
A Deployment Platform for Dynamically Scaling Applications in The Cloud

Rui Han, Li Guo, Yike Guo*, Sijin He
Department of Computing
Imperial College London

London, UK
{r.han10, liguo, y.guo, sijin.he07}@imperial.ac.uk

Abstract— Simplifying the process of deploying applications is
almost essential in the cloud. However, existing techniques can
automate applications’ initial deployment but have not yet
adequately addressed their dynamic scaling problems. In this
paper, a deployment platform to enable a novel dynamic
scaling technique is introduced. This platform employs: (i) an
extensible specification that describes all aspects of
applications; (ii) a flexible analytical model that determines
how many servers to be deployed for an application in each
scaling. The platform’s ability to handle dynamic workloads
and to scale applications quickly enough to maintain the
response time target is demonstrated.

Keywords- applications; cloud computing; deployment;
dynamic scaling; platform

I. INTRODUCTION
With the significant progress in Information and

Communications Technology, cloud computing allows
thousands of individuals and small enterprises to produce
and providing applications in a way that only large
corporations could manage in the past [1]. In this context,
irresistible trends promoted by leading cloud enterprises such
as Amazon[2] encourage people to deliver their services in
the cloud. Typically, a service is implemented as a multi-tier
application composed of a series of servers running in VMs
(virtual machines) and interacting across the network.
However, since cloud providers only provide standalone VM
images (e.g., Amazon EC2 [2]), service providers have to
manually conduct a series of deployment tasks before they
can deliver services in the cloud, which incur three problems.
First of all, the deployment process is time-consuming
process, in which a lot of time is wasted in tedious tasks such
as installing, configuring and integrating applications.
Secondly, the complexity nature of these tasks makes them
error-prone. Finally, professional knowledge is required and
external consultant hours for domain experts and solution
architects are often expensive.
 Recent work has tried to simplify the deployment process
by providing pre-defined packages capable of being
automatically deployed (e.g., RightScale’s [3] and 3Tera [4]).
Although existing techniques [3-8] can serve well for
automating applications’ initial deployment, they still remain
deployed systems’ dynamic scaling for human interventions.
This manual redeployment requires services to be put offline
and this is sometimes unaffordable for the service end users.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
* Please direct your enquiries to the communication author Professor Yike Guo.

 In this paper, we tackle the above challenges by
proposing a platform that enables the agile dynamic scaling
of cloud applications. This dynamic scaling denotes a
process that responds to users’ changing requirements and
automatically scales applications without having to shut
down the delivered services. The paper features three key
elements:

• an extensible specification is introduced to explicitly
describe all aspects of an application, including all
configurations of its servers and their linking relationships.

• a flexible analytical model is utilised to capture the
behaviour of various types of tiers in an application. A
worst-case scenario is used to ensure the deployed
application has sufficient resources even at peak workload.

• a successful trial of the complete platform is conducted
using an open source application.
 The rest of this paper is organized as follows: Section II
presents some basic concepts and discusses motivation of
this work and its related work. Section III then introduces
our platform and explains how the dynamic scaling is
realised. Section IV’s experiments evaluate the platform’s
effectiveness and finally, Section V summarizes the work.

II. MOTIVATION AND RELATED WORK
This section first introduces a concrete example

illustrating the problems we want to solve, followed by brief
discussing on related work.

A. Example Scenarios and Problem Analysis
This section illustrates three problems that must be

stepwise solved in achieving the dynamic scaling using an
online bookstore application. When a service provider
initially deploys this application, only one Tomcat web
server and one MySQL database server are needed to support
a small amount of customers, as shown in Figure 1(a). When
the business is growing larger, this application is scaled up,
as depicted by Figure 1(b). In the scaling, the Tomcat is
expanded as several Apache web servers and a cluster of
Tomcat application servers. These two types of servers are
designed to handle static and dynamic user requests,
respectively. Similarly, a number of MySQL Slavers are
added to handle “read” requests so as to alleviate MySQL
Master’s load. In addition, Varnish and Memcache cache
servers are utilized to accelerate user access speed. Two
HAProxy are used to distribute.

