Supporting information

Magnesium (II)-Catalyzed Hetero-Diels-Alder Reaction of Brassard's Dienes with Isatins

Jianfeng Zheng, Lili Lin, Yulong Kuang, Jiannan Zhao, Xiaohua Liu and Xiaoming Feng*

Key Laboratory of Green Chemistry \& Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

xmfeng@scu.edu.cn

1. General Remarks 2
2. General procedure for preparation of Brassard type diene $\mathbf{1}$ 2
3. General procedure for N, N^{\prime}-dioxide preparation 4
4. General procedure for the asymmetric hetero-Diels-Alder reaction 6
5. Optimization of the hetero-Diels-Alder reaction conditions 7
6. The operando IR experiments of the reaction 11
7. The analytical and spectral characterization data of the Aldol product $\mathbf{6}$ 12
8. The analytical and spectral characterization data of the hetero-Diels-Alder products 12
9. Copies of CD spectra for the products 32
10. References 34
11. The absolute configuration of $\mathbf{4 e}$ 34
12. Copies of NMR spectra for the hetero-Diels-Alder reaction products 34

1. General remarks

${ }^{1} \mathrm{H}$ NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}, \delta=7.26\right)$. Spectra are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), integration and assignment. ${ }^{13} \mathrm{C}$ NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}, \delta=77.0\right)$. Enantiomeric excesses (ee) were determined by chiral HPLC analysis on Daicel Chiralcel IA, IB, ADH and ODH in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (c: $\mathrm{g} / 100 \mathrm{~mL}$, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). All the solvents were purified by usual methods before use. All isatins were prepared according to the literature. ${ }^{1}$ Brassard's dienes 1, 2 were prepared from methyl 3-oxopentanoate and methyl 3-oxobutanoate according to a literature procedure. ${ }^{2} \mathrm{CD}$ spectra (MeOH as the solvent) were determined by Chirascan CD which was purchased from Applied photophysics Ltd. Silica gel for Thin-layer chromatography (HG/T2354-92) made in Qingdao Haiyang Chemical Co., Ltd.

2. General procedure for preparation of Brassard's diene

Preparation of Brassard type diene 1: 1) To a 150 mL round bottom flask with calcium chloride tube, methyl 3-oxopentanoate (150 mmol, 19.5 mL),
trimethoxymethane ($250 \mathrm{mmol}, 26.5 \mathrm{~mL}$) were added. The mixture was kept at $0{ }^{\circ} \mathrm{C}$ and conc. sulfuric acid $(0.25 \mathrm{~mL})$ was added to the reaction mixture, The reaction was allowed to warm to room temperature and detected by TLC. After 24 h , The mixture was concentrated and purified by distillation under reduced pressure to afford the methyl 3-methoxypent-2-enoate with 64% yield.
2) To a 250 mL three round bottom flask with constant pressure funnel, the device was filled with N_{2} gas. Lithium diisopropylamide ($75 \mathrm{mmol}, 38 \mathrm{~mL}$), dry tetrahydrofuran (30 mL) were added, keep the device at $-78{ }^{\circ} \mathrm{C}$, 3-methoxypent-2-enoate ($50 \mathrm{mmol}, 7.2 \mathrm{~mL}$), dry tetrahydrofuran (15 mL) were added to the constant pressure funnel, competing the drops within half an hour, then dry tetrahydrofuran $(5 \mathrm{~mL})$ was added to wash the funnel. The reaction mixture continues stiring 1 hour, then dry trimethylchlorosilane ($125 \mathrm{mmol}, 15.6 \mathrm{~mL}$) was added, After competing the drops within half an hour and keeping the reaction mixture stirring half an hour, the reaction was allowed to warm to room temperature to stir overnight. Removing the salts by filtration and the reaction mixture was purified by distillation under reduced pressure to afford the (1,3-dimethoxypent-3-enyloxy) trimethylsilane in 40% yield.

1,3-dimethoxypent-3-enyloxy trimethylsilane 1

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.62(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}),-0.00$
(s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.47,151.07,103.98,74.03,57.03,54.60$, 10.03, 0.00.

3. General procedure for N, N^{\prime}-dioxide preparation

The N, N 'dioxide ligands L1-L6 were synthesized by the same procedure in the literature. ${ }^{3}$

To a solution of (S)-1-N-Boc-piperidine-2-carboxylic acid (2.29 g, 10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.55 \mathrm{~mL}, 11 \mathrm{mmol})$, isobutyl chloroformate $(1.50 \mathrm{~g}$, 11 mmol) at $0^{\circ} \mathrm{C}$ under stirring. After $30 \mathrm{~min}, 2,6$-diethyl-4-methylaniline ($1.95 \mathrm{~g}, 12$ mmol) was added. The reaction was allowed to warm to room temperature and detected by TLC. After 24 h , the mixture was washed with $1 \mathrm{M} \mathrm{KHSO}_{4}$, saturated NaHCO_{3}, brine, dried over anhydrous MgSO_{4} and concentrated and purified through flash chromatograph to give $1 \mathrm{~L}(3.76 \mathrm{~g}$, up to 99% isolate yield).

