one of the factors that
enable this species to survive in nutrient poor soils.

The study aims to test (1) whether W. nobilis has the
capability to take up organic N and (2), if it does, whether
the organic N uptake contributes largely to N acquisition for
this species. In this study, three forms of 15N-labeled N
(15N-(NH4)2SO4,

15N-KNO3, or
13C and 2-13C-15N-glycine)

were supplied to 3-year-old W. nobilis seedlings which were
then harvested at 6 and 48 h after injection.

Materials and methods

Experimental design and sampling

The seedlings of W. nobilis were provided by the Toolara
Nursery, Queensland, Australia. All stock plants were 3-
year-old uniform cuttings without tap roots, grown in a
220-cm3 plastic tube in a 50 % perlite/50 % pine bark peat
(boiled and hammer-milled pine bark) potting mix. Vertical
ribs inside pots prevented root coiling. The seedlings were
fertilized with the 3.5 kg Osmocote (N/P/K, 11:4.8:14.9)
and the 500 g MicroMix per m3 of potting mix (pH 5.5).
Thereafter, they were foliar sprayed with EX7 3 g L−1

(Grow Force Australia Ltd.; N/P/K, 20.8, 3.3, and 17.4 %,
respectively). Seedlings were watered daily in the glass-
house under natural light conditions; the temperature ranged
from 19.1 to 32.7 °C, and sun hours, from 0.0 to 13.5 h
(mean 7.7 h), and relative humidity was 27–91 % (mean
64 %). Soil moisture was maintained at ca. 60 % of water
holding capacity.

There were four treatments and two sampling times with
four replicates in this experiment. The treatments included
were as follows: CK (without any N application), glycine
(13C and 15N labeled), (15NH4)2SO4, and

15N-KNO3. The
2-13C,15N-glycine used here has two advantages. Firstly, an
equality of 13C and 15N addition to soil avoids the probability
of detecting a significant 13C uptake induced by universally
labeled glycine (U-13C2,

15N-glycine) addition (Weigelt et al.
2005). Secondly, the non-carboxyl group (C-1 is the carboxyl
group, and C-2 is the non-carboxyl group in the molecular
structure of glycine) prevents a rapid reduction in 13C/15N
ratios in plant materials which have been observed in both
1-13C,15N-glycine and U-13C2,

15N-glycine uptake experi-
ments (Näsholm et al. 1998; Weigelt et al. 2005).

Glycine-2-13C-15N (99 at.% 13C, 98 at.% 15N; Sigma-
Aldrich), (15NH4)2SO4 (10.65 at.% 15N; Sigma-Aldrich),
15N-KNO3 (10.30 at.% 15N; Sigma-Aldrich), or water (as
the control) were injected separately into the soil. A total of
21 mL of treatment solution was injected with a stainless
steel syringe needle (14 G) (Popper, New York) at three
equally spaced points in the soil ca. 3–4 cm around each
seedling (7 mL at each point) to provide a homogeneous

distribution of the solutions in the pot soil. The final con-
centration of all supplied N forms was 10 μg N g−1 dry soils,
which is falling in the range of soluble inorganic and organic
N contents in the soil of natural Araucaria forests in
Australia (Chen et al. 2002). To test the potential re-
assimilation of the CO2 derived from degradation of glycine
by leaves, four pots of plants without any N fertilizers were
placed next to the seedlings supplied with 2-13C-15N-gly-
cine. The excess 13C in plant materials in the glycine treat-
ment was compared with that in the control plants.

All pots were arranged in a completely randomized man-
ner. The incubation periods were decided based on the time
that the ratios of 13C/15N in fine roots elapsed after injection of
amino acids (McFarland et al. 2002). Seedlings were
harvested 6 and 48 h (four replicates each time) after injection
with N fertilizers. Leaves, stems, and fine and coarse roots
were excised and collected separately for each seedling. The
roots were thoroughly rinsed under distilled water to remove
soil materials and then washed three times in 0.5 mM CaCl2
solution (~15 min in total) to remove tracers from root sur-
faces. Finally, the excess CaCl2 was washed off with distilled
water. All plant samples were oven dried at 60 °C for 72 h and
then ground to a fine powder for stable isotope analysis.

