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Abstract— Non-orthogonal multiple access (NOMA) has1

attracted both academic and industrial interest since it has been2

considered as one of the promising 5G technologies in order3

to increase connectivity and spectral efficiency. In this paper,4

we focus on a downlink multicarrier (MC) NOMA network,5

where a single base station serves a set of users through multiple6

subchannels. The goal is to jointly optimize energy efficiency7

(EE) and fairness among users with respect to the subcarrier8

and power allocation parameters. To achieve this with acceptable9

complexity, a novel greedy subcarrier assignment scheme based10

on the worst-user first principle is proposed. Due to the fractional11

form of the EE expression and the existence of interference,12

the power allocation problem is non-convex and NP-hard. To this13

end, we first transform this into an equivalent subtractive14

form, which is then solved by using fractional programming15

with sequential optimization of the inter/intra-subchannel power16

allocation vectors. Simulation results reveal the effectiveness of17

the proposed scheme in terms of EE and fairness among users18

compared to baseline schemes. Finally, the proposed algorithms19

are of fast convergence, low complexity, and insensitive to the20

initial values.21

Index Terms— Non-orthogonal multiple access, successive22

interference cancellation, quality of service, energy efficiency,23

power allocation.24

I. INTRODUCTION25

W ITH the explosive growth of the internet-of-things26

(IoT), and the cloud-based applications, wireless com-27

munications require a paradigm shift to support large-scale28
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connectivity and diverse data and latency requirements. 29

To this direction, non-orthogonal multiple access (NOMA) 30

has attached great interest from both academia and indus- 31

try [1], due to its superiority in gaining spectral efficiency, 32

mass connectivity and low latency, compared to orthogonal 33

multiple access (OMA). Even though intra-cell interference 34

is increased, NOMA can simultaneously serve multiple users 35

over the power domain (PD), by using the same spectrum 36

band [2]. PD-NOMA uses superposition coding (SC) to 37

broadcast multiple users’ message signals by considering the 38

difference of their channel gain conditions. At the receiving 39

end, each user applies successive interference cancellation 40

(SIC) to extract its own signal from the aggregate received 41

signal. 42

The integration of NOMA in current wireless com- 43

munication technology creates several challenges, due to 44

multipath transmission, low signal strength, and intra-cell 45

interference [1], [3]. Also, the utilization of the entire band- 46

width by all users might be prohibitive in terms of com- 47

plexity. To this end, NOMA can be combined with OMA 48

schemes in order to design wireless communication schemes 49

with practical value. For example, multicarrier NOMA 50

(MC-NOMA) can be used [1], [2], which enables the simulta- 51

neous utilization of a subset of subcarriers from solely a subset 52

of users. Moreover, it is useful to consider an efficient resource 53

allocation technique, which can achieve high transmission 54

rate, low complexity, small latency, and seamless connectivity 55

through network coverage. Furthermore, an effective method 56

for adaptive bandwidth and power allocation is urgently 57

required, in order to avoid the inevitable “spectrum crunch”, 58

due to the limited bandwidth and increasing number of users. 59

A. Related Works 60

Resource allocation for NOMA has been investigated 61

in [4] and [5], where, the primary focus has been on the sum 62

rate maximization under the total power and proportional rate 63

constraints. Furthermore, MC-NOMA was investigated in [6] 64

and [7]. In [6], by considering perfect channel state informa- 65

tion (CSI) at the base station (BS), a near optimal solution 66

for power allocation was proposed, while in [7], an efficient 67

power allocation scheme under imperfect CSI for different 68

quality-of-service (QoS) requirements was introduced. In the 69

aforementioned studies, the ultimate goal was to minimize 70

the total transmit power. Besides, joint power allocation 71
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and subcarrier assignment for NOMA has been investigated72