The white solid of $\mathbf{1 L}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added TFA $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred until the reaction was finished (2 h). Then, the solvent was evaporated, and $\mathrm{H}_{2} \mathrm{O}(10$ mL) was added. The pH value of the mixture was brought into the range of $10-12$ by
the addition of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ and saturated NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over anhydrous MgSO_{4} and evaporated in vacuo. The residue was directly used for next step without further purification.

To a solution of $2 \mathrm{~L}(2.74 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}$, 20 mmol) and 1,3-dibromopropane ($510 \mu \mathrm{~L}, 5 \mathrm{mmol}$) under stirring. It was kept stirring at $80^{\circ} \mathrm{C}$, and monitored by TLC. Then, $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and purified by silica gel column chromatography to give 3 L ($2.35 \mathrm{~g}, 80 \%$ isolate yield).

The N, N-dioxide $\mathbf{L} 4$ was prepared through oxidation of $3 \mathbf{L}$ by m-CPBA $(1.38 \mathrm{~g}, 8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ for 1 h and purified through flash chromatograph to give a white foam solid. Then it was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtration through Celite to remove the silicon gel, concentrate to get a kind white foam $\mathbf{L} 4(2.23 \mathrm{~g}, 90 \%$ isolated yield). For other ligands, the synthesis method could be found in reference.
 L4: white solid; m. p. $120-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27.6}=$ -25.2 (c = 0.20 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.86(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 4 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=$ $11.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{dd}$, $J=19.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.60(\mathrm{~m}$, 2H), $2.52(\mathrm{dd}, J=14.4,7.1 \mathrm{~Hz}, 8 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{dd}, J=25.9$,
$12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.63, $140.37,137.30,129.60,127.45,64.10,64.92,26.72,25.37,22.48,21.25,20.32,16.28$, 15.01.

4. General procedure for the catalytic asymmetric hetero-Diels-Alder reaction

For Brassard type diene 1:

In a test tube, isatin $3 \mathbf{e}(0.10 \mathrm{mmol}, 31.6 \mathrm{mg})$, ligand $\mathbf{L} 4(0.01 \mathrm{mmol}, 6.2 \mathrm{mg})$, $\operatorname{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(0.01 \mathrm{mmol}, 2.3 \mathrm{mg})$ were added. The tube was filled with N_{2} gas, and 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The reaction was stirred at $30{ }^{\circ} \mathrm{C}$ for 0.5 h , then the Brassard type diene $\mathbf{1}$ (1.5 equiv, $40 \mu \mathrm{~L}$) was added at $35^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h until isatin $3 \mathbf{e}$ was consumed (determined by TLC). Then TFA (30 $\mu \mathrm{L}$) was added to the reaction mixture at room temperature, and the solution kept stirring for 2 h . Next, saturated $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added, and the solution was stirred for 5 min . After diluted with 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the mixture was filtered through a plug of celite. The layers were separated. The acquired aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, and then the combined organic layers were washed with brine and dried over anhydrous MgSO_{4} and concentrated. The crude oil was purified by flash chromatography (petroleum : $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}=3: 1: 0.5$) to afford the product $\mathbf{4 e}$.

For Brassard's diene 2:
In a test tube, isatin $3 \mathbf{a}(0.1 \mathrm{mmol}, 23.7 \mathrm{mg})$, ligand $\mathbf{L} \mathbf{4}(0.01 \mathrm{mmol}, 6.20 \mathrm{mg})$, and $\operatorname{Mg}(\mathrm{OTf})_{2}(0.011 \mathrm{mmol}, 3.6 \mathrm{mg})$ were added. The tube was filled with N_{2} gas, and 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The reaction was stirred at $30{ }^{\circ} \mathrm{C}$ for 0.5 h , then the

Brassard's diene 2 (1.5 equiv, $40 \mu \mathrm{~L}$) was added at $35^{\circ} \mathrm{C}$ and the reaction mixture kept stirring for 1 h (determined by TLC). The crude mixture was purified by flash chromatography (petroleum : $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}=3: 1: 0.5$) to afford the product $\mathbf{5 a}$.

