Liangliang Shi

Liangliang Shi
Shanghai Jiao Tong University | SJTU

About

8
Publications
513
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
71
Citations

Publications

Publications (8)
Article
Optimal transport (OT) is attracting increasing attention in machine learning. It aims to transport a source distribution to a target one at minimal cost. In its vanilla form, the source and target distributions are predetermined, which contracts to the real-world case involving undetermined targets. In this paper, we propose Doubly Bounded Optimal...
Conference Paper
Full-text available
For Generative Adversarial Networks which map a latent distribution to the target distribution, in this paper, we study how the sampling in latent space can affect the generation performance, especially for images. We observe that, as the neu-ral generator is a continuous function, two close samples in latent space would be mapped into two nearby i...
Conference Paper
Full-text available
Despite its success, generative adversarial networks (GANs) still suffer from mode collapse, i.e., the generator can only map latent variables to a partial set of modes in the target distribution. In this paper, we analyze and seek to regularize this issue with an independent and identically distributed (IID) sampling perspective and emphasize that...
Preprint
Despite its success, generative adversarial networks (GANs) still suffer from mode collapse, namely the generator can only map latent variables to a partial set of modes of the target distribution. In this paper, we analyze and try to regularize this issue with an independent and identically distributed (IID) sampling perspective and emphasize that...
Chapter
This paper proposes new ways of sample mixing by thinking of the process as generation of barycenter in a metric space for data augmentation. First, we present an optimal-transport-based mixup technique to generate Wasserstein barycenter which works well on images with clean background and is empirically shown complementary to existing mixup method...
Article
Full-text available
Causality learning has been an important tool for decision making, especially for financial analytics. Given the time series data, most existing works construct the causality network with the traditional regression models and estimate the causality by pairs. To fulfil a holistic one-shot inference procedure over the whole network, we propose a new...
Conference Paper
Point process is an expressive tool in learning temporal event sequence which is ubiquitous in real-world applications. Traditional predictive models are based on maximum likelihood estimation (MLE). This paper aims to improve MLE by discriminative and adversarial learning. The initial model is learned by MLE explaining the joint distribution of th...

Network

Cited By
    • Georgia Institute of Technology
    • CSIR – Central Electronics Engineering Research Institute (CSIR-CEERI)
    • Westlake University
    • Chinese Academy of Sciences
    • University of Electronic Science and Technology of China