in [9]–[11]. More specifically, a suboptimal joint power and73

subcarrier allocation was presented in [9], for the maximiza-74

tion of the weighted system throughput. Furthermore, in [10],75

the authors investigated the optimal power allocation under76

QoS constraints in order to maximize the weighted sum rate77

and in [11], the authors presented theoretical insights and78

an algorithm for the sum rate maximization. However, these79

schemes maximize either the system throughput or the overall80

sum rate maximization, where user fairness is not considered,81

which is of crucial criterion in the design on NOMA networks.82

Several works have been investigated for resource allocation83

in NOMA to ensure fairness, e.g., [12]–[15]. The power84

allocation scheme for NOMA networks with α-fairness con-85

sideration was studied in [12]. Moreover, the optimal power86

allocation based on max-min fairness for users on a single87

channel was investigated in [13] and [14], using statistical88

CSI and instantaneous CSI, respectively. The authors of [15]89

exploited the proportional fairness scheduling to maximize the90

weighted max-min fairness, where the optimal solution was91

only achieved for two users on a single resource block. It is92

notable that the aforementioned works in NOMA consider93

user fairness in terms of achievable rate under the max-94

min optimization approach. However, no works have been95

considered on the max-min optimization to ensure fairness of96

EE among users.97

The enormous growth of data traffic and wireless terminal98

leads to an inevitable increase of the energy consumption of99

wireless networks, and thus the energy-efficient design for100

the next generations of wireless communication systems is of101

paramount importance [45]. To this end, the design of resource102

allocation schemes which aim to improve the EE has become103

an important research topic in the design of NOMA networks.104

For example, in [17], an energy-efficient power allocation105

strategy in millimeter wave massive MIMO with NOMA has106

been investigated. In [18], an energy-efficient transmission107

scheme has been studied for SISO-NOMA systems. More-108

over, the joint power allocation and channel assignment for109

maximizing the EE in NOMA systems was considered in110

[19]. The same authors in [20] further extended the work111

in [19] proposing a joint subchannel and power optimization112

framework for the downlink NOMA heterogeneous network113

to improve the EE. However, the proposed solution focused114

solely on improving the overall systems EE, which results in115

unbalanced use of network resources.116

B. Motivation and Contribution117

The works mentioned above [17]–[20], mainly focus on the118

improvements of the overall system’s EE, which is defined as119

the ratio of sum-rate and the overall energy consumption of120

all users. The overall EE is a significance performance metric121

for system design, however, the system mainly benefits from122

users in better channel conditions or lower interference and123

thus, improvements are obtained at the cost of users in the124

poor channel conditions [40]. Thus, the overall EE causes125

unfairness among users [40], which is a challenging problem126

in practical MC-NOMA networks [44]. On the other hand,127

the EE for each individual user is a particularly useful metric, 128

since it can provide higher performance to the weaker users, 129

while also reducing the utilized energy [16], [33]. Thus, 130

different from the existing works [17]–[20], in this paper, 131

we investigate a fairness based optimization in downlink 132

MC-NOMA systems to maximize the individual EE which 133

is expressed as the ratio of the user rate to its consumed 134

power (bits/Joule) [16], [22]. For this purpose, we choose 135

the max-min approach to be the objective function, which 136

apart from EE, also preserves fairness among all users in the 137

system [40]. The max-min optimization approach can provide 138

fairness for all users, which is particularly important in net- 139

works where some users may have stringent EE requirement. 140

To the best of our knowledge, the max-min optimization 141

approach to maximize EE while ensuring fairness among users 142

by jointly optimizing the subcarrier and power allocation in 143

MC-NOMA network has not been considered in the open 144

literature. Meanwhile, an energy-efficient resource allocation 145

that considers user’s fairness is of vital importance for the 146

next-generation communication systems in order to share 147

resources fairly while maximizing the EE. To this end, this 148

paper investigates for the first time in existing literature the 149

max-min optimization for energy-efficient resource allocation 150

in downlink MC-NOMA systems aiming at improving the 151

EE with fairness. Therefore, in this study, we focus on the 152

most common fairness indication, the max-min EE metric [25], 153

which aims to guarantee fairness for all users by maximizing 154

the minimum EE in the network for the overall available 155

subbands, which motivates the research in this treatise. More- 156

over, the advantages of this study over the existing works in 157

NOMA is that it considers MC systems, while it preserves 158

both fairness and energy efficiency. 159

Furthermore, several iterative algorithms have been pro- 160

posed to solve the problem of EE maximization in NOMA 161

networks, e.g., in single cell NOMA system [19], in NOMA 162

HetNets [20] and for massive MIMO networks in [26]. 163

Although the iterative approach has been applied to various 164

scenarios, the network setting that we consider in this paper 165

is very different, making the existing solutions not directly 166

applicable. For example, if some rules of fairness requirement 167

is strictly imposed in order to guarantee the fairness among 168

all users, the solutions developed in [19], [20], [26] are no 169

longer applicable. To this end, we adopt the SCA techniques 170

to systematically address the critical issue of the inter/intra 171

interference of users in the MC-NOMA networks to maximize 172

users with lowest EE performance. In this setting, we are 173

interested in maximizing the minimum individual EE under 174

the power and minimum rate constraints to optimally allocate 175

the subchannels and transmit power. Moreover, the main 176

contributions of the study are summarized as follows: 177

� We propose and investigate the maximization of the 178

minimum individual EE under the transmit power and 179

QoS requirements to guarantee fairness among users. 180

The optimization problem of interest is a non-convex 181

problem and, thus, difficult to solve directly due to the 182

fractional structure in the EE expression and the binary 183

variable in the channel allocation indicator. We first 184

decompose the original non-convex problem into two 185
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subproblems, namely subchannel assignment and power186

