A Dynamic Approach to Characterizing Termination of General Logic Programs

YI-DONG SHEN
Chongqing University

JIA-HUAI YOU, LI-YAN YUAN and SAMUEL S. P. SHEN
University of Alberta

and

QIANG YANG
Simon Fraser University

We present a new characterization of termination of general logic programs. Most existing termination analysis approaches rely on some static information about the structure of the source code of a logic program, such as modes/types, norms/level mappings, models/interargument relations, and the like. We propose a dynamic approach which employs some key dynamic features of an infinite (generalized) SLDNF-derivation, such as repetition of selected subgoals and recursive increase in term size. We also introduce a new formulation of SLDNF-trees, called generalized SLDNF-trees. Generalized SLDNF-trees deal with negative subgoals in the same way as Prolog and exist for any general logic programs.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming; D.1.2 [Programming Techniques]: Automatic Programming; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—logic programming

General Terms: Languages, Theory

Additional Key Words and Phrases: Termination analysis, dynamic characterization, Prolog

1. INTRODUCTION

For a program in any computer language, in addition to having to be logically correct, it should be terminating. Due to frequent use of recursion in logic programming, however, a logic program may more likely be non-terminating than a procedural program. Termination of logic programs then becomes an important topic in logic programming research. Because the problem is extremely hard (undecidable in general), it has been considered as a never-ending story; see [Schreye
The goal of termination analysis is to establish a characterization of termination of a logic program and design algorithms for automatic verification. A lot of methods for termination analysis have been proposed in the last decade. A majority of these existing methods are the norm- or level mapping-based approaches, which consist of inferring mode/type information, inferring norms/level mappings, inferring models/interargument relations, and verifying some well-founded conditions (constraints). For example, Ullman and Van Gelder [Ullman and Gelder 1988] and Plümer [Plümer 1990b; 1990a] focused on establishing a decrease in term size of some recursive calls based on interargument relations; Apt, Bezem and Pedreschi [Apt and Pedreschi 1993; Bezem 1992], and Bossi, Cocco and Fabris [Bossi et al. 1994] provided characterizations of Prolog left-termination based on level mappings/norms and models; Verschaetse [Verschaetse 1992], Decorte, De Schreye and Fabris [Decorte et al. 1993], and Martin, King and Soper [Martin et al. 1997] exploited inferring norms/level mappings from mode and type information; De Schreye and Verschaetse [Schreye and Verschaetse 1995], Brodsky and Sagiv [Brodsky and Sagiv 1991], and Lindenstrauss and Sagiv [Lindenstrauss and Sagiv 1997] discussed automatic inference of interargument/size relations; De Schreye, Verschaetse and Bruynooghe [Schreye et al. 1992] addressed automatic verification of the well-founded constraints. Very recently, Decorte, De Schreye and Vandecasteele [Decorte et al. 1999] presented an elegant unified termination analysis that integrates all the above components to produce a set of constraints that, when solvable, yields a termination proof.

It is easy to see that the above methods are compile-time (or static) approaches in the sense that they make termination analysis only relying on some static information about the structure (of the source code) of a logic program, such as modes/types, norms (i.e. term sizes of atoms of clauses)/level mappings, models/interargument relations, and the like. Our observation shows that some dynamic information about the structure of a concrete infinite SLDNF-derivation, such as repetition of selected subgoals and recursive increase in term size, plays a crucial role in characterizing the termination. Such dynamic features are hard to capture by applying a compile-time approach. This suggests that methods of extracting and utilizing dynamic features for termination analysis are worth exploiting.

In this note, we present a dynamic approach by employing dynamic features of an infinite (generalized) SLDNF-derivation to characterize termination of general logic programs. In Section 2, we introduce a notion of a generalized SLDNF-tree, which is the basis of our method. Roughly speaking, a generalized SLDNF-tree is a set of standard SLDNF-trees augmented with an ancestor-descendant relation on their subgoals. In Section 3, we define a key concept, loop goals, which captures both repetition of selected subgoals and recursive increase in term size of these subgoals. We then prove a necessary and sufficient condition for an infinite generalized SLDNF-derivation in terms of loop goals. This condition allows us to establish a dynamic characterization of termination of general logic programs (Section 4). In Section 5, we mention the related work, and in Section 6 we conclude the paper with our future work.

1.1 Preliminaries

We present our notation and review some standard terminology of logic programs as described in [Lloyd 1987]. Variables begin with a capital letter, and predicate, function and constant symbols with a lower case letter. A term is a constant, a variable, or a function of the form \(f(T_1, \ldots, T_m) \) where \(f \) is a function symbol and the \(T_i \)s are terms. An atom is of the form \(p(T_1, \ldots, T_m) \) where \(p \) is a predicate symbol and the \(T_i \)s are terms. A literal is of the form \(A \) or \(\neg A \) where \(A \) is an atom. Let \(A \) be an atom/term. The size of \(A \), denoted \(|A| \), is the number of occurrences of function symbols, variables and constants in \(A \). By \(\{A_i\}_{i=1}^n \) we denote a sequence \(A_1, A_2, \ldots, A_n \). Two atoms, \(A \) and \(B \), are said to be variants if they are the same up to variable renaming.

