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Abstract. A novel Support Vector Machine (SVM) face recognition method 
using optimized Gabor features is presented in this paper. 200 Gabor features 
are first selected by a boosting algorithm, which are then combined with SVM 
to build a two-class based face recognition system. While computation and 
memory cost of the Gabor feature extraction process has been significantly re-
duced, our method has achieved the same accuracy as a Gabor feature and Lin-
ear Discriminant Analysis (LDA) based multi-class system. 
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1   Introduction 

Automatic recognition of human faces has been an active research area in recent 
years because it is user-friendly and unintrusive and it does not require elabrated 
collaboration of the users, unlike fingerprint or iris recognition. In addition to the 
importance of advancing research, it has a number of commercial and law-
enforcement applications such as surveillance, security, telecommunications and 
human-computer intelligent interaction.  

Gabor wavelet based recognition algorithms have been shown to be advantageous 
over many other methods in the literature. For example, the Elastic Bunch Graph 
Matching (EBGM) algorithm has shown very competitive performance and was 
ranked the top performer in the FERET evaluation [1]. In a recent face verification 
competition (FVC2004), both of the top two methods used Gabor wavelets for feature 
extraction. The application of Gabor wavelets for face recognition was pioneered by 
Lades et al.’s work since Dynamic Link Architecture (DLA) was proposed in 1993 
[2]. In this system, faces are represented by a rectangular graph with local features 
extracted at the nodes using Gabor wavelets, referred to as Gabor jets. Wiskott et al 
[3] extended DLA to EBGM, where graph nodes are located at a number of facial 
landmarks. Since then, a large number of elastic graph based methods have been 
proposed [4-7]. Chung et al. [8] use the Gabor wavelet responses over a set of 12 
fiducial points as input to a Principal Componet Analysis (PCA) algorithm, yielding a 



feature vector of 480 components.  They claim to have improved the recognition rate 
up to 19% with this method compared to that by a raw PCA. All of these methods can 
be classified as analytic approaches since the local features extracted from selected 
points in faces are used for recognition. Recently, Gabor wavelets have also been 
applied in global form for face recognition [9, 10]. Liu et al. [9] vectorize the Gabor 
responses and then apply a downsampling by a factor of 64 to reduce the computation 
cost of the following subspace training. Their Gabor-based enhanced Fisher linear 
discriminant model outperforms Gabor PCA and Gabor fisherfaces. These holistic 
methods normally use the whole image after Gabor wavelets processing for feature 
representation. A more detailed survey on Gabor wavelet based face recognition 
methods can be found in [11]. 

Despite the success of Gabor wavelets based face recognition systems, the huge 
dimension of Gabor features extracted using a set of Gabor wavelets demands large 
computation and memory costs, which makes them impractical for real applications 
[11]. For the same reason, Support Vector Machine (SVM) has also seldom been 
applied to face recognition using Gabor features. Some works in the literature have 
tried to tackle this problem by (1) downsampling the images [12], (2) considering the 
Gabor responses over a reduced number of points [8], or (3) downsampling the 
convolution results [9, 10]. Strategies (2) and (3) have also been applied together [13]. 
However, these methods suffer from a loss of information because of the 
downsampling, or dimension reduction. Furthermore, the feature dimension after 
downsampling might still be too large for the fast training of SVM. Our works [14] 
have also shown that facial landmarks like eyes, nose and mouth might not be the 
optimal locations to extract Gabor features for face recognition.  

In this paper, we propose a general SVM face recognition framework using 
optimized Gabor features. The most signifiant positions for extracting features for 
face recognition are first learned using a boosing algorithm, where the optimized 
Gabor responses are computed and used to train a two-class based SVM for 
identification. Since only the most important features are used, the two-class SVM 
based identification algorithm is both efficient and robust. 

