Li YangUniversity of Ontario Institute of Technology | UOIT · Faculty of Business and Information Technology
Li Yang
Doctor of Philosophy
About
37
Publications
15,406
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,287
Citations
Introduction
Dr. Li Yang is a World's Top 2% Scientist and a Tenure-Track Assistant Professor at Ontario Tech University, Canada. He is also an Adjunct Research Professor at Western University. His research interests include AI, machine learning, cybersecurity, IoT, model optimization & automation, AutoML, and adversarial machine learning.
Code for the papers (ML, IDS, hyper-tuning, AutoML, concept drift, etc.): https://github.com/LiYangHart
Personal Website: https://sites.google.com/view/li-yang-phd/
Additional affiliations
February 2025 - present
Education
September 2018 - August 2022
Publications
Publications (37)
Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. It often requires deep knowledge of machine lea...
Modern vehicles, including connected vehicles and autonomous vehicles, nowadays involve many electronic control units connected through intra-vehicle networks to implement various functionalities and perform actions. Modern vehicles are also connected to external networks through vehicle-to-everything technologies, enabling their communications wit...
As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack...
Modern vehicles, including autonomous vehicles and connected vehicles, are increasingly connected to the external world, which enables various functionalities and services. However, the improving connectivity also increases the attack surfaces of the Internet of Vehicles (IoV), causing its vulnerabilities to cyber-threats. Due to the lack of authen...
With the wide spread of sensors and smart devices in recent years, the data generation speed of the Internet of Things (IoT) systems has increased dramatically. In IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches...
The rapid evolution of mobile networks from 5G to 6G has necessitated the development of autonomous network management systems, such as Zero-Touch Networks (ZTNs). However, the increased complexity and automation of these networks have also escalated cybersecurity risks. Existing Intrusion Detection Systems (IDSs) leveraging traditional Machine Lea...
Zero-Touch Networks (ZTNs) represent a state-of-the-art paradigm shift towards fully automated and intelligent network management, enabling the automation and intelligence required to manage the complexity, scale, and dynamic nature of next-generation (6G) networks. ZTNs leverage Artificial Intelligence (AI) and Machine Learning (ML) to enhance ope...
The Zero-touch network and Service Management (ZSM) framework represents an emerging paradigm in the management of the fifth-generation (5G) and Beyond (5G+) networks, offering automated self-management and self-healing capabilities to address the escalating complexity and the growing data volume of modern networks. ZSM frameworks leverage advanced...
As technology advances, the use of Machine Learning (ML) in cybersecurity is becoming increasingly crucial to tackle the growing complexity of cyber threats. While traditional ML models can enhance cybersecurity, their high energy and resource demands limit their applications, leading to the emergence of Tiny Machine Learning (TinyML) as a more sui...
The sixth generation of wireless networks (6G) will require network automation to meet the rapidly increasing demands for high data rate services, ultra-low latency, massive connectivity, and seamless integration with emerging technologies, while effectively reducing operating costs. To address these demands, the concept of Zero-Touch Networks (ZTN...
The transition from 5G to 6G networks necessitates network automation to meet the escalating demands for high data rates, ultra-low latency, and integrated technology. Recently, Zero-Touch Networks (ZTNs), leveraging AI and ML, have emerged as a promising solution for enhancing automation in 5G/6G networks but face significant challenges. Specifica...
In the prevailing convergence of traditional infrastructure-based deployment (i.e., Telco and industry operational networks) towards evolving deployments enabled by 5G and virtualization, there is a keen interest in elaborating effective security controls to protect these deployments in-depth. By considering key enabling technologies like 5G and vi...
In the prevailing convergence of traditional infrastructure-based deployment (i.e., Telco and industry operational networks) towards evolving deployments enabled by 5G and virtualization, there is a keen interest in elaborating effective security controls to protect these deployments in-depth. By considering key enabling technologies like 5G and vi...
Modern vehicles, including autonomous vehicles and connected vehicles, have adopted an increasing variety of functionalities through connections and communications with other vehicles, smart devices, and infrastructures. However, the growing connectivity of the Internet of Vehicles (IoV) also increases the vulnerabilities to network attacks. To pro...