Calculation

To calculate mole 15N excess and mole 13C excess for each
sample, data on N and C contents in plant tissue and atom
percentage 15N and atom percentage 13C in excess of the natural
abundances of 15N and 13C in the control were used. The
quantities of N and C in plant tissues derived from the labeled
glycine were calculated using the equations below as described
by Näsholm et al. (1998) and by Taylor et al. (2004):

Xa ¼ CT %½ �
.
12

� �
� 13CT atm%�13CC atom%
� �� f

h i
�109 ð1Þ

Xa ¼ NT %½ �
.
14

� �
� 15NT atm%�15NC atom%
� �� f

h i
�109 ð2Þ

where Xa is the excess of
13C or 15N per dry weight of plant

sample (in nanomole per gram per dw), CT or NT is the
amount of C or N in the treatment plants with tracer appli-
cation, CC or NC is the amount of C or N in the control
plants without tracer application, and f is the enrichment
factor of tracer (100/99 % for 13C and 100/98 % for 15N in
this study). The equations above were also used to calculate
the excess of 15N in NH4

+ and NO3
− treatment samples. The

enrichment factors are 100/10.65 % for NH4
+ and 100/

10.30 % for NO3
−, respectively, in this study.
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Data analysis

The excess 15N or excess 13C was compared using ANOVA
with three fertilizers, two sampling times, and four plant
parts as the fixed factors in this model. For all the significant
results of ANOVA (P<0.05), the multiple comparisons were
evaluated by using the LSD (for homogeneous data) or
Tamhane (for nonhomogeneous data) method. The ratio of
excess 13C to excess 15N in glycine treatment was compared
with theoretical ratio (1:1) by using one-sample t test. Paired
sample t test was used to compare the excess 13C of those
plants placed next to the glycine-treated plants and those of
the controls. SPSS (Statistical Program for Social Sciences,
version 16) was used to analyze the whole data set.

Results

The seedlings were growing well under the experimental
condition as indicated by the concentrations of both C (54.5
±2.4 %, SD) and N (0.9±0.1 %, SD) in leaves of W. nobilis
which were similar to those in the other Araucaria species
under healthy growth conditions (Franco et al. 2005). The
relative high values of leaf carbon isotope discriminations

(Δ) (mean −20.6±1.1‰) which was calculated from leaf
δ13C and negatively related with intrinsic water use efficiency
(Farquhar et al. 1989) further reflected that W. nobilis seed-
lings were under well-watered conditions (Seibt et al. 2008).

Excess 15N was detected in all plant tissues after injection
with three fertilizer forms, i.e., 2-13C-15N-glycine,
(15NH4)2SO4, and

15N-KNO3 (Fig. 1a, b, d). There was a
greater amount of excess 15N at 48 h compared with that at
6 h in the treatments injection with NO3

−-N and NH4
+-N

(Fig. 1a, b), while there was no significant difference in
excess 15N between 48 and 6 h in the glycine treatment
(Fig. 1d). In the longer term (48 h), the NO3

−-N treatment
had significantly greater excess 15N in fine roots compared
with the NH4

+-N and glycine treatments, although there was
no significant difference found between treatments in the
short term (6 h; Fig. 1a, b, d). In the glycine treatment,
excess 13C was detected only in roots, but not in above-
ground parts at 6 h, and there was excess 13C detected in all
tissues at 48 h (Fig. 1c). The ratio of excess 13C/15N in a fine
root (0.73±0.05) was significantly differing from the theo-
retical ratio (1:1) at 6 h (P<0.05, n=4), while the ratio at
48 h (1.12±0.10) was not differing from 1:1 (P=0.33, n=4).

A shift of absorbed N from the root to the shoot was
observed in all the treatments (Fig. 2). The absorbed N was

Fig. 1 Excess 15N and 13C in seedlings of W. nobilis after injection
with labeled N fertilizers. a Excess 15N in the NH4

+-N treatment. b
Excess 15N in the NO3

−-N treatment. c Excess 13C in the glycine
treatment. d Excess 15N in the glycine treatment. Vertical bars, 1

standard error (SE). Asterisk means a significant difference of isotope
data between 6 and 48 h. Different letters mean a significant difference
between treatments
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restricted in the root system at 6 h, while after 48 h, a
significant fraction of the absorbed N was found in the
aboveground parts. Among the three fertilizers, the largest
fraction of absorbed NO3

−-N was transported to the shoot,
followed by NH4

+-N, and the transportation of glycine-
derived N was least (Fig. 2). At 48 h after injection with
glycine, there was a greater value of excess 13C than excess
15N in the whole seedling (Fig. 3a), and the potential loss of
absorbed glycine-N was as much as ca. 30 μmol per seed-
ling (Fig. 3b).