Lists are commonly used terms. A list is of the form \([\]\) or \([T|L]\) where \(T \) is a term and \(L \) is a list. For our purpose, the symbols \([\], \) and \(| \) in a list are treated as function symbols.

Definition 1.1. A (general) logic program is a finite set of clauses of the form
\[
A \leftarrow L_1, \ldots, L_n
\]
where \(A \) is an atom and \(L_i \)s are literals. When \(n = 0 \), the “\(\leftarrow \)” symbol is omitted. \(A \) is called the head and \(L_1, \ldots, L_n \) is called the body of the clause. If a general logic program has no clause with negative literals like \(\neg A \) in its body, it is called a positive logic program.

Definition 1.2. A goal is a headless clause \(\leftarrow L_1, \ldots, L_n \) where each literal \(L_i \) is called a subgoal. \(L_1, \ldots, L_n \) is called a (concrete) query.

The initial goal, \(G_0 \leftarrow L_1, \ldots, L_n \), is called a top goal. Without loss of generality, we shall assume throughout the paper that a top goal consists only of one atom, i.e. \(n = 1 \) and \(L_1 \) is a positive literal.

Definition 1.3. A control strategy consists of two rules, one for selecting a goal from among a set of goals and the other for selecting a subgoal from the selected goal.

The second rule in a control strategy is usually called a selection or computation rule in the literature. To facilitate our presentation, throughout the paper we choose to use the best-known depth-first, left-most control strategy (used in Prolog) to describe our approach (It can be adapted to any other fixed control strategies). So the selected subgoal in each goal is the left-most subgoal. Moreover, the clauses in a logic program are used in their textual order.

Trees are commonly used to represent the search space of a top-down proof procedure. For convenience, a node in such a tree is represented by \(N_i : G_i \) where \(N_i \) is the name of the node and \(G_i \) is a goal labeling the node. Assume no two nodes have the same name. Therefore, we can refer to nodes by their names.

2. GENERALIZED SLDNF-TREES

In order to characterize infinite derivations more precisely, in this section we extend the standard SLDNF-trees [Lloyd 1987] to include some new features. We first define the ancestor-descendant relation on selected subgoals. Informally, \(A \) is an ancestor subgoal of \(B \) if the proof of \(A \) needs (or in other words goes via) the proof
of B. For example, let $M : \leftarrow A, A_1, ..., A_m$ be a node in an SLDNF-tree, and $N : \leftarrow B_1, ..., B_n, A_1, ..., A_m$ be a child node of M that is generated by resolving M on the subgoal A with a clause $A \leftarrow B_1, ..., B_n$. Then A at M is an ancestor subgoal of all B_is at N. However, such relationship does not exist between A at M and any A_j at N. It is easily seen that all B_is at N inherit the ancestor subgoals of A at M.

The ancestor-descendant relation can be explicitly expressed using an ancestor list. The ancestor list of a subgoal A at a node M, denoted $AL_{A@M}$, is of the form $\{(N_i, D_i), ..., (N_l, D_l)\}$ ($l \geq 0$), where for each $(N_i, D_i) \in AL_{A@M}$, N_i is a node name and D_i a subgoal such that D_i at N_i is an ancestor subgoal of A at M. For instance, in the above example, the ancestor list of each B_i at node N is $AL_{B_i@N} = \{(M, A)\} \cup AL_{A@M}$ and the ancestor list of each A_i at node N is $AL_{A_i@N} = AL_{A@N}$.

Let $N_i : G_i$ and $N_k : G_k$ be two nodes and A and B be the selected subgoals in G_i and G_k, respectively. We use $A \prec_{\text{anc}} B$ to denote that A is an ancestor subgoal of B. When A is an ancestor subgoal of B, we refer to B as a descendant subgoal of A, N_i as an ancestor node of N_k, and N_k as a descendant node of N_i.

Augmenting SLDNF-trees with ancestor lists leads to the following definition of SLDNF*-trees.

Definition 2.1 (SLDNF*-trees). Let P be a general logic program, $G_r \leftarrow A_r$ a goal with A_r an atom, and R the depth-first, left-most control strategy. The SLDNF*-tree T_{N_r,G_r} for $P \cup \{G_r\}$ via R is defined inductively as follows.

1. $N_r : G_r$ is its root node, and the tree is completed once a node marked as LAST is generated or when all its leaf nodes have been marked as \square_t, \square_f or \square_i.

2. For each node $N_i : \leftarrow L_1, ..., L_m$ in the tree that is selected by R, if $m = 0$ then
 (1) N_i is a success leaf marked as \square_t and (2) if $AL_{A_i@N_i} \neq \emptyset$ then N_i is also a node marked as LAST. Otherwise (i.e. $m > 0$), we distinguish between the following three cases.
 (a) L_1 is a positive literal. For each clause $B \leftarrow B_1, ..., B_n$ in P such that L_1 and B are unifiable, N_i has a child node

 $N_s : \leftarrow (B_1, ..., B_n, L_2, ..., L_m) \theta$

 where θ is an mgu (i.e. most general unifier) of L_1 and B, the ancestor list for each $B_k \theta$, $k \in \{1, ..., n\}$, is $AL_{B_k \theta@N_s} = \{(N_i, L_1)\} \cup AL_{L_i@N_i}$, and the ancestor list for each $L_k \theta$, $k \in \{2, ..., m\}$, is $AL_{L_k \theta@N_s} = AL_{L_k@N_i}$.