Public Version of the paper: https://arxiv.org/pdf/2209.08018.pdf
GitHub Code/AutoML Tutorial: https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics
Abstract:
With the wide spread of sensors and smart devices in recent years, the data generation speed of the Internet of Things (IoT) systems has increased dr...
Publicly available at: https://www.sciencedirect.com/science/article/pii/S2665963822001300
Due to the expansion and development of modern networks, the volume and destructiveness of cyber attacks are continuously increasing. Intrusion Detection Systems (IDSs) are essential techniques for maintaining and enhancing network security. IDS-ML is an ope...
Industry 5.0 aims at maximizing the collaboration between humans and machines. Machines are capable of automating repetitive jobs, while humans handle creative tasks. As a critical component of Industrial Internet of Things (IIoT) systems for service delivery, network data stream analytics often encounter concept drift issues due to dynamic IIoT en...
Industry 5.0 aims at maximizing the collaboration between humans and machines. Machines are capable of automating repetitive jobs, while humans handle creative tasks. As a critical component of Industrial Internet of Things (IIoT) systems for service delivery, network data stream analytics often encounter concept drift issues due to dynamic IIoT en...
Publicly available at: https://ir.lib.uwo.ca/etd/8734/
The Internet-of-Things (IoT) systems have emerged as a prevalent technology in our daily lives. With the wide spread of sensors and smart devices in recent years, the data generation volume and speed of IoT systems have increased dramatically. In most IoT systems, massive volumes of data must b...
Modern vehicles, including autonomous vehicles and connected vehicles, have adopted an increasing variety of functionalities through connections and communications with other vehicles, smart devices, and infrastructures. However, the growing connectivity of the Internet of Vehicles (IoV) also increases the vulnerabilities to network attacks. To pro...
As next-generation networks materialize, increasing levels of intelligence are required. Federated Learning has been identified as a key enabling technology of intelligent and distributed networks; however, it is prone to concept drift as with any machine learning application. Concept drift directly affects the model's performance and can result in...
As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack...
As next-generation networks materialize, increasing levels of intelligence are required. Federated Learning has been identified as a key enabling technology of intelligent and distributed networks; however, it is prone to concept drift as with any machine learning application. Concept drift directly affects the model's performance and can result in...
Content delivery networks (CDNs) provide efficient content distribution over the Internet. CDNs improve the connectivity and efficiency of global communications, but their caching mechanisms may be breached by cyber-attackers. Among the security mechanisms, effective anomaly detection forms an important part of CDN security enhancement. In this wor...
Content delivery networks (CDNs) provide efficient content distribution over the Internet. CDNs improve the connectivity and efficiency of global communications, but their caching mechanisms may be breached by cyber-attackers. Among the security mechanisms, effective anomaly detection forms an important part of CDN security enhancement. In this wor...
Modern vehicles, including connected vehicles and autonomous vehicles, nowadays involve many electronic control units connected through intra-vehicle networks to implement various functionalities and perform actions. Modern vehicles are also connected to external networks through vehicle-to-everything technologies, enabling their communications wit...
In recent years, with the increasing popularity of "Smart Technology", the number of Internet of Things (IoT) devices and systems have surged significantly. Various IoT services and functionalities are based on the analytics of IoT streaming data. However, IoT data analytics faces concept drift challenges due to the dynamic nature of IoT systems an...
In recent years, with the increasing popularity of "Smart Technology", the number of Internet of Things (IoT) devices and systems have surged significantly. Various IoT services and functionalities are based on the analytics of IoT streaming data. However, IoT data analytics faces concept drift challenges due to the dynamic nature of IoT systems an...
Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performance. It often requires deep knowledge of machine lea...
The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks su...
Posted road speed limits contribute to the safety of driving, yet when certain driving conditions occur, such as fog or severe darkness, they become less meaningful to the drivers. To overcome this limitation, there is a need for adaptive speed limits system to improve road safety under varying driving conditions. In that vein, a visibility range e...
Posted road speed limits contribute to the safety of driving, yet when certain driving conditions occur, such as rain, snow or fog, they become less meaningful to the drivers. To overcome this limitation, there is a need for adaptive speed limits system to improve road safety under varying driving conditions. In that vein, a visibility range estima...