allocation. As a result, the original problem is solved187

by a two-stage algorithm that involves approxima-188

tion and relaxations. We also prove that the max-min189

EE maximization problem in MC-NOMA is NP-hard190

with respect to joint subcarrier and power allocation.191

� Then, in the first step, we propose a low complexity sub-192

optimal subcarrier assignment scheme. This is achieved193

through a greedy algorithm, which incur a reduced194

computational complexity compared to its exhaustive-195

searching counterparts.196

� Based on the proposed subchannel assignment algo-197

rithm, the power allocation subproblem is formulated198

as a non-convex one due to the existence of the intra-199

group interference in NOMA networks and the fractional200

expression in the objective function. Then, by exploiting201

the property of fractional programming, the fractional202

form non-convex optimization is transformed into one203

of tractable form. Finally, we invoke the framework of204

sequential successive convex approximation (SCA) [34]205

to iteratively update the power allocation vector by206

solving the approximate convex problem. As a result,207

a low complexity inter/intra subchannel power allocation208

scheme is proposed, which avoids the high computational209

complexity of the power optimization problem involving210

users on the same subcarrier as well as across subcarriers.211

We also prove the convergence of the proposed algo-212

rithm and analyze its complexity in practical MC-NOMA213

networks.214

� Finally, suboptimal power-subcarrier allocation policies215

are proposed for iteratively improving the EE. Simu-216

lations confirm that the MC-NOMA system with the217

proposed subcarrier assignment and power allocation218

lead to a considerable performance gain compared to219

existing works, in terms of both EE and fairness. The220

proposed scheme achieves near similar performance to221

the exhaustive-search method at significantly lower com-222

putational complexity.223

C. Structure224

The remaining part of the paper is organized as follows:225

Section II presents the MC-NOMA system model and prob-226

lem formulation. In section III, we propose a low complex-227

ity greedy based subcarrier assignment scheme. Section IV,228

presents the fractional programming together with sequential229

convex programming (SCP) approach to propose an iterative230

power control algorithm and suboptimal user power allocation231

scheme to allocate the available power on multiplexed users.232

Finally, the performance of the proposed method is evaluated233

in section V by computer simulation, while the paper is234

concluded in section VI.235

II. SYSTEM MODEL AND PROBLEM FORMULATION236

In this section, we introduce the system model of the237

considered downlink MC-NOMA systems, while we also for-238

mulate the problem of energy-efficient optimization problem239

to maximize the minimum users’ EE with both subcarrier240

assignment and power allocation.241

Fig. 1. Downlink NOMA for K users through power domain multiplexing.

A. System Model 242

A single-cell based downlink MC-NOMA system sce- 243

nario is considered, where a BS simultaneosuly transmits 244

information to K users, as illustrated in Fig.1. All trans- 245

ceivers are equipped with a single-antenna. Let Pt denote 246

the total transmit power. The total available bandwidth B is 247

equally divided into N subcarriers, each with a bandwidth of 248

W = B
N . In this paper, the terms subchannel and subcarrier are 249

used interchangeably. In addition, we assume that each user 250

can occupy only S subcarriers and each of the N subcarriers 251

is allocated at most Kn users. The channel between user k 252

and the BS on subcarrier n is denoted by hk,n, and we 253

assume that the BS has perfect knowledge of CSI. Based 254

on the CSI of each channel, the BS assigns a subset of 255

subchannels to the users and allocates different levels of power 256

to them. Let Kn ∈ {K1, K2, ..., KN} be the number of users 257

using subchannel n = {1, 2, 3, . . .N} and UEk,n denotes 258

user k on each subchannel n for k = {1, 2, 3, . . .Kn}. Then, 259

the corresponding transmitted signal on each subchannel n is 260

represented by 261

xn =
Kn∑
k=1

√
pk,nsk, (1) 262

where sk is the symbol of UEk,n and pk,n is the 263

power allocated to the k-th user over the n-th subchannel 264

(i.e., UEk,n). The received signal at UEk,n is 265

yk,n =
√

pk,nhk,nsk +
Kn∑

i=1,i�=k

√
pi,nhk,nsi + zk,n, (2) 266

where hk,n = gk,nd−γ
k is the channel coefficient from the BS 267

to UEk,n and gk,n is the small scale fading parameter that fol- 268

lows a complex Gaussian distribution, i.e., gk,n ∼ CN(0, 1), 269

dn is the distance between the BS and UEk,n, γ is the path 270

loss exponent, and zk,n ∼ CN(0, α2
n) is the additive white 271

Gaussian noise (AWGN). 272

Using the main principle of power-domain NOMA, multi- 273

user signal separation is conducted at the receiver side using 274

the SIC approach [2]. By exploiting SIC and assuming perfect 275

CSI, the users with better channel conditions can successfully 276

decode the messages of the weaker users. Let Υk,n = |hk,n|2
α2

n
277

denotes the channel response normalized by noise (CRNN) 278

and consider that Kn users are allocated on the n-th subchan- 279

nel. Without loss of generality, the users at the n-th subchannel 280
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are sorted in a descending order as Υ1,n ≥ · · · ≥ Υk,n · · · ≥281