2   Gabor Wavelets and Feature Extraction 

In the spatial domain, the 2D Gabor wavelet is a Gaussian kernel modulated by a 
sinusoidal plane wave [11]: 
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where f is the central frequency of the sinusoidal plane wave, θ  is the anti-clockwise 
rotation of the Gaussian and the plane wave, α is the sharpness of the Gaussian along 
the major axis parallel to the wave, and β is the sharpness of the Gaussian minor axis 



perpendicular to the wave. To keep the ratio between frequency and sharpness con-

stant, 
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Fig.1 shows four Gabor wavelets with different parameters in both spatial and fre-
quency domain. 

 

 
(a)            (b)            (c)             (d) 

Fig.1. Gabor filters with different parameters ),,,( ηγθfΠ  in spatial domain (the 1st row) 

and frequency domain (the 2nd row), (a) )1,1,0,1.0(aΠ ; (b) )3,6,0,3.0(bΠ ；  (c) 

)1,3,4/3,2.0( πcΠ ；(d) )2,2,4/3,4.0( πdΠ  

Once a set of Gabor wavelets have been designed, image features at different loca-
tions, frequencies and orientations can be extracted by convolving the image ),( yxI  
with the filters: 

),(),( ),,,(),,,( yxIyxO ff ηγθηγθ ϕΠΠ ∗=    (3) 
The number of scales and orientations may vary in different systems. We use in this 
paper a wavelet bank with 5 scales and 8 orientations to extract image features: 
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The results S are thus the convolutions of an input image ),( yxI with all of the 40 
wavelets: 

{ }}7,...,0{},4,...,0{),(, ∈∈= vuyxOS vu    (5) 

where ),(),( ),(, yxIyxO
vufvu θϕΠ∗= . 

When the convolution results ),(, yxO vu  over each pixel of the image are concate-
nated to form an augmented feature vector, the size of the vector could be very large. 
Take an image of 24×24 for example, the convolution result will give 
24×24×5×8=23,040 features. To make SVM applicable to such a large feature vector, 
Qin and He [13] reduced the size of feature vector by including only the convolution 
reults over 87 manually marked landmarks. However, locating the 87 landmarks itself 
is a difficult problem, and the manually selected positions might not be the optimal 



ones for face recognition. Furthermore, wavelets with the same parameters are used at 
different landmarks, which is not the optimal way to feature extraction. In this paper, 
a boosting based feature selection process is used to choose the most useful features, 
which are then given as input to SVM to learn an efficient and robust face identifica-
tion system. 

3   The OG-SVM Classifier 

Ever since its invention, SVM has been widely applied in classification and pattern 
recognition. One of the main reasons for the widespread applications of SVM is that 
its decision function is only based on the dot product of the input feature vector with 
the Support Vectors (SVs) [15], i.e. it has no requirements on the dimension of the 
feature vector. Theoretically features with any dimension can be fed into SVM for 
training. However in practical implementation, features with large dimension, e.g. 
Gabor features, could bring substantial computation and memory cost to the SVM 
training and classification process. In our experiments, the SVM training process did 
not even complete after 74 hours when a set of Gabor features of dimension 23,040 
was used, due to the large computation and memory costs.  

To make the SVM classifier both efficient and accurate, we propose to use opti-
mized Gabor features for classification. As shown in Fig.2, the system starts with the 
Gabor feature extraction, as described in section 2. The extracted Gabor features and 
associated class labels for all of the training samples are then fed into the boosting 
algorithm to eliminate those non-discriminative features, which are not significant for 
classification. Once the most important positions with tuned Gabor wavelets are iden-
tified, the optimized Gabor features can be extracted and used to train the classifier, 
namely, the OG-SVM classifier. Using the optimized features, the boosting algorithm 
also learned a reasonably good classifier - Boosted Classifier (BC). However, the 
nonlinear OG-SVM classifier achieved further improvement on classification accu-
racy, with similar efficiency. 