MySQL
Master

iptables

iptables

HAProxy Customers

iptables

Varnishes

MySQL Master

HAProxys
HAProxys

iptables
Mutil-MySQL

Slaves

Mutil-
Apache

Tomcat
Cluster

Tomcat

Memcached

(a) A small-scale online bookstore deployment

Customers

(b) A large-scale online bookstore deployment 	
Figure 1. Example small and large-scale online bookstore applications.

Problem 1: Server specification. To automate the above
scaling process, a specification must be proposed to describe
all information of each single server including its VM
configuration, user settings and linking with other servers.
Based on this specification, basic deployment activities such
as adding or removing should be automatically executed.

Problem 2: How much to scale. In Figure 1’s online
bookstore, when the number of customers increases, a
capacity estimation must be triggered to ensure enough
servers are deployed to meet the response time specified in
the service-level agreements (SLAs).

Problem 3: How to scale. In the scaling, the deploying
of servers must be implemented in right order. For example,
in Figure 1(a), the HAProxy must be deployed later than the
Tomcat to connect it; in Figure 1(b), multiple Tomcats can
be deployed in parallel to form a cluster. In addition, end
users’ interface such as HAProxys in Figure 1’s two
examples must be kept open and unchanged to ensure that
end users can always get access to the service.

B. Discussions on Related Work
In cloud computing, a representative technique in

simplifying deployment is proposed by RightScale [3]. It
integrates applications with VM images to generate server
templates that can be automatically deployed. In addition,
some other enterprises such as 3Tera [4] provide visual user
portals to facilitate the design of deployment plans.
 In addition, researchers have proposed a number of
approaches to facilitate deployment in the cloud.
Konstantinou et al. [5] introduce a model-based architecture
using virtual solution models to provide abstract
deployment plans that are platform-independent. When a
VSM is bound to a cloud platform, it can be transformed
into an executable deployment plan. Chieu et al [6] present a
cloud provisioning system that preloads applications in
VMs to generate basic application images. This system
allows users to specify complex deployment scenarios by
constructing these application images. In addition, Xabriel
et al. use a meta model based approach to automatic
applications’ initial deployment and their approach also
allows static deployment modifications at the design time
[7]. Hughes et al propose a framework to support individual
applications’ self-management, including setup,
configuration, recovery and scaling up and down [8].
 However, to the best of our knowledge, although

previous investigations of this sort have solved applications’
initial deployment satisfactorily, they only support single
applications’ dynamic scaling. This means any scaling of
the whole deployment still needs human interventions. The
deployment platform proposed in this work, therefore,
attempts to solve this problem by supporting both
applications’ initial deployment and dynamic scaling.
 Furthermore, some platforms are proposed to manage
the deployment of specific types of applications supported
by the provided platforms. Microsoft Windows Azure [9]
and Google App Engine [10] assist developers to
conveniently create, deploy and scale their applications.
These applications are required to be developed with only
the supported languages, such as Python or Java in Google
App Engine. In addition, Aneka Clouds provides three
different programming models, i.e., Task, Thread, and
MapReduce, to support the deployment of three types of
applications [11]. Inheriting and developing from these
techniques, this work aims at offering service providers a
general platform to deploy applications with no restrictions.

III. THE PLATFORM FOR DYNAMICALLY SCALING
APPLICATIONS

At the beginning of this section, we give an overview of
the platform. In the following three sections, Section III.B
explains the application specification (problem 1). Section
III.C presents the capacity planning technique (problem 2).
Finally, Section III.C gives the principles in implementing
the dynamic scaling (problem 3).

A. The Platform Overview
The proposed platform acts as middleware between

service providers and cloud providers, as shown in Figure 2.
At the client side, the Application Deployment Portal assists
service providers to define deployment specifications and
executes deployment on their behalf. At the server side, the
five service components supports the dynamic scaling.