 If there exists no clause in P whose head can unify with L_1 then N_i has a single child node — a failure leaf marked as \square_f.
 (b) $L_1 = \lnot A$ is a ground negative literal. Let $T_{N_i+1; \lnot A}$ be an (subsidary) SLDNF*-tree for $P \cup \{\lnot A\}$ via R with $AL_{A@N_{i+1}} = AL_{L_k@N_i}$. We have the following four cases:
 i. $T_{N_i+1; \lnot A}$ has a success leaf. Then N_i has a single child node — a failure leaf marked as \square_f.
 ii. $T_{N_i+1; \lnot A}$ has no success leaf but has a flounder leaf. Then N_i has a single child node — a flounder leaf marked as \square_f.

 iii. All branches of $T_{N_i+1; \lnot A}$ end with a failure leaf. Then N_i has a single child node

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
$N_s := L_2, \ldots, L_m$

with $AL_{L_k \cup N_s} = AL_{L_k \cup N_s}$ for each $k \in \{2, \ldots, m\}$.

iv. Otherwise, N_i has no child node. It is the last node of $T_{N_i \leftarrow G_i}$, so that it is marked as \textsc{Last}.

(c) $L_1 = \neg A$ is a non-ground negative literal. Then N_i has a single child node - a flounder leaf marked as \square_f.

Starting from the root node $N_r : G_r$, we expand the nodes of the SLDNF*-tree $T_{N_r \leftarrow G_r}$, following the depth-first order. The expansion for $T_{N_r \leftarrow G_r}$ stops when either a node marked as \textsc{Last} is generated or all of its leaf nodes have been marked as \square_1, \square_f or \square_f.

In this paper we do not consider floundering - a situation where a non-ground negative subgoal is selected by R (see the case 2c). See [Chan 1988] for discussion on such topic.

We first prove the following.

THEOREM 2.2. Let $T_{N_i \leftarrow A}$ be a subsidiary SLDNF*-tree built for proving a negative subgoal $L_1 = \neg A$ at a node N_i (see the case 2b). Then $AL_{A \cup N_i+1} \neq \emptyset$.

PROOF. Note that $AL_{A \cup N_i+1} = AL_{L_1 \cup N_i}$. Since the subgoal L_1 at N_i is negative, N_i cannot be the root node of the SLDNF*-tree that contains N_i. Therefore, L_1 at N_i has at least one ancestor subgoal (i.e. the subgoal at the root node of the tree), which means $AL_{A \cup N_i+1} \neq \emptyset$. \qed

In order to solve a top goal $G_0 \leftarrow A_0$, we build an SLDNF*-tree $T_{N_0 \leftarrow A_0}$ for $P \cup \{G_0\}$ via R with $AL_{A_0 \cup N_0} = \emptyset$. It is easy to see that $T_{N_0 \leftarrow A_0}$ is an enhancement of the standard SLDNF-tree for $P \cup \{G_0\}$ via R with the following three new features.

1. Each node N_i is associated with an ancestor list $AL_{L_i \cup N_i}$ for each L_i of its subgoals. In particular, subgoals of a subsidiary SLDNF*-tree $T_{N_i \leftarrow A}$ built for solving a negative subgoal $L_1 = \neg A$ at N_i inherit the ancestor list $AL_{L_1 \cup N_i}$ (see the case 2b). This bridges the ancestor-descendant relationships across SLDNF*-trees and is especially useful in identifying infinite derivations across SLDNF*-trees (see Example 2.1). Note that a negative subgoal will never be an ancestor subgoal.

2. In a standard SLDNF-tree, to handle a ground negative subgoal $L_1 = \neg A$ at N_i a full subsidiary SLDNF-tree FT for $P \cup \{\leftarrow A\}$ via R must be generated. In an SLDNF*-tree, however, the subsidiary SLDNF*-tree $T_{N_i \leftarrow A}$ may not include all branches of FT because it will terminate at the first success leaf (see the case 2 where by Theorem 2.2 $AL_{A \cup N_i+1} \neq \emptyset$). The intuition behind this is that it is absolutely unnecessary to exhaust the remaining branches of FT because they would never generate any new answers for A (and $\neg A$). Such a pruning mechanism embedded in SLDNF*-trees is very useful in not only improving the efficiency of query evaluation but also avoiding some possible infinite derivations (see Example 2.2). In fact, Prolog performs the same pruning by using a cut operator to skip the remaining branches of FT once the first success leaf is generated (e.g. see SICStus Prolog [ISLAB 1998]).
(3) A well-known problem with the standard SLDNF-tree approach (formally called SLDNF-resolution [Clark 1978; Lloyd 1987]) is that for some programs, such as \(P = \{ A \leftarrow \neg A \} \) and \(G_0 = \leftarrow A \), no SLDNF-trees exist [Apt and Doets 1994; Kunen 1989; Martelli and Tricomi 1992]. The main reason for this abnormality lies in the fact that to solve a negative subgoal \(\neg A \) it generates a subsidiary SLDNF-tree \(FT \) for \(P \cup \{ \leftarrow A \} \) via \(R \) which is supposed either to contain a success leaf or to consist of failure leaves. When \(FT \) neither contains a success leaf nor finitely fails by going into an infinite derivation, the negative subgoal cannot be handled.

