Lifeng Zhou

Lifeng Zhou
  • Doctor of Philosophy
  • Professor (Assistant) at Drexel University

Multi-robot coordination; resilient, risk-aware decision making; graph neural networks https://lfzhou917.github.io/

About

66
Publications
14,076
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
682
Citations
Introduction
Lifeng Zhou is an Assistant Professor in the Department of Electrical and Computer Engineering at Drexel University. Previously, he was a Postdoctoral Researcher at the GRASP lab of the University of Pennsylvania. He obtained his Ph.D. in Electrical and Computer Engineering from Virginia Tech in 2020. Before that, he received his MS from Shanghai Jiao Tong University in 2016 and his BS from Huazhong University of Science and Technology in 2013. He serves as an Associate Editor for the ICRA Confe
Skills and Expertise
Current institution
Drexel University
Current position
  • Professor (Assistant)

Publications

Publications (66)
Preprint
Full-text available
The rapid advancement of Large Language Models (LLMs) has opened new possibilities in Multi-Robot Systems (MRS), enabling enhanced communication, task planning, and human-robot interaction. Unlike traditional single-robot and multi-agent systems, MRS poses unique challenges, including coordination, scalability, and real-world adaptability. This sur...
Preprint
In this paper, we propose a hierarchical Large Language Models (LLMs) in-the-loop optimization framework for real-time multi-robot task allocation and target tracking in an unknown hazardous environment subject to sensing and communication attacks. We formulate multi-robot coordination for tracking tasks as a bi-level optimization problem, with LLM...
Preprint
Multi-robot collaboration for target tracking presents significant challenges in hazardous environments, including addressing robot failures, dynamic priority changes, and other unpredictable factors. Moreover, these challenges are increased in adversarial settings if the environment is unknown. In this paper, we propose a resilient and adaptive fr...
Chapter
We consider the setting where a team of robots is tasked with tracking multiple targets with the following property: approaching the targets enables more accurate target position estimation, but also increases the risk of sensor failures. Therefore, it is essential to address the trade-off between tracking quality maximization and risk minimization...
Chapter
Autoencoders are unsupervised neural networks that are used to process and compress input data and then reconstruct the data back to the original data size. This allows autoencoders to be used for different processing applications such as data compression, image classification, image noise reduction, and image coloring. Hardware-wise, re-configurab...
Article
The multiple-path orienteering problem asks for paths for a team of robots that maximize the total reward collected while satisfying budget constraints on the path length. This problem models many multirobot routing tasks, such as exploring unknown environments and information gathering for environmental monitoring. In this article, we focus on how...
Article
The problem of multi-robot target tracking asks for actively planning the joint motion of robots to track targets. In this article, we focus on such target tracking problems in adversarial environments, where attacks or failures may deactivate robots' sensors and communications. In contrast to the previous works that consider no attacks or sensing...
Preprint
We study the problem of assigning robots with actions to track targets. The objective is to optimize the robot team's tracking quality which can be defined as the reduction in the uncertainty of the targets' states. Specifically, we consider two assignment problems given the different sensing capabilities of the robots. In the first assignment prob...
Conference Paper
Full-text available
Autoencoders are unsupervised neural networks that are used to process and compress input data and then reconstruct the data back to the original data size. This allows autoencoders to be used for different processing applications such as data compression, image classification, image noise reduction, and image coloring. Hardware-wise, re-configurab...
Preprint
In this work, we study the problem of decentralized multi-agent perimeter defense that asks for computing actions for defenders with local perceptions and communications to maximize the capture of intruders. One major challenge for practical implementations is to make perimeter defense strategies scalable for large-scale problem instances. To this...
Article
Full-text available
In this work, we study the problem of decentralized multi-agent perimeter defense that asks for computing actions for defenders with local perceptions and communications to maximize the capture of intruders. One major challenge for practical implementations is to make perimeter defense strategies scalable for large-scale problem instances. To this...
Preprint
We study the problem that requires a team of robots to perform joint localization and target tracking task while ensuring team connectivity and collision avoidance. The problem can be formalized as a nonlinear, non-convex optimization program, which is typically hard to solve. To this end, we design a two-staged approach that utilizes a greedy algo...
Article
We study the problem of incorporating risk while making combinatorial decisions under uncertainty. We formulate a discrete submodular maximization problem for selecting a set using conditional value at risk (CVaR), a risk metric commonly used in financial analysis. While the CVaR has recently been used in the optimization of linear cost functions i...
Article
In this article, we design algorithms to protect swarm-robotics applications against sensor denial-of-service attacks on robots. We focus on applications requiring the robots to jointly select actions, e.g., which trajectory to follow, among a set of available actions. Such applications are central in large-scale robotic applications, such as multi...