5. Optimization of other conditions

5.1 Screening of other metals

${ }^{a}$ Unless specified, all reactions were performed with L-metal ($10 \mathrm{~mol} \%, 1: 1$), $\mathbf{1}(0.15 \mathrm{mmol}), \mathbf{3 e}(0.10 \mathrm{mmol})$, at $35{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis (Chiralcel IB).

Table 5.1 showed that other metals, such as $\operatorname{Er}(\mathrm{OTf})_{3}, \mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{Fe}(\mathrm{acac})_{2}$, $\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, gave poor results.
5.2 Screening of the other ligands

L5: $\mathrm{Ar}=2,6-\mathrm{Et}_{2}-4-\mathrm{MeC}_{6} \mathrm{H}_{2}$

L6: $\mathrm{Ar}=2,6-\mathrm{Et}_{2}-4-\mathrm{MeC}_{6} \mathrm{H}_{2}$

Entry a	Ligand	Yield b (\%)	dr^{c}	ee c (\%)
1	L5	25	$70: 30$	60
2	L6	60	$70: 30$	15

${ }^{a}$ Unless specified, all reactions were performed with $\mathrm{L}-$ metal $(10 \mathrm{~mol} \%, 1: 1), \mathbf{1}(0.15 \mathrm{mmol}), \mathbf{3 e}(0.10 \mathrm{mmol})$, at $35{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis (Chiralcel IB).

Table 5.2 showed that the amino acid backbone of the ligand also affected the reactivity and selectivity of the reaction greatly.
5.3 Optimization of the concentration of reaction

${ }^{a}$ Unless specified, all reactions were performed with L-metal ($10 \mathrm{~mol} \%, 1: 1$), $\mathbf{1}(0.15 \mathrm{mmol}), \mathbf{3 e}(0.10 \mathrm{mmol})$, at $35{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis (Chiralcel IB).
5.4 Optimization of the additives of the reaction

${ }^{a}$ Unless specified, all reactions were performed with L-metal ($10 \mathrm{~mol} \%, 1: 1$), Additives (30 mg), $\mathbf{1}(0.15 \mathrm{mmol}), 3 \mathbf{e}(0.10$ mmol), at $35{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis (Chiralcel IB).

Table 5.4 showed molecular sieves and desiccants decreased the yield of the reaction obviously in the present catalyst system.
5.5 Optimization of the ratio of metal to ligand

${ }^{a}$ Unless specified, all reactions were performed with $\mathrm{L}-\mathrm{metal}(10 \mathrm{~mol} \%), \mathbf{1}(0.15 \mathrm{mmol}), 3 \mathrm{e}(0.1 \mathrm{mmol})$, at $35{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis (Chiralcel IB). ${ }^{d}$ the reaction was exposed in air. ${ }^{e}$ After 1 h, TFA (30 $\mu \mathrm{L}$) was added to the reaction mixture, then stirred for 2 h at room temperature.

Table 5.5, entries 1-4 showed that the molar ratio of $\mathbf{L 4}$ to $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ also affected the reactivity of the reaction. The yield of the reaction decreased in the presence of a excess of Ligand or Metal in the reaction. Entry 5 showed that TFA could improve the yield by promoting the transformation of Aldol product to the cycloaddition product.
5.6 Optimization of the reaction conditions of Brassard's diene 2 with isatin 3a

	 2		$=0$	$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 35^{\circ} \mathrm{C}, 1 \mathrm{~h}]{\mathrm{L}-\mathrm{M}(10 \mathrm{~mol} \%)}$	
Entry ${ }^{\text {a }}$	Metal	Ligand	M : L	Yield ${ }^{\text {b }}$ (\%)	ee^{c} (\%)
1	$\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	L4	1:1	60	81
2	$\mathrm{Mg}(\mathrm{OTf})_{2}$	L4	1:1	80	90
3	$\mathrm{Mg}(\mathrm{OTf})_{2}$	L1	1:1	80	90
4	$\mathrm{Mg}(\mathrm{OTf})_{2}$	L2	1:1	38	90
5	$\mathrm{Mg}(\mathrm{OTf})_{2}$	L3	1:1	59	91
6	$\mathrm{Mg}(\mathrm{OTf})_{2}$	L4	1.1:1	82	93
$7^{\text {d }}$	$\mathrm{Mg}(\mathrm{OTf})_{2}$	L4	1.1:1	82	93

${ }^{a}$ Unless specified, all reactions were performed with L-metal ($10 \mathrm{~mol} \%$), $2(0.15 \mathrm{mmol})$, $\mathbf{3 a}(0.1 \mathrm{mmol})$, at $35{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis (Chiralcel ODH). ${ }^{d}$ After $1 \mathrm{~h}, \mathrm{TFA}(30 \mu \mathrm{~L})$ was added to the reaction mixture, then stirred for 2 h at room temperature.