In contrast, SLDNF*-trees exist for any general logic programs. A ground negative subgoal \(\neg A \) at a node \(N_i \) succeeds if all branches of the subsidiary SLDNF*-tree \(T_{N_{i+1}: \neg A} \) end with a failure leaf (see the case 2(b)iii), and fails if \(T_{N_{i+1}: \neg A} \) has a success leaf (see the case 2(b)ii). Otherwise, the value of the subgoal \(\neg A \) is undetermined and thus \(N_i \) is marked as \textit{LAST}, showing that it is the last node of the underlying SLDNF*-tree which can be finitely generated (see the case 2(b)iv).\(^1\) The tree is then completed here.

For convenience, we use dotted edges “\(\cdot \Rightarrow \)" to connect parent and child (subsiduary) SLDNF*-trees, so that infinite derivations across SLDNF*-trees can be clearly identified. Formally, we have

\textit{Definition 2.3.} Let \(P \) be a general logic program, \(G_0 \) a top goal and \(R \) the depth-first, left-most control strategy. Let \(T_{N_0;G_0} \) be the SLDNF*-tree for \(P \cup \{ G_0 \} \) via \(R \) with \(AL_{A_0@N_0} = \emptyset \). A \textit{generalized SLDNF-tree} for \(P \cup \{ G_0 \} \) via \(R \), denoted \(GT_{G_0} \), is rooted at \(N_0 : G_0 \) and consists of \(T_{N_0;G_0} \) along with all its descendant SLDNF*-trees, where parent and child SLDNF*-trees are connected via “\(\cdot \Rightarrow \)".

Therefore, a path of a generalized SLDNF-tree may come across several SLDNF*-trees through dotted edges. Any such a path starting at the root node \(N_0 : G_0 \) is called a \textit{generalized SLDNF-derivation}.

Thus, there may occur two types of edges in a generalized SLDNF-derivation, “\(\cdot \Rightarrow \)” and “\(\cdot \Rightarrow \)". For convenience, we use “\(\Rightarrow \)" to refer to either of them. Moreover, for any node \(N_i : G_i \) we use \(L_1^i \) to refer to the selected (i.e. left-most) subgoal in \(G_i \).

\textit{Example 2.1.} Let \(P_1 \) be a general logic program and \(G_0 \) a top goal, given by

\[
\begin{align*}
P_1 : &
\begin{align*}
p(X) & \leftarrow \neg p(f(X)). \\
G_0 : & \leftarrow p(a).
\end{align*}
\end{align*}
\]

The generalized SLDNF-tree \(GT_{\neg p(a)} \) for \(P_1 \cup \{ G_0 \} \) is shown in Figure 1, where \(\infty \) represents an infinite extension. Note that to expand the node \(N_1 \), we build a

\(^1\)This case occurs when either \(T_{N_{i+1}: \neg A} \) or some of its descendant SLDNF*-trees is infinite, or \(T_{N_{i+1}: \neg A} \) has an infinite number of descendant SLDNF*-trees. Note that \textit{LAST} is used here only for the purpose of formulating an SLDNF*-tree – showing that \(N_i \) is the last node of the SLDNF*-tree. In practical implementation of SLDNF*-trees, in such a case \(N_i \) will never be marked by \textit{LAST} since it requires an infinitely long time to build \(T_{N_{i+1}: \neg A} \) together with all of its descendant SLDNF*-trees. However, the SLDNF*-tree is always completed at \(N_i \), whether \(N_i \) is marked by \textit{LAST} or not, because (1) such a case occurs at most one time in an SLDNF*-tree and (2) it always occurs at the last generated node \(N_i \).
Characterizing Termination of General Logic Programs

subsidiary SLDNF*-tree \(T_{N_2} \leftarrow p(f(a)) \). Since \(T_{N_2} \leftarrow p(f(a)) \) neither contains a success leaf nor finitely fails (i.e. not all of its leaf nodes are marked as \(\square_f \)), \(N_1 \) is the last node of \(T_{N_0} \leftarrow p(a) \), marked as \textbf{LAST}. We see that \(G \leftarrow p(a) \) is infinite, although all of its SLDNF*-trees are finite.

\[
\begin{align*}
N_0 & : \leftarrow p(a) \\
N_1 & : \leftarrow \neg p(f(a)) \\
N_2 & : \leftarrow p(f(a)) \\
\text{LAST} & : \leftarrow p(f(a)) \\
N_3 & : \leftarrow \neg p(f(f(a))) \\
N_4 & : \leftarrow p(f(f(a))) \\
\text{LAST} & : \leftarrow p(f(f(a)))
\end{align*}
\]

Fig. 1. The generalized SLDNF-tree \(G \leftarrow p(a) \).