Υkn,n. Thus, UE1,n is the user which has the best channel282

conditions on subcarrier n, while UEKn,n is the user which283

has the worst channel condition on the same subcarrier on284

channel n. According to the NOMA protocol [23], the BS will285

allocate more power to the weaker users to provide fairness286

and facilitate the SIC process, which results in p1,n ≤ · · · ≤287

pk,n ≤ · · · ≤ pKn,n. Note that the first user (the user with the288

best channel conditions) will cancel interference from all other289

users, while the last user (Kn) will see interference from all290

other users when decoding its own message. In general, UEk,n291

is able to decode signals of UEi,n for i > k and remove them292

from its own signals, but treats the signals from UEi,n for293

i < k as interference. Thus, the interference (Ik,n) experienced294

by each user on each subcarrier with this decoding order will295

be [19]296

Ik,n =
Kn−1∑

i=1,i�=k

pi,nΥk,n. (3)297

Hence, the received signal to the interference plus noise ratio298

(SINR) of the k-th user on subchannel n is written as299

SINRk,n =
Pk,n|hk,n|2
α2

n + Ik,n
=

Pk,nΥk,n

1 +
∑Kn−1

i=1,i�=k pi,nΥk,n

, (4)300

where α2
n = E�|zk,n|2� is the noise power and Υk,n =301

|hk,n|2
α2

n
represents the channel response normalized by noise302

of the k-th user. Thus, the data rate of k-th user is [14]303

Rk,n = W log2(1 + SINRk,n). (5)304

Furthermore, let Pn is the power allocated over subchan-305

nel n, then the subchannel power budget and BS power306

constraints can be expressed as307

Kn∑
k∈K

Pk,n = Pn, (6)308

and309

N∑
n=1

pn ≤ Pt, (7)310

respectively. Accordingly, as there are Kn users on subchannel311

n and N subchannels in the system, the data rate on subchannel312

n and the total sum rate is given by313

Rn(Pn) =
Kn∑
n=1

Rk,n(Pk,n), (8)314

and315

R =
N∑

n=1

Rn(Pn), (9)316

respectively. Moreover, the overall power consumed by each317

user can be expressed as318

PT
k,n = ζPk,n + PC

k,n, (10)319

where ζ represents the inverse of the power amplifier effi-320

ciency, PC
k,n is the additional circuit power consumption of321

the k-th transmitter. Individual user’s EE is defined as the ratio 322

between the data rate and consumed power for each user [36]. 323

This metric becomes particularly important when a balance 324

between these two metrics is desired for all users. Thus, the EE 325

for each user k is defined as [18] 326

Eη(Pk,n) =
Rk,n(Pk,n)
PT

k,n(Pk,n)
. (11) 327

Moreover, in the downlink MC-NOMA, the SIC process is 328

carrying out at the receiver side [21], [29]. This leads to high 329

computational complexity and possibly a delay at the receiver 330

side as the number of users grouped at the same subchannel 331

increases. Thus, to reduce the computational complexity [19], 332

[25], hereinafter, we consider that each user can occupy one 333

subcarrier and only two users can be multiplexed over a 334

particular subchannel. Thus, Kn = 2, for k = 1, 2 . . .K and 335

K = 2N. In this case, we assume that the CNRs of UE1,n 336

and UE2,n are ordered as Υ1,n ≥ Υ2,n. Then, the data rate 337

of the strong user U1 on subchannel n can be written as 338

R1,n = W log2(1 + P1,nΥ1,n), (12) 339

Furthermore, as the weak user U2 does not perform SIC and 340

treats the signal from strong user as noise, then data rate of 341

the weak user on subchannel n can also be expressed as 342

R2,n = W log2(1 +
P2,nΥ2,n

P1,nΥ2,n + 1
). (13) 343

B. Problem Formulation 344

In this section, we introduce an optimization problem for 345

downlink MC-NOMA. Thus, given the expression for the 346

individual EE for each user, the optimization problem can be 347

formulated as 348

max
Q,P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
, 349

s.t. C1 :
∑
n∈N

Rk,n ≥ Rreq
k , ∀k ∈ K, 350

C2 :
N∑

n=1

Pn ≤ Pt, 351

C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K, 352

C4 :
K∑

k=1

qk,n ≤ Kn, ∀n ∈ N, 353

C5 :Pk,n ≥ 0, ∀k, n, 354

C6 :qk,n ∈ {0, 1}, ∀k, n, (14) 355

where the set Q with elements qk,n and P with elements pk,n 356

are the subcarrier allocation policy and the power allocation 357

strategy, respectively. Constraint C1 guarantees that all users 358

meet their minimum QoS requirements, determined by the rate 359

threshold Rreq
k for each user k. C2 and C3 are constraints 360

for the transmission power of the BS and power budget 361

for each subchannel n, respectively. C4 ensures that one 362

subcarrier can be with at most Kn users. C5 retains the 363
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power allocation variables to non-negative values. C6 is a364