Preprint
We consider the problem of finding decentralized strategies for multi-agent perimeter defense games. In this work, we design a graph neural network-based learning framework to learn a mapping from defenders' local perceptions and the communication graph to defenders' actions such that the learned actions are close to that generated by a centralized...
Preprint
Full-text available
Centralized approaches for multi-robot coverage planning problems suffer from the lack of scalability. Learning-based distributed algorithms provide a scalable avenue in addition to bringing data-oriented feature generation capabilities to the table, allowing integration with other learning-based approaches. To this end, we present a learning-based...
Preprint
Full-text available
Traditional approaches for active mapping focus on building geometric maps. For most real-world applications, however, actionable information is related to semantically meaningful objects in the environment. We propose an approach to the active metric-semantic mapping problem that enables multiple heterogeneous robots to collaboratively build a map...
Preprint
Consensus algorithms form the foundation for many distributed algorithms by enabling multiple robots to converge to consistent estimates of global variables using only local communication. However, standard consensus protocols can be easily led astray by non-cooperative team members. As such, the study of resilient forms of consensus is necessary f...
Preprint
Full-text available
We consider the setting where a team of robots is tasked with tracking multiple targets with the following property: approaching the targets enables more accurate target position estimation, but also increases the risk of sensor failures. Therefore, it is essential to address the trade-off between tracking quality maximization and risk minimization...
Article
We consider a scenario where a team of robots with heterogeneous sensors must track a set of targets or hazards which may induce sensory failures on the robots. In particular, the likelihood of failures depends on the proximity between the targets and the robots. We propose a control framework that explicitly addresses the competing objectives of t...
Preprint
The problem of multi-robot target tracking asks for actively planning the joint motion of robots to track targets. In this paper, we focus on such target tracking problems in adversarial environments, where attacks or failures may deactivate robots' sensors and communications. In contrast to the previous works that consider no attacks or sensing at...
Article
In this letter, we consider a distributed submodular maximization problem for multi-robot systems when attacked by adversaries. One of the major challenges for multi-robot systems is to increase resilience against failures or attacks. This is particularly important for distributed systems under attack as there is no central point of command that ca...
Preprint
Full-text available
In this paper, we develop a learning-based approach for decentralized submodular maximization. We focus on applications where robots are required to jointly select actions, e.g., motion primitives, to maximize team submodular objectives with local communications only. Such applications are essential for large-scale multi-robot coordination such as...
Preprint
Full-text available
In this letter, we consider a distributed submodular maximization problem for multi-robot systems when attacked by adversaries. One of the major challenges for multi-robot systems is to increase resilience against failures or attacks. This is particularly important for distributed systems under attack as there is no central point of command that ca...
Preprint
Full-text available
We consider a scenario where a team of robots with heterogeneous sensors must track a set of hostile targets which induce sensory failures on the robots. In particular, the likelihood of failures depends on the proximity between the targets and the robots. We propose a control framework that implicitly addresses the competing objectives of performa...
Preprint
Full-text available
Deploying a team of robots that can carefully coordinate their actions can make the entire system robust to individual failures. In this report, we review recent algorithmic development in making multi-robot systems robust to environmental uncertainties, failures, and adversarial attacks. We find the following three trends in the recent research in...
Article
Full-text available
Purpose of Review Deploying a team of robots that can carefully coordinate their actions can make the entire system robust to individual failures. In this report, we review recent algorithmic development in making multi-robot systems robust to environmental uncertainties, failures, and adversarial attacks. Recent Findings We find the following thr...
Article
Full-text available
We introduce and study the problem of planning a trajectory for an agent to carry out a scouting mission while avoiding being detected by an adversarial opponent. This introduces a multi-objective version of classical visibility-based target search and pursuit-evasion problem. In our formulation, the agent receives a positive reward for increasing...
Preprint
Full-text available
Submodular maximization has been widely used in many multi-robot task planning problems including information gathering, exploration, and target tracking. However, the interplay between submodular maximization and communication is rarely explored in the multi-robot setting. In many cases, maximizing the submodular objective may drive the robots in...
Preprint
Full-text available
We introduce a risk-aware multi-objective Traveling Salesperson Problem (TSP) variant, where the robot tour cost and tour reward have to be optimized simultaneously. The robot obtains reward along the edges in the graph. We study the case where the rewards and the costs exhibit diminishing marginal gains, i.e., are submodular. Unlike prior work, we...