	
Figure 2. The architecture of the platform

The Repository contains a library of single servers and
whole deployment templates including all necessary servers

for an application. These servers and templates are
pre-designed by domain experts and solution architects based
on best practice. The Repository also provides convenient
registration mechanisms. For example, if service providers
want to use JBoss web server but cannot find it in the
Repository. They can register it in the platform by
completing a series of standard registration procedures, after
which they can even package the JBoss web server into a
deployment template. This newly registered JBoss server can
then be dynamically scaled in the same way as the
pre-defined Tomcat server.

The Monitoring Service has two functionalities. First, it
monitors the execution of an application by attaching a
monitoring tool to its entry server (e.g., Figure 1(a)’s
HAProxy). This tool examines the per-request response time
over a finite interval (e.g., 30 seconds) and trigger a dynamic
scaling if the observed response time exceeds the required
one. Secondly, the Monitoring Service allocates each server a
monitor. This monitor keeps the application execution
records, which are used to analyses data needed in the
capacity planning. For example, the mean and variation of an
server’s service time per request.

In addition, the Checking Service exams all the
information in deployment specifications and alerts service
providers if any syntax and semantic error (e.g., two
HAProxys are connected) is found. The Checking Service is
implemented as an expert system, which utilizes validation
rules to detect errors. Drools Expert [28] is used as a rule
engine to reason these rules in our platform. In addition, the
Deployment Service interprets deployment specifications and
automatically executes the basic deployment activities upon
multiple cloud platforms such as Amazon. The Capacity
Planning Service employs the analytical modelling technique
to transform high level QoS requirements into the number of
servers to be deployed.

B. Dynamic Scaling Basis: Server Specification
 A XML based specification is designed to accommodate
all aspects of a single server based on according to the Open
Virtualization Format (OVF) open standard [12]. Figure 3
shows an example specification of a Tomcat server, which
has four sections. The first section lists basic information of
this server and the following sections are used by the
Deployment Service to add, modify or remove this server. For
instance, in the adding activity, the Deployment Service first
produces a Tomcat VM image as specified in the VM
Configuration Section. Three of this Tomcat’s user settings
are then configured using data in the user setting section.
Finally, the Tomcat is linked to the MySQL Master
according to the “output-server-id” specified to the linking
section.
 In a multi-tier application, server are categorized into
different tiers based on the services that they can provide, as
listed in Figure 4: The Storage tier is used for managing data;
the Service tier is responsible for delivering services to end
users; and two LB (Load Balance) tiers distribute requests to
Service or Storage tier. In addition, Service and Storage tier
can have multiple sub tiers. In a m-tier applications, tiers of
servers are numbered consecutively (from 1 to !) according

to these servers’ tier types: Storage tier, the LB tier above
Storage tier, the Service tier, the LB tier above Service tier.
For instance, in Figure 1(a)’s example, the tier number of
MySQL, Apache and Tomcat servers are 1, 2 and 3,
respectively.

<Section xsi:type="ovf:BasicInformationSection_Type">
<Info>Basic information of the server</Info>
<Server-Id>Tomcat Server One</Server-Id >
<Description>Tomcat application server</ Description>
<Owner>IC-Cloud</Owner >
<Tier-id>4</ Tier-id>
<availability-zone>us-east-1a</availability-zone>
<pricing-model>pay-as-you-go</pricing-model>

</Section>
<Section xsi:type="ovf:VMConfigurationSection_Type">

<Info>Server’s VM configuration</Info>
<Instance-type>High-CPU Medium</Instance-type>
<CPU-cores>2</CPU-cores>
<Memory>1.7GB</Memory>
<Storage>350GB</Storage>
<Operating-system>Linux-Ubuntu</Operating-system>

</Section>
<Section xsi:type="ovf:UserSettingSection_Type">

<Info>Users’ configuration settings for the server</Info>
<User-name>ic-cloud</User-name>
<Password>ic-cloud</Password>
<Port-number>8080</Port-number>

</Section>
<Section xsi:type="ovf:LinkingSection_Type">

<Info>Server’s link information</Info>
<Output-server-id>MySQL Master One</ Output-server-id>
<Link-purpose>Obtain data</Link-purpose>

</Section>	

Figure 3. A fragment of Tomcat server specification

Storage tier

Service tier

LB tier above service tier

LB tier above service tier

Tier 2

Tier 1

Tier n
...... Tier 2

Tier 1

Tier m
......