For the reaction of Brassard's diene 2 with isatin, as shown in Table 5.6, entries 1-2 showed that when $\mathbf{L 4}-\mathrm{Mg}(\mathrm{OTf})_{2}$ instead of $\mathbf{L} 4-\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ was applied to the reaction, the yield and ee could be improved to 80% and 90%, respectively. Further surveying the ratio of metal to ligand, the best result was obtained in the presence of L4: $\operatorname{Mg}(\mathrm{OTf})_{2}=1: 1.1$ (entry 6). Entry 7 shows that TFA couldn't improve the yield of the reaction because of trace amount of Aldol product.

6. The operando IR experiments of the reaction

The 3D ATR-FTIR profile of the reaction

The IR spectrum of isatin $3 \mathbf{e}$

The IR spectrum of Aldol product $\mathbf{6}$

The IR spectrum of $\mathbf{4 e}$

7. The analytical and spectral characterization data of the aldol product 6

(Z)-methyl-4-(1-benzyl-5-bromo-3-hydroxy-2-oxoindolin-3-yl)-3-methoxypent-2-eno ate 6

$3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.32,173.71,170.34,141.81,135.38,133.3,132.06,128.82,127.77,127.41$, 126.72, 115.66, 110.51, 93.61, 78.50, 55.88, 51.67, 43.99, 42.27, 11.77. HRMS
(SEI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Br}^{80.9163} \mathrm{NNaO}_{5}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=482.0579$, Found 482.0579.

	Retention Time	Area \%
1	6.72	97.76
2	8.20	2.24

8. The analytical and spectral characterization data of the products

(2'R,3'R)-1-benzyl-5-fluoro-4'-methoxy-3'-methylspiro[indoline-3,2'-pyran]-2,6'(3'H)dione $\mathbf{4 b}$

White solid; m. p. $108-110{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel IB, hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm})$, retention time: $\mathrm{t}_{\mathrm{r} 1}=19.48 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=20.89 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=25.98 \mathrm{~min}$, 4b

$$
\mathrm{t}_{\mathrm{r} 4}=32.92 \mathrm{~min}, \mathrm{ee}=96 \% \text {, d.r. }=95: 5 .[\alpha]_{\mathrm{D}}{ }^{16.7}=+50.0(\mathrm{c}=0.55
$$

in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=4.9 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~m}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.59(\mathrm{~m}, 1 \mathrm{H})$, $5.37(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.30$
$(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.90$, $171.48,164.79,160.65,158.23,139.07,134.78,129.00,128.01,127.33,117.31(\mathrm{~d}$, $J=23.5 \mathrm{~Hz}), 112.38(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 110.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 90.05,82.33,56.57,44.13$, 37.55, 10.07. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=390.1118$, Found 390.1117.

	Retention Time	\% Area
1	19.48	3.06
2	20.89	93.23
3	25.98	1.85
4	32.92	1.86

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-5-chloro-4'-methoxy-3'-methylspiro[indoline-3,2'-pyran]-2,6'(3' H)-dione 4c

White solid; m. p. 130-132 ${ }^{\circ} \mathrm{C}$; HPLC (Chiralcel IB, hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm})$, rentention time: $\mathrm{t}_{\mathrm{r} 1}=18.12 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=19.37 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=24.47$ 4c
$=0.25$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.74,171.47,164.73,141.69$, $134.65,130.88,129.01,128.94,128.23,128.05,127.33,124.75,110.66,90.01,82.19$, 56.59, 44.09, 37.46, 10.07. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}^{34.9689} \mathrm{NNaO}_{4}$ $\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=406.0822$, Found 406.0822.

	Retention Time	\% Area
1	18.12	2.63
2	19.37	95.43
3	24.47	0.69

4	30.51	1.26

(2'R,3'R)-1-benzyl-4-bromo-4'-methoxy-3'-methylspiro[indoline-3,2'-pyran]-2, $6^{\prime}\left(3^{\prime} \mathrm{H}\right)$ -dione 4d

4d

White solid; m. p. 182-184 ${ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ADH, hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\mathrm{r} 1}=19.51 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=23.73 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=27.68 \mathrm{~min} \mathrm{t}_{\mathrm{r} 4}=$ 32.65 min , ee $=99 \%$, d.r. $=99: 1 .[\alpha]_{\mathrm{D}}{ }^{17.8}=+78.8(\mathrm{c}=0.66 \mathrm{in}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}$, $1 \mathrm{H}), 4.91(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 171.80, 171.24, 164.97, 145.25, 134.67, 132.17, 128.98, 128.04, 127.91, 127.37, 123.92, 119.95, 108.64, 89.63, 83.66, 56.48, 44.07, 33.54, 9.93. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{NKO}_{4}\left(\left[\mathrm{M}+\mathrm{K}^{+}\right]\right)=468.0036$, Found 468.0031.