subcarrier allocation variable indicator, which becomes 1 if365

the user k is multiplexed on subcarrier n, and zero otherwise.366

Note that (14) is a non-convex optimization problem due to the367

binary constraint in C5 and the existence of the interference368

term and fractional expression in the objective function, and369

also NP-hard problem [40]. In Appendix A, we will prove370

that the problem is NP-hard. It is thus impossible to find the371

optimal solution within a polynomial time.372

Theorem 1: Problem (14) is an NP-hard problem (i.e., joint373

subcarrier and power allocation problem to maximize the EE is374

NP-hard problem).375

Proof: See the proof in Appendix A376

Once an optimization problem is shown to be NP-hard,377

we no longer insist on having an efficient algorithm that378

can find its global optimum in polynomial time [48].379

Instead, we have to look at high quality approximate solu-380

tions or locally optimal solutions of the problem in polynomial381

time, which is more realistic in practice. Thus, it is useful382

to transform this into a sequence of linear programs (LPs)383

and develop a customized low-complexity algorithm. To make384

the problem tractable, we first relax qk,n from discrete value385

of 0 or 1 to continuous real numbers that range in 0 ≤ qk,n ≤386

1, ∀(k, n) ∈ K × N [43]. This considered as a time sharing387

factor for subchannel n that user k is assigned during one388

block of transmission. Now, the optimization problem in (14)389

can be reformulated as390

max
Q,P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
391

s.t. C1, C2, C3, C4, C5,392

C6 : qk,n ∈ [0, 1], ∀k, n. (15)393

Since problem in (15) is still a fractional non-convex program,394

it is challenging to find an optimal solution. To this end,395

we next propose a two-stage algorithm, according to which396

the subchannel and power allocation processes are sequentially397

performed.398

III. ENERGY-EFFICIENT SUBCARRIER399

ASSIGNMENT SCHEME400

In this section, we propose a low complexity greedy based401

subchannel algorithm by assuming equal power allocation402

across the subchannels and fractional transmitted power allo-403

cation (FTPA) among multiplexed users on each subcarrier.404

We prefer FTPA, due to its ability to dynamically allocate405

power considering different channel gains among users with406

low complexity [19], [31]. In the FTPA scheme, the transmit407

power of UEk on subchannel n is assigned based on the408

channel gains of all the multiplexed users on subchannel n,409

as described in [19], is given by410

Pk,n = Pn
(Hk,n)−σ

Kn∑
i=1

(Hi,n)−σ

, (16)411

where H is the channel gain of user k and i on subchannel n412

and σ (0 ≤ σ ≤ 1) is a decay factor. From (14), it can be413

seen that as σ increases more power is allocated to users with414

lower channel gain. The procedure of our proposed suboptimal 415

subcarrier allocation scheme for downlink MC-NOMA system 416

is listed in Algorithm 1. The subcarrier allocation scheme aims 417

at assigning the subcarriers to the k-th user, so that mink ∈ 418

K, n ∈ N{Hk,n} is maximized. For example, we consider a 419

general channel quality matrix to demonstrate the operation 420

of each algorithm when assigning users on each subcarrier. 421

To this end, we consider a NOMA system which employs 422

N = 4 subcarriers to support K = 8 users in order to allocate 423

two users on the same subcarrier. Moreover, an OFDMA 424

system which employs N = 4 subcarriers to support K = 4 425

users is considered since only one user is assigned for 426

each subcarrier in OFDMA system. We initially consider an 427

OFDMA system. The channel qualities of the 4 users with 428

respect to 4 subcarriers are given in (M1). 429⎡
⎢⎢⎢⎢⎣

users U1 U2 U3 U4

Sc1 2.37 3.59 4.61 1.93
Sc2 1.09 1.90 0.46 0.05
Sc3 0.84 1.39 3.82 1.96
Sc4 1.31 6.60 5.22 1.65

⎤
⎥⎥⎥⎥⎦ (M1) 430

where the boldface shows the worst channel quality correspond 431

to each user and the underlined numbers are channel qualities 432

of the subcarrier assigned to users. In the case of the greedy 433

algorithm used in [16], users one by one are allocated to 434

subcarriers with the best channel conditions compared to 435

the available options. As a result, user 1 (U1) chooses best 436

subcarrier from available four options. So, U1 selects the 437

1-st (Sc1) subcarrier. Next, user 2 (U2) selects the best sub- 438

carrier from the remaining three which is subcarrier 4 (Sc4). 439

Furthermore, user 3 (U3) is assigned to subcarrier 3 (Sc3). 440

Under the lack of any other option, the subcarrier with the 441

worst channel quality is assigned to user 4, i.e., subcarrier 2 442

(Sc2). Therefore, the allocated subcarriers to the four users 443

by this algorithm are given by Sc1 = {U1}, Sc2 = {U4}, 444

Sc3 = {U3} and Sc4 = {U2}. Accordingly, according to 445

this algorithm, Sc3 is assigned to U4 which has the poorest 446

channel quality 0.05. Therefore, one of the disadvantages of 447

a greedy-based algorithm used by [16] is that users at the 448

latter stage are left with limited option. Specifically, as it 449

becomes apparent from the example, at the final stage the 450

2-nd subcarrier is selected to be assigned to U4, even though 451

the corresponding channel quality of 0.05 is the worst of all. 452

Consequently, the achievable performance will be governed by 453

this worst subcarrier channel quality. That is mink ∈ K, n ∈ 454

N {hk,n} = 0.05. 455

Another important subcarrier allocation algorithm used 456

by [19] is the suboptimal matching for subchannel assignment 457

(SOMSA) algorithm. The main idea of this algorithm is that 458

each user sends a matching request to its most preferred 459

subchannel. However, this subchannel has the permission to 460

accept the user request if this results to the highest EE, 461

otherwise, the request will be rejected. Thus, the algorithm 462

gives priority to users having the best channel qualities. 463

The operation of this algorithm is demonstrated in detail 464

by using the example in (M2). To begin with, subchannels 465

are ordered in decreasing order of their channel gains as 466

{Sc4, Sc2, Sc1, Sc3} based on their best channel qualities, 467
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forming the matrix shown below:468