 

 
Fig.2. Learning process of the proposed OG-SVM classifier 



3.1   Boosting Based Gabor Feature Selection 

Introduced by Freud and Schapire [16], boosting algorithms have been used success-
fully for selecting Haar-like features for general object detection [17, 18]. The es-
sence of boosting algorithms is to select a number of ‘weak’ classifiers, which are 
then linearly combined into a single strong classifier. The algorithm operates as fol-
lows: for a two-class problem, m labelled training samples are given 
as miyx ii ,..,2,1),,( = , where { }1,1−∈iy  is the class label associated with sam-

ple N
i Rx ∈ . A large number of weak classifiers }1,1{: −→NRh  can be generated to 

form a weak classifier pool for training. In each of the iterations, the space of all 
possible weak classifiers is searched exhaustively to find the one that contributed the 
least to the overall classification error. The error is then used to update the weights 
associated with each sample such that the wrongly classified samples have their 
weights increased. The algorithm thus focuses on difficult training samples, increas-
ing their representation in successive training sets. When a weak classifier is designed 
to use only a single feature to make decisions, boosting is equivalent to feature selec-
tion. 

To apply the boosting algorithm to Gabor feature selection, we simplify the task of 
a multi-class face recognition problem to a two-class problem: selecting Gabor fea-
tures that are effective for intra- and extra-person space discrimination. Such selected 
Gabor features should be robust for face recognition, as intra- and extra-person space 
discrimination is one of the major difficulties in face recognition. Two spaces, intra- 
and extra-person spaces are defined, with intra-person space measuring respectively 
dissimilarities between faces of the same person and extra-person space dissimilari-
ties between different people. For a training set with L facial images captured for each 
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Gabor feature selection process can be found at [14]. 
Upon completion of T boosting iterations, T weak classifiers are selected to form 
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called BC in this paper, is a weighted linear combination of all the selected weak 
classifiers, with each weak classifier using certain Gabor feature for decision. At the 
same time, T most significant Gabor features for face recognition have also been 
identified. 

3.2   Support Vector Machine 

Once the optimized features are selected, they can be given to SVM for classifier 
training. Based on an observed feature NRx∈ , SVM is basically a linear hyperplane 



classifier bxwxf += ,)(  aimed at solving the two class problem [19]. As shown in 
Fig.3a, the classifier can separate the data from two classes very well when the data is 
linearly separable. Since there might be a number of such linear classifiers available, 
SVM chooses the one with the maximal margin, which is defined as the width that the 
boundary could be increased by before hitting a data point. The distance between the 
two thin lines (boundary) in the figure thus defines the margin of the linear SVM with 
data points on the boundary known as Support Vectors (SV). The linear classifier 

)(xf  with maximized margin can be found using quadratic problem (QP) optimiza-
tion techniques as below: 

( )bxxysignxf kkk += ∑ ,)( α   (6) 

where N
k Rx ∈  are the support vectors learned by SVM. 

 
(a)    (b) 

Fig.3. A hyperplane classifier in 2-dimension feature space (a and mapping of the data (b 

 
For non-linearly separable data, a nonlinear mapping function 

)(,: xxFRN φφ →→  is used to map it into a higher dimension feature space where 
a linear classifier can be applied. Fig.3b shows an example using the kernel method to 
train a non-linear SVM. Using the kernel trick [15], the non-linear SVM is now: 

( )bxxkysignxf kkk += ∑ ),()( α   (7) 

where ),( xx kk  is a kernel function, e.g., a polynomial kernel and a RBF kernel etc. 

3.3 Identification 

As shown in Fig.2., once the boosting iterations and the SVM learning process are 
completed, two classifiers, i.e. BC and OG-SVM, are created using the T selected 
Gabor features. Though trained to discriminate intra-person and extra-person spaces, 
they could also be used for recognition (identification) as follows: given a gallery 
{ }jq  of m  known individuals and a probe p  to be identified, both classifiers will 
first compute the Gabor feature differences [ ]{ }Ttj dddx LL1=  between the probe 
and each of the gallery images, and then calculate an intra-person confidence score 
using respective decision functions:  
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the probe is then identified as person j  that gives the maximum confidence score jδ . 