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-5-bromo-4'-methoxy-3'-methylspiro[indoline-3,2'-pyran]-2,6'(3'H) -dione $\mathbf{4 e}$

White solid; m. p. $156-158{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel IB, hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm})$, retention time: $\mathrm{t}_{\mathrm{r} 1}=20.98 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=22.64 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=29.03 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r} 4}=36.27 \mathrm{~min}$, ee $=95 \%$, d.r. $=95: 5 \cdot[\alpha]_{\mathrm{D}}{ }^{17.2}=+61.3(\mathrm{c}=$ 0.80 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=$ 8.3, 1.5 Hz, 1H), 7.31 (dd, $J=12.8,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1H), $5.36(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.32(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.63,171.46,164.72,142.19,134.62,133.79,129.02,128.55,127.51,127.32$, 116.10, 111.12, 90.00, 82.13, 76.77, 56.60, 44.06, 37.44, 10.07. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=452.0296$, Found 452.0296.

	Retention Time	\% Area
1	20.98	3.17
2	22.64	93.82
3	29.03	1.60
4	36.27	1.41

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-6-bromo-4'-methoxy-3'-methylspiro[indoline-3,2'-pyran]-2, $6^{\prime}\left(3^{\prime} \mathrm{H}\right)$ -dione $4 f$

White solid; m. p. 150-152 ${ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ADH, hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\mathrm{r} 1}=12.84 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=16.03 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=20.83 \mathrm{~min}$ $\mathrm{t}_{\mathrm{r} 4}=23.62 \mathrm{~min}$, ee $=98 \%$, d.r. $=94: 6 \cdot[\alpha]_{\mathrm{D}}{ }^{15.7}=+45.0(\mathrm{c}=$ 0.76 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.19$ (dd, $J=4.5,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=12.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.99,171.48,164.89,144.49,134.57,129.07,128.11,127.32,126.47,125.59$, 125.46, 124.76, 112.95, 90.02, 81.99, 56.57, 44.09, 37.43, 10.02. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Br}^{80.9163} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=452.0296$, Found 452.0297.

	Retention Time	\% Area
1	12.84	2.98
2	16.03	1.70
3	20.83	91.97
4	23.62	3.35

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-5-iodo-4'-methoxy-3'-methylspiro[indoline-3,2'-pyran]-2, $6^{\prime}\left(3^{\prime} \mathrm{H}\right)$-di one $4 h$

White solid; m. p. $156-158{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel IB, hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm})$, rentention time: $\mathrm{t}_{\mathrm{r} 1}=20.88 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=22.30 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=28.25 \mathrm{~min}$, 4h

$$
\mathrm{t}_{\mathrm{r} 4}=35.45 \mathrm{~min}, \text { ee }=96 \% \text {, d.r. }=92: 8 .[\alpha]_{\mathrm{D}}{ }^{18.1}=+70.8(\mathrm{c}=0.70
$$

in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J$ $=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=12.7,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{dd}$, $J=13.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.47,171.45,164.73,142.89,139.72,134.62,133.04,129.01$,
$128.80,128.06,127.33,111.61,89.99,85.82,82.00,56.60,44.01,37.40,10.05$. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{INNaO} 4\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=498.0178$, Found 498.0176.

	Retention Time	\% Area
1	20.88	5.07
2	22.30	90.39
3	28.25	1.87
4	35.45	2.68

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-4'-methoxy-3',5-dimethylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione
$4 i$

White solid; m. p. 110-112 ${ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ADH, hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), rentention time: $\mathrm{t}_{\mathrm{r} 1}=15.32 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=20.55 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=21.91 \mathrm{~min}$,
$4 i$ $\mathrm{t}_{\mathrm{r} 4}=24.52 \mathrm{~min}, \mathrm{ee}=98 \%$, d.r. $=96: 4 .[\alpha]_{\mathrm{D}}{ }^{13.9}=+50.7(\mathrm{c}=0.68$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=4.4 \mathrm{~Hz}$ $3 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.08$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.11, 171.72,
$165.31,140.76,135.27,133.21,131.16,128.86,127.80,127.37,126.61,124.86$, 109.32, 90.04, 82.61, 56.48, 43.96, 37.51, 21.06, 10.06. HRMS (SEI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NKO}_{4}\left(\left[\mathrm{M}+\mathrm{K}^{+}\right]\right)=402.1108$, Found 402.1103.