⎡
⎢⎢⎢⎢⎣

users U1 U2 U3 U4 U5 U6 U7 U8

Sc4 1.31 6.60 5.22 1.65 2.12 0.59 1.02 0.06
Sc2 1.09 1.90 0.46 0.05 4.72 3.64 4.70 2.37
Sc1 2.37 3.59 4.61 1.93 1.73 4.34 1.09 2.72
Sc3 0.84 1.39 3.82 1.96 1.98 2.47 1.68 1.38

⎤
⎥⎥⎥⎥⎦469

(M2)470

According to (M2), the allocated subcarriers to the eight471

users by SOMSA algorithm are given by Sc1 = {U1, U6},472

Sc2 = {U5, U7}, Sc3 = {U4, U8} and Sc4 = {U2, U3}.473

The worst channel quality of the allocated subcarrier in this474

case become mink ∈ K, n ∈ N{hk,n} = 1.38, which shows475

significant improvement compared to greedy algorithm in [16].476

Even though SOMSA is capable of achieving better allocation477

results compared to [16], at the last stage user 8 (U8) is478

forced to select 1.38 value. In NOMA systems where the479

number of users are more than the number of subcarriers and480

more users are assigned to the same subcarrier, to achieve481

a better performance, subcarrier allocation in user oriented482

approach is more preferable, since it helps to avoid the assign-483

ment of subcarriers with poor channel quality [8]. Inspired484

by this observation, in this paper, we introduce the worst-485

case user first subcarrier allocation (WCUFSA) algorithm.486

The WCUFSA algorithm is a greedy based algorithm that487

allows the users with the worst channel quality to select their488

desired subcarrier first. To this end, users are arranged in489

ascending order with respect to the worst channel qualities490

of all users, as given in (M3). Then, the algorithm first finds491

the worst channel qualities of the unassigned users and then492

assigns the best subcarrier to the user with the poorest channel493

value.494

⎡
⎢⎢⎢⎢⎢⎣

users U4 U8 U3 U6 U1 U7 U2 U5

Sc1 1.93 2.72 4.61 4.34 2.73 1.09 3.59 1.73
Sc2 0.05 2.37 0.46 3.64 1.09 4.70 1.90 4.72
Sc3 1.96 1.38 3.82 2.47 0.84 1.68 1.39 1.98
Sc4 1.65 0.06 5.22 0.59 1.31 1.02 6.60 2.12

⎤
⎥⎥⎥⎥⎥⎦

495

(M3)496

As shown in the considered example in (M3), U4 has the497

worst channel quality at 2-nd subchannel with channel gain498

value of 0.05. As a result, it is the first user to select the499

subcarrier with the best channel quality among the available500

four subcarriers, which corresponds to the value 1.96. Thus,501

in the first column, which corresponds to the 4-th user,502

Sc3 has the best channel quality. Likewise, other assignments503

are treated in similar manner using the algorithm iteratively504

till all subcarriers are assigned to all users (i.e., two users505

per subcarrier bases). Finally, the set of allocated subcarriers506

becomes Sc1 = {U6, U8}, Sc2 = {U2, U7}, Sc3 =507

{U4, U5}, and Sc4 = {U1, U3}. The gain of the weakest508

channel utilized for transmission when WCUFSA is used509

becomes mink ∈ K, n ∈ N {hk,n} = 1.98. It is clear510

that WCUFSA is capable of yielding the highest achievable511

performance in assigning better channel quality to assign a512

subcarrier to users, compared to the greedy algorithm and513

Algorithm 1 Subcarrier Allocation Algorithm

1: Initialize Uu = K, A = N, Rk,n = 0, qk,n = 0, Si = ∅,
Pn = Pt

N
2: Construct channel gain H ≡ ∣∣hk,n

∣∣
N×K

3: Obtain the minimum channel gain of each user: Hmin
k =

mink ∈ K{Hk,n}, i ∈ A, k ∈ U . Then the number of
worst channel quality arranged in ascending order (i.e from
the worst to best) as Hmin

i,0 ≤ Hmin
i,1 ≤ ... ≤ Hi(N−1),

where i0, i1, ..., iN−1 indicates subcarrier index in A.
4: while Uu �= ∅ do
5: for k = 1 to K do