Chapter
Full-text available
We study the problem of incorporating risk while making combinatorial decisions under uncertainty. We formulate a discrete submodular maximization problem for selecting a set using Conditional-Value-at-Risk (CVaR), a risk metric commonly used in financial analysis. While CVaR has recently been used in optimization of linear cost functions in roboti...
Preprint
Full-text available
The multiple-path orienteering problem asks for paths for a team of robots that maximize the total reward collected while satisfying budget constraints on the path length. This problem models many multi-robot routing tasks such as exploring unknown environments and information gathering for environmental monitoring. In this paper, we focus on how t...
Preprint
Full-text available
We propose a risk-aware framework for multi-robot, multi-demand assignment and planning in unknown environments. Our motivation is disaster response and search-and-rescue scenarios where ground vehicles must reach demand locations as soon as possible. We consider a setting where the terrain information is available only in the form of an aerial, ge...
Preprint
Full-text available
We study the problem of incorporating risk while making combinatorial decisions under uncertainty. We formulate a discrete submodular maximization problem for selecting a set using Conditional-Value-at-Risk (CVaR), a risk metric commonly used in financial analysis. While CVaR has recently been used in optimization of linear cost functions in roboti...
Preprint
Full-text available
We propose a centralized control framework to select suitable robots from a heterogeneous pool and place them at appropriate locations to monitor a region for events of interest. In the event of a robot failure, the framework repositions robots in a user-defined local neighborhood of the failed robot to compensate for the coverage loss. The central...
Preprint
Full-text available
We aim to guard swarm-robotics applications against denial-of-service (DoS) failures/attacks that result in withdrawals of robots. We focus on applications requiring the selection of actions for each robot, among a set of available ones, e.g., which trajectory to follow. Such applications are central in large-scale robotic/control applications, e.g...
Article
Full-text available
The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors may fail or get occluded. In this paper, we introdu...
Preprint
Full-text available
We study the problem of designing false measurement data that is injected to corrupt and mislead the output of a Kalman filter. Unlike existing works that focus on detection and filtering algorithms for the observer, we study the problem from the attacker's point-of-view. In our model, the attacker can corrupt the measurements by injecting additive...
Preprint
Full-text available
The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors may fail or get occluded. In this paper, we introdu...
Preprint
Full-text available
We introduce and study the problem of planning a trajectory for an agent to carry out a scouting mission while avoiding being detected by an adversarial guard. This introduces an adversarial version of classical visibility-based planning problems such as the Watchman Route Problem. The agent receives a positive reward for increasing its visibility...
Preprint
Full-text available
We study the problem of incorporating risk while making combinatorial decisions under uncertainty. We formulate a discrete submodular maximization problem for selecting a set using Conditional-Value-at-Risk (CVaR), a risk metric commonly used in financial analysis. While CVaR has recently been used in optimization of linear costs functions in robot...
Article
Full-text available
We study the problem of designing spoofing signals to corrupt and mislead the output of a Kalman filter. Unlike existing works that focus on detection and filtering algorithms for the observer, we study the problem from the attacker's point-of-view. In our model, the attacker can corrupt the measurements by adding spoofing signals. The attacker see...
Article
Full-text available
In this paper, we study two sensor assignment problems for multitarget tracking with the goal of improving the observability of the underlying estimator. We consider various measures of the observability matrix as the assignment value function. We first study the general version where the sensors must form teams to track individual targets. If the...
Article
Full-text available
We present a novel lower bound on the inverse of the condition number of the observability matrix for a system composed on one mobile target sensed by multiple stationary sensors. The actual observability matrix cannot be computed since the control input for the target is not known to the sensors. Instead, we present a lower bound on the observabil...
Article
Full-text available
We study the problem of reducing the amount of communication in decentralized target tracking. We focus on the scenario where a team of robots are allowed to move on the boundary of the environment. Their goal is to seek a formation so as to best track a target moving in the interior of the environment. The robots are capable of measuring distances...
Article
Full-text available
This study presents a distributed model predictive control (MPC) strategy to achieve flocking of multi-agent systems. Based on the relative motion between each pair of neighboring agents, we introduce a neighbor screening protocol, by which each agent only focuses on its neighbors, which have the relative motion that violates the formation of flock...
Article
Full-text available
This study proposes a distributed model predictive control (MPC) strategy to achieve consensus of sampled-data multi-agent systems with double-integrator dynamics. On the basis of the error of state between each agent and the centre of its subsystem, a novel distributed MPC strategy (Algorithm 1) is obtained with the exchange of current states only...

Network

Cited By