	Retention Time	\% Area
1	15.32	2.25
2	20.55	1.66
3	21.91	0.65
4	24.52	95.43

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-4'-methoxy-3',7-dimethylspiro[indoline-3,2'-pyran]-2, $6^{\prime}\left(3^{\prime} H\right)$-dione

4j

White solid; m. p. $128-130{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ADH, hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\mathrm{r} 1}=13.12 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=17.94 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=21.24 \mathrm{~min}_{\mathrm{r} 4}=$ 4j 26.74 min , ee $=99 \%$, d.r. $=98: 2 .[\alpha]_{\mathrm{D}}{ }^{14.8}=+50.2(\mathrm{c}=0.43 \mathrm{in}$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.36(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 173.24,171.61,165.35,141.31,136.93,134.92,128.95,127.39,125.74$, 123.63, 122.13, 120.28, 99.99, 90.10, 81.91, 56.46, 45.20, 37.64, 18.72, 10.11. HRMS (SEI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=386.1368$, Found 386.1370.

Retention Time	\% Area
13.12	1.41
17.94	0.34
21.24	97.48
26.74	0.77

(2'R,3'R)-1-benzyl-4'-methoxy-3',5,7-trimethylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dio ne $\mathbf{4 k}$

White solid; m. p. $179-181{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel IB, hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm})$, retention time: $\mathrm{t}_{\mathrm{r} 1}=18.03 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=19.52 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=26.14 \mathrm{~min}$, 4k

$$
\mathrm{t}_{\mathrm{r} 4}=36.18 \mathrm{~min}, \text { ee }=98 \% \text {, d.r. }=98: 2 .[\alpha]_{\mathrm{D}}{ }^{15.6}=+14.8(\mathrm{c}=0.56
$$

in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H})$,
$3.80(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.21,171.65,165.40,138.81,137.01,135.30$, 133.23, 128.91, 127.40, 127.33, 125.76, 122.82, 119.98, 90.06, 82.11, 56.45, 45.12, 37.60, 20.74, 18.55, 10.12. HRMS (SEI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=$ 400.1525, Found 400.1521.

	Retention Time	\% Area
1	18.03	1.20
2	19.52	96.06
3	26.14	0.79
4	36.18	1.94

($2^{\prime} R, 3^{\prime} R$)-1-benzyl-4',5-dimethoxy-3'-methylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 41

41
White solid; m. p. 122-124 ${ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ADH, hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\mathrm{r} 1}=27.36 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=28.71 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=41.08$ $\min \mathrm{t}_{\mathrm{r} 4}=42.74 \mathrm{~min}, \mathrm{ee}=99 \%$, d.r. $=97: 3 .[\alpha]_{\mathrm{D}}{ }^{17.1}=+65.7(\mathrm{c}$
$(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}$, $1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.32(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.93,171.64,165.22,156.50,136.39,135.22,128.89,127.83,127.77,127.37$, $115.42,111.18,110.17,90.04,82.75,56.49,55.85,44.04,37.65,10.03$. HRMS
(SEI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{5}\left(\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]\right)=380.1498$, Found 380.1494 .

	Retention Time	\% Area
1	27.36	1.84
2	28.71	0.98
3	41.08	0.22
4	42.74	96.96

(2'R,3'R)-1-benzyl-4'-methoxy-3'-methyl-7-(trifluoromethyl)spiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 4m

$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.12(\mathrm{~m}, 6 \mathrm{H})$, $5.34(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.36$ $(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.53$, $171.16,164.68,141.76,135.52,129.53,129.18,129.12,128.48,128.00,127.17$, 125.94, 123.24, 113.34, $90.03,80.28,56.59,46.01,37.65,9.85$. HRMS (SEI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=440.1086$, Found 440.1089.

	Retention Time	\% Area
1	11.53	2.90
2	16.27	0.71
3	17.38	91.46
4	27.45	4.93

1-benzyl-4'-methoxy-3'-methyl-6,7,8,9-tetrahydrospiro[benzo[g]indole-3,2'-pyran]-2, $6^{\prime}\left(1 \mathrm{H}, 3^{\prime} \mathrm{H}\right)$-dione 4 n

4n

White solid; m. p. $109-111{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ADH, hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\mathrm{r} 1}=15.73 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=16.64 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 3}=17.84 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r} 4}=26.96 \mathrm{~min}, \mathrm{ee}=96 \%$, d.r. $=96: 4 .[\alpha]_{\mathrm{D}}{ }^{19.9}=+11.6(\mathrm{c}=0.81$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, 3H), 3.26 (dd, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.86,171.73,165.54,141.76,141.40$, $137.28,128.90,127.27,125.71,124.91,124.38,121.22,121.06,90.09,81.84,56.42$, 45.86, 37.57, 30.61, 24.90, 22.72, 21.94, 10.19. HRMS (SEI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=426.1681$, Found 426.1683.