(a) Find the user with the minimum channel quality: k =
argmink∈U{Hmin

k,i }, ∀k ∈ K
(b) Assign user k with the subcarrier with the best channel

quality: n = arg maxn∈A{Hk,n}
(c) Update Sk = Sk ∪ {k} and remove k from Uu = Uu −

{k}
6: if (|Sk|) = 2 then, A = A − {n}
7: A set of two users Sk are assigned on every subcarrier n

satisfying the maximum EE
8: end if
9: Obtain power allocation for every two users based on their

channel gain using FTPA in (16) or Algorithm 4:Pk,n =
|Sk|Pn

10: Update user data rate Rk,n based on the current subcarrier
allocation:

11: Rk,n = log2(1 + Pk,nΥk,n

1+
�n−1

i=1,i�=k pi,nΥk,n
)

12: set EEk,n = Rk,n

ζPk,n+P C
k,n

13: end for
14: Until Uu = ∅
15: end while

SOMSA algorithm, demonstrated in (M1) and (M2), respec- 514

tively. Therefore, WCUFSA algorithm successfully avoids the 515

assignment of channel with low channel quality even in the 516

last stage. As a summary, the WCUFSA subcarrier allocation 517

scheme is presented in Algorithm 1. 518

IV. ENERGY-EFFICIENT POWER ALLOCATION 519

FOR NOMA SYSTEM 520

In this section, we focus on power allocation optimization 521

with the aim to further improve the EE of the NOMA network 522

and guarantee the maximum fairness for NOMA users. The 523

performance of NOMA depends on the selection of the user 524

set over a particular subchannel and allocation of power to 525

the multiplexed users on the subchannel [3], [30]. We assume 526

that the users are assigned to different subchannels by using 527

the subcarrier assignment algorithm, proposed in the previous 528

section. The resulting optimization problem can be expressed 529

as 530

max
P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
531

s.t. C1 :
∑
n∈N

Rk,n ≥ Rreq
k , ∀k ∈ K, 532
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C2 :
N∑