Discussion

Uptake of intact glycine

By using a pot experiment, we demonstrated that W. nobilis
has the capability to take up intact glycine from soils, which
is indicated by the ratio of excess 13C/15N being close to the
theoretical ratio of 1:1 in the fine roots 48 h after injection
with glycine. W. nobilis is living in a subtropical area, but
the soil is N limited. Our study gives an example which
demonstrated that even the plants living in warm environ-
ments could have the capability to take up organic N.
Although previous studies indicate that the plants living in
cold conditions tend to take up organic N (e.g., Persson et al.
2006), a few subtropical species have been reported to be
able to take up intact organic acid as well, such as tropical
savanna woodland (Schmidt and Stewart 1999).
Additionally, the transporters that mediate the uptake of
organic N have been identified both in mycorrhizal fungi
and in plant roots (Näsholm et al. 2009), which inferred that
uptake of organic N is likely to be a widespread adaptation
strategy in natural ecosystems.

The higher values of total excess 15N in the glycine
treatment than those in the NH4

+-N and NO3
−-N treatments

at 6 h indicated that glycine uptake rate was faster than that
of inorganic N in a relatively short time period. But after a
longer time, NO3

−-N was likely to be preferred by W.
nobilis. The preference for inorganic N over organic N is
consistent with most previous studies (Harrison et al. 2007),
but the uptake rate of NH4

+-N is generally higher than that
for NO3

−-N for most plants (Schmidt and Stewart 1999;
Näsholm et al. 2009). The preference for NO3

−-N by W.
nobilis is likely related to the acid soils the plant is living in,
since NO3

−-N is the dominant N source in the acid soil
(Cahn et al. 1992).

Rapid decrease of absorbed glycine-derived N

The total excess 13C in whole plant being higher than excess
15N 48 h after injection is in contrast with most previous
studies (Schimel and Chapin 1996; Näsholm et al. 1998,
2001; Weigelt et al. 2005; Persson et al. 2006). However,
similar results have also been observed in Norway spruce
(Picea abies) (Nordin et al. 2001) and three grass species
(Weigelt et al. 2003). The possible interpretation was that a
part of the glycine-derived 15N could be lost as an efflux to
the soil (Nordin et al. 2001). Previous studies suggested that
the absorbed glycine-N can be metabolized in fine roots via

Fig. 2 Shoot/root ratios of excess 15N or 13C. Vertical bars, 1 SE.
Asterisk means a significant difference of isotope data between 6 and
48 h. Different letters mean a significant difference between treatments

Fig. 3 Excess 13C and 15N inwhole seedling of glycine treatment (a) and
potential loss of absorbed glycine-N (b). Vertical bars, 1 SE. Asterisk
means a significant difference of isotope data between 13C and 15N
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transamination, possibly through the action of serine–
glyoxylate aminotransferase, but not primarily via the serine
hydroxymethyltransferase pathway which often occurs in leaves
(Schmidt and Stewart 1999; Thornton 2001). This process
resulted in the majority of absorbed Gly being transferred to L-
Ser, followed by synthesis of L-Gln, L-Glu, and L-Ala. Based on
the current study, it is hard to explain the results. Hypothetically,
the amino acids were released as NH3 from plants, or the 15N in
plant tissue has been diluted by other absorbed N. Maybe, there
are some scarcely available nitrogen forms in the growth sub-
strate, and it is possible that in 48 h, this plant can take upmore N
from the substrate than from the glycine which resulted in the
dilution of the 15N and not of the 13C (Jones et al. 2005). Hence,
it was not really a loss of glycine-derived N, but the uptake of
alternative sources of N.

The rapid decrease of absorbed glycine-derived N observed
in our study might constitute a potential mechanism for
avoiding the accumulation of excessive NH4

+, which would
inhibit plant growth (Britto and Kronzucker 2002). This ob-
servation may also imply that the uptake of organic N prob-
ably plays a role other than N acquisition. A 14C-labeled
experiment revealed that up to 8 % of the total C in Betula
pendula seedlings was due to amino acid assimilation, and it
occurred particularly under deeply shaded conditions
(Abuzinadah and Read 1989). To provide vigorous evidence,
glycine metabolism in fine roots and translocation between
plant parts in combination with influx and efflux of both
amino acids and NH4

+ would need to be studied further.

Conclusion

Our results clearly demonstrated that W. nobilis seedlings
are able to directly take up a simple, soluble source of
organic N, glycine, although inorganic N was the prefer-
ence for the long term following injection. The interesting
results we observed that a substantial of absorbed glycine-
derived N decreased quickly. To explore the underlying
mechanism, it is warranted to conduct in-depth studies on
the glycine metabolism in fine roots and translocation
between plant parts and the role of uptake of organic N.
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