About
19
Publications
4,137
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
432
Citations
Introduction
Publications
Publications (19)
The discovery and application of bacteriocin-producing probiotics, such as Streptococcus salivarius K12 (BLIS K12), represent significant advances in the prevention and management of bacterial infections, particularly in the oral cavity and upper respiratory tract. Originally developed for its bacteriocin-mediated inhibition of the important bacter...
Synbiotics are mixtures of prebiotics and probiotics that enhance the activity of probiotic bacteria when co-administered to provide greater benefits to the host. Traditionally, the synbiotics that have been discovered enhance gut probiotic strains and are nutritionally complex molecules that survive digestive breakdown until they reach the later s...
The human oral cavity contains a diversity of microbial habitats that have been adopted and adapted to as homeland by an amazingly heterogeneous population of microorganisms collectively referred to as the oral microbiota. These microbes generally co-habit in harmonious homeostasis. However, under conditions of imposed stress, as with changes to th...
Streptococcus salivarius BLIS K12 is a probiotic strain developed for application to the oral cavity. The strain was originally characterised for its in vitro antibacterial activity against the prominent oral pathogen Streptococcus pyogenes. More recent research has expanded its applications to include reducing halitosis, preventing otitis media an...
Oxidation of malate to oxaloacetate, catalyzed by either malate dehydrogenase (Mdh) or malate quinone oxidoreductase (Mqo), is a critical step of the tricarboxylic acid (TCA) cycle. Both Mqo and Mdh are found in most bacterial genomes, but the level of functional redundancy between these enzymes remains unclear. A bioinformatic survey revealed that...
Increasing antimicrobial resistance compels the search for next-generation inhibitors with differing or multiple molecular targets. In this regard, energy conservation in Mycobacterium tuberculosis has been clinically validated as a promising new drug target for combatting drug-resistant strains of M. tuberculosis. Here, we show that HM2-16F, a 6-s...
Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state term...
New drugs are urgently needed to combat the global TB epidemic. Targeting simultaneously multiple respiratory enzyme complexes of Mycobacterium tuberculosis is regarded as one of the most effective treatment options to shorten drug administration regimes, and reduce the opportunity for the emergence of drug resistance. During infection and prolifer...
Bedaquiline, an inhibitor of the mycobacterial ATP synthase, has revolutionized the treatment of Mycobacterium tuberculosis . Although a potent inhibitor, it is characterized by a poorly understood delayed time-dependent bactericidal activity. Here, we demonstrate that in contrast to bedaquiline, the transcriptional inhibition of the ATP synthase i...
Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F 420 , and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F 420 is important, as this process can be targeted to create new d...
Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre‐existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resist...
F420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F420 in...
The ability to respire and generate ATP is essential for the physiology, persistence and pathogenicity of Mycobacterium tuberculosis, which causes Tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to...
Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resist...
Cellular bioenergetics is an area showing promise for the development of new antimicrobials, antimalarials and cancer therapy. Enzymes involved in central carbon metabolism and energy generation are essential mediators of bacterial physiology, persistence and pathogenicity, lending themselves natural interest for drug discovery. In particular, succ...
The ability to persist in the absence of growth triggered by low-oxygen levels is a critical process for the survival of mycobacterial species in many environmental niches. MSMEG_5243 (fsq), a gene of unknown function in Mycobacterium smegmatis, is up-regulated in response to hypoxia and regulated by DosRDosS/DosT, an oxygen- and redox-sensing two-...
Significance
The mechanisms that the “dormant microbial majority” use to remain energized in nutrient-starved soil ecosystems have long remained elusive. In this work, we used an isolate of the highly abundant but poorly understood soil phylum Acidobacteria as a model for understanding microbial persistence mechanisms. When the bacterium entered a...