Example 2.2. Consider the following general logic program and top goal.

\[
\begin{align*}
P_2 & : \quad p \leftarrow \neg q. \\
& \quad q. \\
& \quad q \leftarrow q. \\
G_0 & : \quad \leftarrow p.
\end{align*}
\]

The generalized SLDNF-tree \(G \leftarrow p \) for \(P_2 \cup \{ G_0 \} \) is depicted in Figure 2 (a). \(G \leftarrow p \) consists of two SLDNF*-trees, \(T_{N_0} \leftarrow p \) and \(T_{N_2} \leftarrow q \), which are constructed as follows. Initially, \(T_{N_0} \leftarrow p \) has only the root node \(N_0 : \leftarrow p. \) Expanding the root node against the clause \(C_{p_1} \) leads to the child node \(N_1 : \leftarrow \neg q. \) We then build a subsidiary SLDNF*-tree \(T_{N_2} \leftarrow q \) for \(P_2 \cup \{ \leftarrow p \} \) via the depth-first, left-most control strategy, where the expansion stops right after the node \(N_3 \) is marked as \textbf{LAST}. Since \(T_{N_2} \leftarrow q \) has a success leaf, \(N_1 \) gets a failure child node \(N_5 \). \(T_{N_0} \leftarrow p \) is then completed.

For the purpose of comparison, the standard SLDNF-trees for \(P_2 \cup \{ \leftarrow p \} \) are shown in Figure 2 (b). Note that Figure 2 (a) is finite, whereas Figure 2 (b) is not.

Fig. 2. The generalized SLDNF-tree \(G \leftarrow p \) (a) and its two corresponding standard SLDNF-trees (b).
3. CHARACTERIZING AN INFINITE GENERALIZED SLDNF-DERIVATION

In this section we establish a necessary and sufficient condition for an infinite generalized SLDNF-derivation. We begin by introducing a few concepts.

Definition 3.1. Let \(T \) be a term or an atom and \(S \) be a string that consists of all predicate symbols, function symbols, constants and variables in \(T \), which is obtained by reading these symbols sequentially from left to right. The symbol string of \(T \), denoted \(S_T \), is the string \(S \) with every variable replaced by \(X \).

For instance, let \(T_1 = a \), \(T_2 = f(X, g(X, f(a, Y))) \) and \(T_3 = [X, a] \). Then \(S_{T_1} = a \), \(S_{T_2} = fXgXfaX \) and \(S_{T_3} = [X][a][]] \). Note that \([X, a]\) is a simplified representation for the list \([X][a][]] \).

Definition 3.2. Let \(S_{T_1} \) and \(S_{T_2} \) be two symbol strings. \(S_{T_1} \) is a projection of \(S_{T_2} \), denoted \(S_{T_1} \subseteq_{proj} S_{T_2} \), if \(S_{T_1} \) is obtained from \(S_{T_2} \) by removing zero or more elements.

For example, \(aX\lambda bc \subseteq_{proj} fXeXbc \). It is easy to see that the relation \(\subseteq_{proj} \) is reflexive and transitive. That is, for any symbol strings \(S_1, S_2 \) and \(S_3 \), we have \(S_1 \subseteq_{proj} S_1 \), and that \(S_1 \subseteq_{proj} S_2 \) and \(S_2 \subseteq_{proj} S_3 \) implies \(S_1 \subseteq_{proj} S_3 \).

Definition 3.3. Let \(A_1 = p(...) \) and \(A_2 = p(...) \) be two atoms. \(A_1 \) is said to loop into \(A_2 \), denoted \(A_1 \sim_{loop} A_2 \), if \(S_{A_1} \subseteq_{proj} S_{A_2} \). Let \(N_i : G_i \) and \(N_j : G_j \) be two nodes in a generalized SLDNF-derivation with \(L_i^{1} \sim_{anc} L_j^{1} \) and \(L_i^{1} \sim_{loop} L_j^{1} \). Then \(G_j \) is called a loop goal of \(G_i \).

The following result is immediate.

Theorem 3.4. (1) The relation \(\sim_{loop} \) is reflexive and transitive.
(2) If \(A_1 \sim_{loop} A_2 \) then \(|A_1| \leq |A_2| \).
(3) If \(G_2 \) is a loop goal of \(G_1 \) then \(G_2 \) is a loop goal of \(G_1 \).

Observe that since a logic program has only a finite number of clauses, an infinite generalized SLDNF-derivation results from repeatedly applying the same set of clauses, which leads to infinite repetition of selected variant subgoals or infinite repetition of selected subgoals with recursive increase in term size. By recursive increase of term size of a subgoal \(A \) from a subgoal \(B \) we mean that \(A \) is \(B \) with a few function/constant/variable symbols added and possibly with some variables changed to different variables. Such crucial dynamic characteristics of an infinite generalized SLDNF-derivation are captured by loop goals, as shown by the following principal theorem.