	Retention Time	\% Area
1	15.73	1.93
2	16.64	1.21
3	17.84	95.76

4	26.96	1.11

1-benzyl-4'-methoxyspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 5a
 $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dt}, J=15.6,7.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.55$, 169.92, 164.97, $142.25,134.83,131.02,128.98,127.94,127.63,127.27,124.05$, 123.48, 110.01, 90.66, 78.36, 56.43, 44.02, 33.58. HRMS (SEI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=358.1055$, Found 358.1053.

	Retention Time	\% Area
1	20.93	96.51
2	27.08	3.49

1-benzyl-7-bromo-4'-methoxyspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 5g

$7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.28(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.57,169.45,164.59$, 139.87, 136.94, 136.41, 130.80, 128.74, 127.38, 126.26, 124.87, 123.33, 103.21, 90.63, 56.48, 44.75, 33.77. HRMS (SEI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}^{78.9163} \mathrm{NNaO}_{4}$ $\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=436.0160$, Found 436.0161.

	Retention Time	\% Area
1	18.35	95.41
2	30.85	4.59

1-benzyl-4'-methoxy-5-methylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 5i

$7.37-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H})$, $4.86(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.54,169.97,165.08,139.77,134.96,133.21$, $131.23,128.93,127.87,127.65,127.25,124.76,109.79,90.66,78.53,56.43,44.00$, 33.59, 21.05. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=372.1212$, Found 372.1212.

	Retention Time	\% Area
1	11.55	96.53
2	15.56	3.47

1-benzyl-4'-methoxy-7-methylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 5j

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{dd}, J=16.4,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{q}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.84(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 173.81, 169.75, $165.10,140.22,136.63,134.95,129.04,128.42,127.47,125.59,123.65,122.03$, 120.80, 90.68, 77.76, 56.38, 45.20, 33.91, 18.75. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=372.1212$ Found 372.1213.

	Retention Time	\% Area
1	16.90	98.69
2	26.63	1.31

1-benzyl-4'-methoxy-5,7-dimethylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione 5k

5k

White solid; m. p. $160-162{ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ODH, hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{r} 1}$ $=13.95 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=22.43 \mathrm{~min}, \mathrm{ee}=99 \% .[\alpha]_{\mathrm{D}}{ }^{24.2}=+27.1(\mathrm{c}=0.62$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 2H), $7.24(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{q}$, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 173.80, 169.79, 165.20, 137.70, 136.70, 135.33, 133.29, 129.00, 128.48, 127.42, 125.60, 122.68, 120.50, 90.68, 77.93, 56.38, 45.14, 33.92, 20.73, 18.59. HRMS (SEI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=386.1368$, Found 386.1370.

	Retention Time	\% Area
1	13.95	99.97
2	22.43	0.03

1-benzyl-4',5-dimethoxyspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione $5 \mathbf{5}$

Bn
51

White solid; m. p. 116-118 ${ }^{\circ} \mathrm{C}$; HPLC (Chiralcel ODH, hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\mathrm{r} 1}=16.90 \mathrm{~min}, \mathrm{t}_{\mathrm{r} 2}=23.60 \mathrm{~min}$, ee $=93 \%$, $[\alpha]_{\mathrm{D}}{ }^{22.6}=+33.7\left(\mathrm{c}=0.44\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{dd}, J=10.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.34,169.89,164.91,156.35,135.41,134.92$,
$128.95,128.77,127.90,127.25,114.90,111.72,110.53,90.61,78.63,56.43,55.87$, 44.07, 33.63. HRMS (SEI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=388.1161$, Found 388.1154.

	Retention Time	\% Area
1	16.90	96.71
2	23.60	3.29

4'-methoxy-1-methylspiro[indoline-3,2'-pyran]-2,6'(3'H)-dione $5 \mathbf{5}$

$J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.32, 169.99, 164.93, 143.18, 131.14, $127.59,123.95,123.45,108.95,90.61,78.31,56.39,33.35,26.46$. HRMS (SEI-TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NNaO}_{4}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)=282.0742$, Found 282.0747 .