	
Figure 4. The four types of tiers in an application.

C. How Much to Scale: Queueing Model Based Capacity
Estimation
To address the issue of how many servers to be deployed

at each tier of an application in a dynamic scaling, we
construct an analytical model of this application. In our
platform, the Capacity Planning Service takes a
deployment’s required response time, its request arrival rate
and service demand of each request as inputs, and conducts
the capacity estimation in four steps.

In the first step, an application is modelled as a network
of queues, in which each queue represents a tier in the
deployment and the queue from a tier feeds its adjacent tier.
Consider an application that comprises ! tiers, where !-2
tiers belong to the Service or Storage tier and the remaining
2 tiers belong to the LB tier. Observe that servers belonging
to the first !-2 tiers typically occupy most of the response
time, the required end-to-end response time r is broken down
into the per-tier response time of these !-2 tiers using
offline profiling:

 ! = !!!!!
!!! . (1)

In the second step, a single server at tier i (1≤i≤ !-2) is
modelled as a G/G/1 queueing model. This model can handle
arbitrary arrival distribution and service time distribution.
This makes the model comprehensive to capture behaviours
of various types of applications belonging to the Service and
Storage tiers such as Apache and MySQL. This G/G/1 model
is then solved to estimate the application’s capacity [13]:

 !! ≥ !! +
!!!
! !!!!

!

! !!!!!

!!

. (2)

Where !! is the mean service time and !!!
! and !!!

! are
the variances of the inter-arrival time and service time,
respectively. These values of the application can be
monitored online by its attached monitor in our platform.
The required per-tier response time !! is known. By
substituting these values into equation 2, this single server’s
capacity !!, namely the lower bound request arrival rate it
can handle, can be obtained.

Assumed that, the whole application is stable and thus
the job flow of tier ! is balanced, i.e., the number of
requests arrives at this tier is equal to the number of jobs it
can handle during a finite observation period. Once the
capacity of a single server at tier i is known, the number of
servers needed at this tier under the peak arrival rate can be
calculated according to the operational law [14]:

 !!! =
!! !
!!

. (3)

 Where λ is the peak request rate (i.e., the high percentile
of the arrival rate distribution) and !! is the average number
of requests at tier i for an incoming request. Observe that !!
is usually more than one. For instance, a single search
request at an online bookstore might trigger multiple requests
to Apache web servers and MySQL databases. The above
values can be estimated using online measurements. For
convenience, equation 3 assumes that all applications at a tier
are homogeneous and they share the incoming requests of
this tier. Relaxation of this assumption is possible and it is
not discussed in this work due to space constraints.
 The Capacity Planning Service also considers servers’
replication constraints. For instance, each application
typically has at most two MySQL Masters servers, so
MySQL Master’s degree of replication d is 2. The sever
number !!! of tier i (1≤i≤ !-2), therefore, is corrected:
!! = min (!!!,!!), which means this tier can deploy no more
than min (!!!,!!) applications. Furthermore, using the
server numbers of the first !-2 tiers, these numbers of the
remaining 2 tiers can then be determined. For example, in
Figure 1(b), every 10 Apache web servers need one
HAProxy load balancer.

In the final step, the total deployment cost is calculated.
In the cloud, applications are usually priced in Pay-as-you-go
model and an application’s cost is usually decided by its
instance type. For example, in Amazon EC2, a large instance
of MySQL application is priced 12.6 cents/hour and this
application is charged 87.2 cents/hour if its instance type is

extra large. The total cost of a deployment with ! tiers is
the summer of each tier’s cost:

 ! = !!!
!!! !! ≤ !!"#$%&. (4)

Where !! is tier k’s server number and !! is the cost of
a single server at tier k (1≤k≤n+m). In the capacity planning,
the total cost ! should be less than service providers’
budget !!"#$%&.