Theorem 3.5. \(D \) is an infinite generalized SLDNF-derivation if and only if it is of the form

\[
N_0 : G_0 \Rightarrow \ldots N_{g_1} : G_{g_1} \Rightarrow \ldots N_{g_2} : G_{g_2} \Rightarrow \ldots N_{g_3} : G_{g_3} \Rightarrow \ldots
\]

such that for any \(j \geq 1 \), \(G_{g_{j+1}} \) is a loop goal of \(G_{g_j} \).

We need Higman’s Lemma to prove this theorem.\(^2\)

\(^2\)It is one of the anonymous reviewers who brought this lemma to our attention.
Lemma 3.6 (Higman’s Lemma [Higman 1952; Bol 1991]). Let \(\{A_i\}_{i=1}^{\infty} \) be an infinite sequence of strings over a finite alphabet \(\Sigma \). Then for some \(i \) and \(k > i \),
\[A_i \subseteq_{\text{proj}} A_k \]

The following result follows from Lemma 3.6.

Lemma 3.7. Let \(\{A_i\}_{i=1}^{\infty} \) be an infinite sequence of strings over a finite alphabet \(\Sigma \). Then there is an infinite increasing integer sequence \(\{n_i\}_{i=1}^{\infty} \) such that for all \(i \)
\[A_{n_i} \subseteq_{\text{proj}} A_{n_{i+1}}. \]

Proof. 3 Suppose this is not true. Let us take a finite maximal subsequence
\[A_{n_1} \subseteq_{\text{proj}} A_{n_2} \subseteq_{\text{proj}} \ldots \subseteq_{\text{proj}} A_{n_k}. \]

The subsequence is maximal in the sense that for no \(i > n_k \) do we have \(A_{n_k} \subseteq_{\text{proj}} A_i \). We know that such a subsequence with length at least 2 must exist from Lemma 3.6 and the assumption that the assertion of the lemma does not hold for the sequence \(\{A_i\}_{i=1}^{\infty} \). Now look at the elements of the original sequence with indices larger than \(n_k \), and take another such finite maximal subsequence from them. Continuing in this way, we get infinitely many such maximal subsequences. Let \(\{A_{n_k}\}_{k=1}^{\infty} \) be the sequence of last elements of the maximal subsequences. By Lemma 3.6, this sequence has two elements, \(A_{n_k} \) and \(A_{n_j} \) with \(n_k < n_j \), such that \(A_{n_k} \subseteq_{\text{proj}} A_{n_j} \). This contradicts the assumption that \(A_{n_k} \) is the last element of some finite maximal subsequence.

The following lemma is needed to prove Theorem 3.5.

Lemma 3.8. Let \(D \) be an infinite generalized SLDNF-derivation. Then there are infinitely many goals \(G_{g_1}, G_{g_2}, \ldots \) in \(D \) such that for any \(j \geq 1 \),
\[L_{j+1}^1 \prec_{\text{anc}} L_{j+1}^1. \]

Proof. Let \(D \) be of the form
\[N_0 : G_0 \Rightarrow N_1 : G_1 \Rightarrow \ldots \Rightarrow N_i : G_i \Rightarrow N_{i+1} : G_{i+1} \Rightarrow \ldots \]
Consider derivation steps like \(N_i : G_i \xrightarrow{C} N_{i+1} : G_{i+1} \cdots \Rightarrow N_{i+2} : G_{i+2} \), where \(L_i^1 \) is a positive subgoal and \(L_{i+1}^1 = \neg A \) a negative subgoal. So \(L_{i+2}^1 = A \). We see that both \(L_i^1 \) and \(L_{i+1}^1 \) need the proof of \(L_{i+2}^1 \). Moreover, given \(L_{i+2}^1 \) the provability of \(L_{i+1}^1 \) does not depend on \(L_{i+2}^1 \). Since \(L_{i+1}^1 \) has no descendant subgoals, removing it would affect neither the provability nor the ancestor-descendant relationships of other subgoals in \(D \). Therefore, we delete \(L_{i+1}^1 \) by marking \(N_{i+1} \) with \#.

For each derivation step \(N_i : G_i \xrightarrow{C} N_{i+1} : G_{i+1} \), where \(L_i^1 \) is a positive subgoal and \(C = A \leftarrow B_1, \ldots B_n \) such that \(A\theta = L_i^1\theta \) under an mgu \(\theta \), we do the following:
1. If \(n = 0 \), which means \(L_i^1 \) is proved at this step, mark node \(N_i \) with \#.
2. Otherwise, the proof of \(L_i^1 \) needs the proof of \(B_j\theta \) (\(j = 1, \ldots, n \)). If all descendant nodes of \(N_i \) in \(D \) have been marked with \#, which means that all \(B_j\theta \) have been proved at some steps in \(D \), mark node \(N_i \) with \#.