	Retention Time	\% Area
1	16.86	95.63
2	27.52	4.37

9. Copies of CD spectras for products

10. Reference

1 (a) T. J. Rauls, K. C. Rice, J. Med. Chem. 1976, 19, 887; (b) K. Janz, A. Huang, N. Kalia, J. Med. Chem. 2007, 50, 40; (c) L. Somogyi, Bull. Chem. Soc. Jpn. 2001, 74, 873; (d) K. A. Mamari, H, Ennajih, E. M. Essasi, Tetrahedron. Lett. 2012, 53, 2328.

2 (a) J. Savard, P. Brassard, Tetrahedron. Lett. 1979, 20, 4911; b) L. L. Lin, Y. L. Kuang, X. H. Liu, X. M. Feng, Org. Lett. 2011, 13, 3868.

3 J. L. Huang, J. Wang, X. H. Chen, Y. H. Wen, X. H. Liu, X. M. Feng, Adv. Synth. Catal. 2008, 350, 287.

11. The absolute configuration of $4 e$

The cycloadduct $\mathbf{4 e}$ was recrystallized from EtOAc and Pet.
CCDC-959984(4e) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk./ data_request/cif.

12. Copies of NMR specture

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2014

				$\stackrel{8}{88}$

4 c

Current Data paramatara
F2 - Acquisition paramatara
DATE: 2013-03-09T01:22:04
PULVROG: $x 930$
solvant: CDC13
Ns: 16
DS: underined
swH : 8223.7 Hz
AQ: undezined
TE: 293.8 C

81: 9.93
espor: undatinad MH:
52- Proceasaing Paramatars
F2-8x000
81: 65536
EI: 65536
DC: 0.05
LB: 0.30 Hz
Firat Point: 0.50
FT: Hyper Cuadzatu=e
Phase: Manual
Pho: 75.96
Ph1: 12.71

Cocen
4 c

Cuyrent Data parametars
2 - Acquisition paramacar
DATE: 2013-03-08 0101 :37:39
PULVROC: xgpga
TD: 32768
ss: 256
Ds: undezined
swn: 2403 B .5 Hz
AQ: undetined
-
sucl: 13 CH
P1: 9.63 usec
spon: undezined MHz
F2-Droceasing Paramatora
sI: 65536
DC: 0.05
LB: 1.00 Hz
Firat Point: 0.50
FT: Hyper Cuadzatu=e
Phase: Manual
Phase: Manual
Pho: -66.21
Pn1: 54.77

Current date paramatars
F2-Acquisition parametars
Dats: 2013-03-06T11: 21:55
PULPROC: $2 g 30$
TD: 32768
solvent: CDC13
ss: 16
DS: underined
Ds: underined
sw : 8223.7 Hz
AQ: undeatined
-
P1: 9.93 z.eec
spon: underined MHz
F2-Procesa1ing Paramatara

F2-proce
gI:
DC:
5536

」
DC: 0.05
LB: 0.30 \#
LB: $0.30 \mathrm{Hx}, 0.50$
First Point: 0.50
FT: Hyper Cuadrature
FT: Hyper Cuadz
Phese: Manual
pho: 79.10
ph1: 14.54

$4 e^{B}$

4 h
Cuyzent data paramatara
E2 - Acquialtion Paramatara
Datz: 2013-07-08
DATE: 2013-07-08T19: 44:19
PULPROG: Ig 30
TD: 32768
TD: 32768
golvant: CDC 13
solvant:
ss: 16
$\mathrm{DS}:$ undetined
$\mathrm{swH}: 8223.7 \mathrm{~Hz}$
AQ: undatinea
TE: 299.3 C

SUC1: 1 H
81: 9.93 usec
gron: underined MHz
E2-Procasaing Daramatara
81: 65536
DC: 0.05
LE: 0.30 Hz
Firat Point: 0.50
FT: Hyper cuadzatu=e
FT: Hyper Quadra
Phase: Manual
Phase: Manual
pho: 90.86
Pho: 90.86
Ph1: 13.17

4h

Cuyrent Data parametaya
F2 - Acquialtion paramatara
ATE: 2013-03-03T12: 41:01
ULPROG: $59 p 930$
soivent: CDC13
N8: 256
DS: underined
swh: 24038.5 Hz
AQ: undetined
$\mathrm{TE}: 293.7 \mathrm{C}$
--רC1: 13c chansel 21
81: 9.63 च.ace
spon: undezined MHz
E2 - Drocesaing Daxamatara
81: 65536
DC: 0.05
CB: 1.00 Hz
FT: Hyper 0 : 0.30
FT: HYPe= Cuad=atu=
Phase: Manual
Pho: -74.25
Pho: 67.38

		 	$\stackrel{\text { ¢ }}{\substack{\text { in }}}$