D. How to Scale: The Dynamic Scaling Algorithm
 When the number of server to be deployed at each tier of
a deployment is obtained, the Deployment Service conducts
the automatic scaling to deploy all these servers. Figure 5
shows the dynamic scaling algorithm, which follows two
principles: Servers at the same tier can be deployed in
parallel (line 8 and 12); The scaling sequence of servers in
different tiers is arranged in ascending order according to
servers’ tier numbers (line 7 and 11).
 This algorithm will continuously running before the
application is terminated, so we only analyse the time
complexity of each scaling. Both scaling up and down (line 7,
8 and line 10, 11) have ! cycles and each cycle can be
completed in constant time, so time complexity of each
scaling is O(!), where m is the application’s tier number.
The dynamic scaling Algorithm
Input: All servers of a !-tier application and service providers’ QoS requirements.
1. Begin
2. while (the application is not terminated)
3. Monitor the arrival rate !;
4. Let !! be the last observed arrival time;
5. if !<!!, then // the request rate increases.
6. Conduct the capacity estimation for scaling up;
7. for (!=1; ! ≤ !; != !+1)
8. Simultaneously add each server at tier !;
9. else if !>!!, then // the request rate decreases.
10. Conduct the capacity estimation for scaling down;
11. for (!=1; ! ≤ !; != !+1)
12. Simultaneously remove each server from tier !;
13. End

Figure 5. The dynamic scaling algorithm

IV. EXPERIMENT EVALUATIONS
In this section, we did experiment by testing Figure 1’s

online bookstore example. The experiment is designed to
prove our platform’s ability to dynamically scale an
application under changing workloads to maintain its
response time target. The experiment assumes that the
required end-to-end average response time is less than 1
second. This response time is broken down into the per-tier
response time, which is 10, 50, 10 and 30% for the tiers of
Apache, Tomcat, MySQL Master and MySQL Slaver,
respectively. In addition, the workload is represented by the
number of active sessions.
 In the experiment, we test five active (simultaneous)
session numbers: 10, 20, 40, 70 and 100, which denote the
workload increases from low to high, as shown in Figure
6(a). The first workload is generated at time=0 second and it
lasts 600 seconds. We observe the deployment once every 60
seconds and Figure 6(b) displays the 10 request arrival rates
(i.e., the number of arrival requests per second) during this
period. Similarly, the other four workloads are generated at

time = 600, 1200, 1800, 2400 sec, respectively and Figure
6(b) shows that the request arrival rates increase together
with these workloads.

Figure 7(a) lists the eight types of servers’ numbers and
the total server number under the five workloads. For the
first workload (active session number is 10), the online
bookstore service is initially deployed with one MySQL
Master, Tomcat, HAProxy and iptables, respectively. When
the active session is increased to 20 at time = 600s and
saturates the MySQL Master, a dynamic scaling is triggered
and one MySQL Slaver is deployed. When the active session
is increased at time=1200, 1800 and 2400, the above cycle
repeats. Figure 7(b) shows that the deployment cost increases
as the deployment is scaled up.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time(second)

Av
er

ag
e

Re
sp

on
se

 T
im

e(
se

co
nd

)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Time(second)

Av
er

ag
e

Re
sp

on
se

 T
im

e(
se

co
nd

)
N

um
be

r o
f a

ct
iv

e
se

ss
io

ns

600 1200 1800 2400 30000

Time (sec)

R
eq

ue
st

 a
rr

iv
al

 ra
te

 (p
er

 m
in

)

600 1200 1800 2400 30000

Time (sec)
(a) Number of active sessions (b) Request arrival rate 	

Figure 6. The number of active sessions and request arrival rate

1 2 3 4 5
0

50

100

150

200

250

300

Time(second)

Ap
pl

ic
at

io
n

In
st

an
ce

 N
um

be
r

A
pp

lic
at

io
n

nu
m

be
r

600 1200 1800 24000
Time (sec)