Note that the root node \(N_0 \) will never be marked with \#, for otherwise \(G_0 \) would have been proved and \(D \) should have ended at a success or failure leaf. After the above marking process, let \(D \) become

3This proof is suggested by an anonymous reviewer.
$N_0 : G_0 \Rightarrow \ldots \Rightarrow N_{i_1} : G_{i_1} \Rightarrow \ldots \Rightarrow N_{i_2} : G_{i_2} \Rightarrow \ldots \Rightarrow N_{i_k} : G_{i_k} \Rightarrow \ldots$

where all nodes except $N_0, N_{i_1}, N_{i_2}, \ldots, N_{i_k}, \ldots$ are marked with #. Since we use the depth-first, left-most control strategy, for any $j \geq 0$ the proof of $L_{i_j}^1$ needs the proof of $L_{i_{j+1}}^1$ (let $i_0 = 0$), for otherwise N_{i_j} would have been marked with #. That is, $L_{i_j}^1$ is an ancestor subgoal of $L_{i_{j+1}}^1$. Moreover, D must contain an infinite number of such nodes because if $N_{i_k} : G_{i_k}$ was the last one, which means that all nodes after N_{i_k} were marked with #, then $L_{i_k}^1$ would be proved, so that N_{i_k} should be marked with #, a contradiction.

We are ready to prove Theorem 3.5.

Proof (Proof of Theorem 3.5). (\Longleftarrow) Straightforward.

(\Longrightarrow) By Lemma 3.8, D contains an infinite sequence of selected subgoals $H_1 = \{L_1^1\}_{i=1}^\infty$ such that for any $i L_1^1 \leq_{anc} L_{i+1}^1$. Since any logic program has only a finite number of predicate symbols, H_1 must have an infinite subsequence $H_2 = \{L_{k_i}^1\}_{i=1}^\infty$ such that all $L_{k_i}^1$ have the same predicate symbol, say p. We now show that H_2 has an infinite subsequence $\{L_{g_i}^1\}_{i=1}^\infty$ such that for any $i L_{g_i}^1 \leq_{\text{loop}} L_{g_{i+1}}^1$.

Let T be the (finite) set of all constant and function symbols in the logic program and let $\Sigma = T \cup \{X\}$. Then the symbol string $S_{L_{k_i}^1}$ of each $L_{k_i}^1$ in H_2 is a string over Σ that begins with p. These symbol strings constitute an infinite sequence $\{pA_i\}_{i=1}^\infty$ with each A_i being a substring. By Lemma 3.7 there is an infinite increasing integer sequence $\{n_i\}_{i=1}^\infty$ such that for any $i pA_{n_i} \leq_{\text{proj}} pA_{n_{i+1}}$. Therefore, H_2 has an infinite subsequence $H_3 = \{L_{g_i}^1\}_{i=1}^\infty$ with $S_{L_{g_i}^1} = pA_{n_i}$ being the symbol string of $L_{g_i}^1$. That is, for any $i S_{L_{g_i}^1} \leq_{\text{proj}} S_{L_{g_{i+1}}^1}$. Thus, for any $i L_{g_i}^1 \leq_{\text{loop}} L_{g_{i+1}}^1$.

4. **Characterizing Termination of General Logic Programs**

In [Schreye and Decorte 1993], a generic definition of termination of logic programs is presented as follows.

Definition 4.1 ([Schreye and Decorte 1993]). Let P be a general logic program, S_Q a set of queries and S_R a set of selection rules. P is terminating w.r.t. S_Q and S_R if for each query Q_i in S_Q and for each selection rule R_j in S_R, all SLDNF-trees for $P \cup \{\leftarrow Q_i\}$ via R_j are finite.

Observe that the above definition considers finite SLDNF-trees for termination. That is, P is terminating w.r.t. Q_i only if all (complete) SLDNF-trees for $P \cup \{\leftarrow Q_i\}$ are finite. This does not seem to apply to Prolog where there exist cases in which P is terminating w.r.t. Q_i and R_j, although some (complete) SLDNF-trees for $P \cup \{\leftarrow Q_i\}$ are infinite. Example 2.2 gives such an illustration, where Prolog terminates with a negative answer to the top goal G_0.

In view of the above observation, we present the following slightly different definition of termination based on a generalized SLDNF-tree.

Definition 4.2. Let P be a general logic program, S_Q a finite set of queries and R the depth-first, left-most control strategy. P is terminating w.r.t. S_Q and R if for each query Q_i in S_Q, the generalized SLDNF-tree for $P \cup \{\leftarrow Q_i\}$ via R is finite.

The above definition implies that P is terminating w.r.t. S_Q and R if and only if there is no infinite generalized SLDNF-derivation in any generalized SLDNF-tree.
This obviously applies to Prolog. We then have the following immediate result from Theorem 3.5, which characterizes termination of a general logic program.

Theorem 4.3. P is terminating w.r.t. S_Q and R if and only if for each query Q_i in S_Q there is no generalized SLDNF-derivation in GT_{Q_i} of the form

$$N_0 : G_0 ⇒ ...N_{g_1} : G_{g_1} ⇒ ...N_{g_2} : G_{g_2} ⇒ ...N_{g_3} : G_{g_3} ⇒ ...$$

such that for any $j ≥ 1$, G_{g_j+1} is a loop goal of G_{g_j}.