4   Experimental Results 

4.1 The Database 

The FERET database is used to evaluate the performance of the proposed method for 
face recognition. The database consists of 14051 eight-bit grayscale images of human 
heads with views ranging from frontal to left and right profiles. 600 frontal face im-
ages corresponding to 200 subjects are extracted from the database for the experi-
ments - each subject has three images of 256×384 with 256 gray levels. The images 
were captured at different times under different illumination conditions and contain 
various facial expressions. Two images of each subject are randomly chosen for train-
ing, and the remaining one is used for testing. The following procedures were applied 
to normalize the face images prior to the experiments: 

• each image is rotated and scaled to align the centers of the eyes, 
• each face image is cropped to the size of 64×64 to extract facial region, 
• each cropped face image is normalized to zero mean and unit variance. 

4.2 The Results 

In this experiment, classification and recognition performance of the proposed two-
class classifier, OG-SVM, will be tested and evaluated against that of BC and other 
methods, e.g. Principal Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA). Gabor features are first selected by boosting algorithm using the training set, 
and then used to train BC and OG-SVM (see Fig.2. for the process). The training set 
thus consists of 200 intra-person difference samples and 1,600 extra-person differ-
ence samples.  

Since both BC and OG-SVM are trained to discriminate intra-person and extra-
person differences, we first evaluate their classification performances on the training 
set. Fig.4 shows the classification error of BC and OG-SVM with different kernel 
functions, which are computed as the ratio between the number of wrongly classified 
difference samples and the number of training samples. One can observe from the 
figure that the performances of both classifiers improve when the number of features 
increases. However, the performance of OG-SVM is much more stable than BC. 



While OG-SVM with RBF kernel achieves the lowest classification error rate (0.44%) 
when 140 features are used, OG-SVM with linear kernel shows similar performance. 

 
Fig.4. Classification performances of OG-SVM and BC 

The classifiers are then applied to the test set (200 images, 1 image per person) for 
face identification and their performances are shown in Fig.5. Similarly, OG-SVM 
achieves higher recognition rate than BC when different number of features are used. 
The highest recognition accuracy of 92% is achieved by OG-SVM with linear kernel 
when 120 Gabor features are used. The results also suggest that the difference of OG-
SVM using RBF kernel and linear kernel is quite small, when the features selected by 
boosting algorithm are considered. 

 
Fig.5.  Recognition performances of OG-SVM and BC 

To show the efficiency and accuracy of the proposed method, we also compare its 
performance with other Gabor feature based approaches in Table 1. While PCA and 
LDA are also well known as Eigenface and Fisherface methods, details of Downsma-
ple Gabor + PCA and Downsample Gabor + LDA can be found in [10]. In the im-



plementation, downsampling with rate 16 was used to reduce the dimension of ex-
tracted Gabor features before they are input to PCA, or LDA for further processing. 
The table shows that the proposed OG-SVM achieved similar accuracy with Downs-
maple Gabor + LDA, but with much fewer feature dimension and much less feature 
extraction costs. In our experiments (a normal PC with P4 3.0 GHz CPU), while it 
takes 100ms to train the OG-SVM classifier, the system can averagely identify 50 
faces per second. 

Table 1. Accuracy and efficiency of OG-SVM 

Methods Recogni-
tion Rate 

No. of Convolutions for 
Gabor Feature Extraction 

Dimension of 
Features 

PCA 60% N/A 64×64=4096 
LDA 76% N/A 64×64=4096 
Downsample Gabor + PCA 80% 64×64×40=163,840 10,240 
Downsample Gabor + LDA 92% 64×64×40=163,840 10,240 
BC 90% 120 120 
OG-SVM 92% 120 120 

5   Conclusions 

We have proposed in this paper a novel SVM face recognition method based on op-
timized Gabor features. While some methods in the literature consider the responses 
at landmark points only, our method uses a boosting algorithm to find the most sig-
nificant positions and wavelet to extract features for face recognition. The features 
thus extracted are efficient. While downsampling could be used to reduce the dimen-
sion of features before they are fed into PCA, or LDA for further processing, it could 
introduce loss of important information. Furthermore, complex feature extraction 
process has to be used to extract high dimensional features before downsampling. By 
combining boosting selected Gabor features with SVM, our method not only substan-
tially reduces computation and memory cost of the feature extraction process, but also 
achieves the same performance as that of Downsample Gabor + LDA, when FERET 
database is used for testing. 
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