To
ta

l d
ep

lo
ym

en
t c

os
ts

 (C
en

ts
/h

ou
r)

0 600 1200 1800 2400
Time (sec)

(a) Application number (b) Deployment cost

1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Time(second)

Ap
pl

ic
at

io
n

In
st

an
ce

 N
um

be
r

MySQL Master
MySQL Slave
Memcached
Tomcat
Apache
HAProxy
Varnish
iptables
Total Instance Number

	
Figure 7. The application number and deployment cost

From service users’ perspective, Figure 8 demonstrates
the fluctuation of the observed average response time. This
shows that the SLA is violated whenever the active session is
increased. This is due to the fact that a dynamic scaling is
difficult to be completed on-the-fly and servers need some
time to be deployed. Especially, MySQL Slavers take time to
replicate with the MySQL Master. The experiment result
shows that after each dynamic scaling, the delivered service
can meet the response time target, thus proving the
effectiveness of the capacity planning. The result also
illustrates that these scaling processes can be completed in a
short time, usually within 2 or 3 minutes.

V. CONCLUSIONS
In this paper, we argued that dynamic scaling of

applications raises new challenges that are not adequately
addressed by existing work on application deployment. We
introduced a platform that enables the novel dynamic scaling
technique for cloud applications. This platform employs: (i)

an extensible specification that precisely describes all
information of a deployment, and (ii) a flexible capacity
planning using queuing model to compute how many
applications to be deployed at each tier of the deployment.
The platform has been currently implemented as a service of
the IC Cloud workstation and an experiment evaluation
using a practical application has been conducted. The
experiment shows the platform’s ability in quickly scaling a
deployment to maintain its response time target under
dynamic workloads.

In the future, we plan to develop intelligent capacity
estimation techniques to deal with complex workloads and
optimise the cost/performance ratio of deployed applications.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Time(second)

Av
er

ag
e

Re
sp

on
se

 T
im

e(
se

co
nd

)
R

es
po

ns
e

tim
e

(s
ec

)

Time (sec)
600 1200 1800 2400 30000

0

0.5

1.0

1.5

2.0

2.5

3.0

	
Figure 8. The observed end-to-end average response time

REFERENCES
[1] R. Buyya, C. S. Yeo, S. Venugopal et al., “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility,” Future Generation Computer Systems,
vol. 25, no. 6, pp. 599-616, 2009.

[2] "Amazon EC2," http://aws.amazon.com/ec2/.
[3] "RightScale "; http://www.rightscale.com/.
[4] "CA 3Tera," http://www.3tera.com/.
[5] A. V. Konstantinou, T. Eilam, M. Kalantar et al., "An architecture for

virtual solution composition and deployment in infrastructure
clouds.", VTDC’09, 2009, pp. 9-18.

[6] T. Chieu, A. Karve, A. Mohindra et al., "Simplifying solution
deployment on a Cloud through composite appliances." IPDPSW’10,
2010, pp. 1-5.

[7] X. J. Collazo-Mojica, and S. M. Sadjadi, “A Metamodel for
Distributed Ensembles of Virtual Appliances.” SEKE’11, 2011.

[8] G. Hughes, D. Al-Jumeily, and A. Hussain, "A Declarative Language
Framework for Cloud Computing Management."DESE’09, 2009, pp.
279-284.

[9] "Microsoft Windows Azure,"
http://www.microsoft.com/windowsazure/.

[10] "Google App Engine," http://code.google.com/appengine/.
[11] R. Buyya and K. Sukumar, "Platforms for Building and Deploying

Applications for Cloud Computing", CoRR'11, 2011, pp. 6-11.
[12] "VMware OVF,"

http://www.vmware.com/appliances/getting-started/learn/ovf.html.
[13] Robert B. Cooper, Introduction to Queueing Theory, Second ed.,

North Holland, Oxford: New York,1990.
[14] R. Jain, The art of computer systems performance analysis,1989

edition, John Wiley & Sons, New York, 1991.

	