5. RELATED WORK

Concerning termination analysis, we refer the reader to the papers of Decorte, De Schreye and Vandecasteele [Schreye and Decorte 1993; Decorte et al. 1999] for a comprehensive bibliography. Most existing termination analysis techniques are static approaches, which only make use of the syntactic structure of the source code of a logic program to establish some well-founded conditions/constraints that, when satisfied, yield a termination proof. Since non-termination is caused by an infinite generalized SLDNF-derivation, which contains some essential dynamic characteristics that are hard to capture in a static way, static approaches appear to be less precise than a dynamic one. For example, it is difficult to apply a static approach to prove the termination of program P_2 in Example 2.2 with respect to a query pattern p.

The concept of generalized SLDNF-trees is the basis of our approach. There are several new definitions of SLDNF-trees presented in the literature, such as that of Apt and Doets [Apt and Doets 1994], Kunen [Kunen 1989], or Martelli and Tricomi [Martelli and Tricomi 1992]. Generalized SLDNF-trees have two distinct features as compared to these definitions. First, the ancestor-descendent relation is explicitly expressed (using ancestor lists) in a generalized SLDNF-tree, which is essential in identifying loop goals. Second, a ground negative subgoal $¬A$ at a node N_i in a SLDNF*-tree $T_{N_i:G}$ is formulated in the same way as in Prolog, i.e. (1) the subsidiary SLDNF*-tree $T_{N_{i+1}:¬A}$ for the subgoal terminates at the first success leaf, and (2) $¬A$ succeeds if all branches of $T_{N_{i+1}:¬A}$ end with a failure leaf and fails if $T_{N_{i+1}:¬A}$ has a success leaf. When $T_{N_{i+1}:¬A}$ goes into an infinite extension, the node N_i is treated as the last node of $T_{N_i:G}$ which can be finitely generated. As a result, a generalized SLDNF-tree exists for any general logic programs.

Our work is also related to loop checking — another research topic in logic programming which focuses on detecting and eliminating infinite loops. Informally, a derivation

$$N_0 : G_0 ⇒ N_1 : G_1 ⇒ ... ⇒ N_i : G_i ⇒ ... ⇒ N_k : G_k ⇒ ...$$

is said to step into a loop at a node $N_k : G_k$ if there is a node $N_i : G_i$ ($0 ≤ i < k$) in the derivation such that G_i and G_k are sufficiently similar. Many mechanisms related to loop checking have been presented in the literature (e.g. [Bol et al. 1991; Shen et al. 2001]). However, most of them apply only to SLD-derivations for positive logic programs and thus cannot deal with infinite recursions through negation like that in Figure 1 or 2.

Loop goals are defined on a generalized SLDNF-derivation for general logic programs and can be used to define the sufficiently similar goals in loop checking. For
such an application, they play a role similar to expanded variants defined in [Shen et al. 2001]. Informally, expanded variants are variants except that some terms may grow bigger. However, expanded variants have at least three disadvantages as compared to loop goals: their definition is less intuitive, their computation is more expensive, and they are not transitive in the sense that A being an expanded variant of B that is an expanded variant of C does not necessarily imply A is an expanded variant of C.

6. CONCLUSIONS AND FUTURE WORK

We have presented an approach to characterizing termination of general logic programs by making use of dynamic features. A concept of generalized SLDNF-trees is introduced, a necessary and sufficient condition for infinite generalized SLDNF-derivations is established, and a new characterization of termination of a general logic program is developed.

We have recently developed an algorithm for automatically predicting termination of general logic programs based on the characterization established in this paper. The algorithm identifies the most-likely non-terminating programs. Let P be a general logic program, S_Q a set of queries and R the depth-first, left-most control strategy. P is said to be most-likely non-terminating w.r.t. S_Q and R if for some query Q_i in S_Q, there is a generalized SLDNF-derivation with a few (e.g. two or three) loop goals. Our experiments show that for most representative general logic programs we have collected in the literature, they are not terminating w.r.t. S_Q and R if and only if they are most-likely non-terminating w.r.t. S_Q and R. This algorithm can be incorporated into Prolog as a debugging tool, which would provide the users with valuable debugging information for them to understand the causes of non-termination.

Tabled logic programming is receiving increasing attention in the community of logic programming (e.g. [Chen and Warren 1996; Shen et al. 2002]). Verbaeten, De Schreye and Sagonas [Verbaeten et al. 2001] recently exploited termination proofs for positive logic programs with tabling. For future research, we are considering extending the work of the current paper to deal with general logic programs with tabling.

ACKNOWLEDGMENTS

We are particularly grateful to Danny De Schreye, Krzysztof Apt, Jan Willem Klop and the three anonymous referees for their constructive comments on our work and valuable suggestions for its improvement. One anonymous reviewer brought the Higman’s lemma to our attention. Another anonymous reviewer suggested the proof of Lemma 3.7 and presented us a different yet interesting proof to the Higman’s lemma based on an idea from Dershowitz’s paper [Dershowitz 1987]. The work of Yi-Dong Shen is supported in part by Chinese National Natural Science Foundation and Trans-Century Training Program Foundation for the Talents by the Chinese Ministry of Education. Qiang Yang is supported by NSERC and IRIS III grants.

REFERENCES

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD. 20TBD.

Received June 2000; revised August 2001 and December 2001; accepted April 2002