n=1

Pn ≤ Pt,533

C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K,534

C5 :Pk,n ≥ 0, ∀k, n, (17)535

The optimization problem in (17) is still non-convex due to536

the fact that the objective function is the ratio of two real-value537

functions [16], [32], [33]. Thus, in order to obtain an optimal538

solution, an exhaustive search is required which is generally539

computationally infeasible. In order to efficiently solve (17),540

we transform this into the substractive form, which is more541

tractable. Thus, we need to introduce the following problem542

transformation.543

A. Problem Transformation and Iterative Algorithm Design544

Since the objective function in (17) is not concave, the frac-545

tional programming tool fails to maximize the EE glob-546

ally [36]. Thus, the standard convex optimization algorithm547

is not guaranteed to solve (17), and specific algorithms are548

required. As a result, we first transform (15) into its equivalent549

more tractable subtractive form. Without loss of generality,550

we assume that Rk,n(Q, P ) > 0 and PT
k,n(Q, P ) > 0. For the551

sake of simplicity, we define D as a set of feasible solutions552

of the optimization in (14) and {P, Q} ∈ D. Let η∗ and553

P ∗ denote the maximum EE and optimal solution of power554

allocation, respectively. Thus, we define the maximum EE η∗
555

of (17) as556

η∗ = max
P

min
k=1...,K

Rk,n(Q, P )
PT

k,n(Q, P )
557

= min
k

Rk,n(Q∗, P ∗)
PT

k,n(Q∗, P ∗)
(18)558

where (·)∗ denotes optimality. Based on (18), we present the559

following essential theorem.560

Theorem 2: A vector P ∗ ∈ D solves (17) if and only561

if [36], [37]562

563

max
P∈D

min
k=1...K

{Rk,n(Q, P ) − η∗PT
k,n(Q, P )}564

= min
k=1...K

{Rk,n(Q, P ∗) − η∗PT
k,n(Q, P ∗)} = 0. (19)565

Proof: See in appendix B566

Theorem 2 reveals for an optimization problem whose567

objective function in fractional form can be solved by its568

equivalent subtractive form, i.e., we can solve (17) via (19)569

equivalently. Thus, the optimal solution of the auxiliary prob-570

lem (19) is also the optimal solution of (17) [36], [37].571

To explain in another way, solving (17) is equivalent to572

finding η∗. Let F (η) is the optimum objective value of (17).573

Thus, solving (17) is essentially equivalent to finding η = η∗
574

with F (η) = 0. Moreover, the function F (η) is strictly575

decreasing in η [36], [37]. Thus, with a given reasonable range,576

there is an optimal minimum EE η∗, satisfying F (η∗) = 0.577

In addition, F (η) is negative for η → +∞ and positive for578

η → −∞. Thus, the bisection iterative algorithm can be579

employed to determine η since the monotonicity of F (η) and 580

the opposite signs at the two sides of η∗. To this end, the η will 581

reach its optimal solution when F (η∗) = 0 and the solution 582

for P ∗ is achieved by addressing the auxiliary problem of (19) 583

at the given minimum EE. The iterative algorithm based on 584

the bisection method is summarized as Algorithm 2. Given a 585

tolerance, Algorithm 2 can be used for solving the optimiza- 586

tion problem (17) through the auxiliary problem of (19). The 587

fundamental mathematical principle underlying the bisection 588

method is the intermediate value theorem. 589

Theorem 3: Let F be a continuous function on the interval 590

[ηmin, ηmax] and F (ηmin) · F (ηmax) are nonzero of opposite 591

sign. Then, the optimal solution η∗ for F is found in the 592

interval [ηmin, ηmax], which shows convergence to its solution. 593

Proof: Refer to Appendix C for the proof of 594

convergence. 595

Algorithm 2 Main Procedure for η∗

1: Initialize
2: set iteration index j = 0, the maximum iteration Imax and

termination precision ε > 0
3: set ηmin and ηmax, such that ηmin ≤ η∗ ≤ ηmax

4: repeat
5: ηj = (ηmin + ηmax)/2
6: solve (20) for a given ηj and obtain power allocation P j

7: if |F (ηj)| = |min[Rk,n(P ) − ηjPT
k,n(P )]| ≤ ε then

8: P ∗ = P j and η∗ = mink[Rk,n(P j)

P T
k,n(P j)

]
9: break

10: else
11: if |F (ηj) < 0 then
12: ηmax = ηj

13: else
14: ηmin = ηj

15: end if
16: end if
17: set j = j + 1
18: until j > Imax

Therefore, the solution for the transmit power P ∗ can be 596

achieved by addressing the optimization problem of (20), 597

which need to be solved at line 6 of Algorithm 2 for a given ηj . 598

Thus, hereinafter, we focus on the following objective 599

function: 600

max
P

min
k=1,··· ,K

{Rk,n(Q, P ) − ηPT
k,n(Q, P )} 601

s.t. C1, C2, C3.,C5. (20) 602

The power optimization problem in (20) involves a two- 603

level of power allocation. The power allocation among dif- 604

ferent subchannels and the power allocation to the grouped 605

users at the same subchannel n. Thus, we introduce a two- 606

level inter/intra-subchannel power allocation algorithm that 607

allocates the available power among subchannels, as well as 608

between users on the same subchannel. To provide an efficient 609

solution to the problem, we first optimize the power allocation 610

between subchannels. Therefore, objective function of (20) can 611
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be reformulated as612

max
Pn

min
k=1,··· ,K

{Rk,n(Q, P ) − ηPT
k,n(Q, P )}613

s.t. C1 :
∑
n∈N

Rk,n >= Rreq
k , ∀k ∈ K,614

C2 :
N∑

n=1

Pn ≤ Pt,615

C7 :Pn ≥ 0, ∀n ∈ N. (21)616

Then, given the power allocation among different subchan-617

nels, we further optimize the power allocation for the two618

users grouped at subchannel n. This leads to the following619

optimization problem:620

max
Pk,n

min
k=1,··· ,K

{Rk,n(Q, P ) − ηPT
kn,(Q, P )}621

s.t. C1 :
∑
n∈N

Rk,n >= Rreq
k , ∀k ∈ K,622

C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K,623

C5 :Pk,n ≥ 0, ∀k ∈ K. (22)624

Considering the fractional nature of the EE, the main625

mathematical tool for solving (21) is fractional program-626

ming [28], [36]. This principle holds when the numerator and627

denominator of the EE optimization problem are concave and628

convex respectively over convex constraint sets [36]. However,629

the optimization problem that needs to be solved in (21) is non-630

convex with respect to the transmit power Pn due to the terms631

of multiuser interference. Hence, we invoke the framework632

of sequential successive convex approximation (SCA) [34] to633

iteratively update the power allocation vector by solving the634

approximate convex problem.635

B. Sequential Convex Programming (SCP) for P ∗
636

In this subsection, we propose an SCP optimal approach637

to obtain an energy-efficient power allocation scheme by638

iteratively solving the given problem. The proposed iterative639

power allocation scheme for this paper is named as non-640

orthogonal multiple access-sequential convex programming641

(NOMA-SCP). The basic idea of SCP is to approximate642

a non-convex problem by a sequence of convex problems643

iteratively [34]. In each iteration, all non-convex constraints644

are replaced by their inner convex approximations [36]. Due to645

the non-convexity of problem (20), it is hard to solve it directly646

with polynomial time complexity. To this end, the objective647

function in (21) can be rearranged into a difference of two648

concave function with respect to P as649

Rk,n(P ) − ηPT
k,n(P ) = fk(P ) − gk(P ) (23)650

where,651

fk(P ) = log2

N∑
i=1

W (1 + Pk,nΥk,n) − ηkPk(P ) (24)652

gk(P ) = log2

N∑
i=1,i�=k

(Pi,nΥk,n + α2
k,n) (25)653

Now, we can equivalently rewrite (21) as 654

max
P

min
k

{fk(P ) − gk(P )} 655

s.t. C1, C2, C4. (26) 656

It is noted that the objective function in (26) is not smooth 657

at each iteration of different minimum of fk(P ) − gk(P ). 658

Thus, we introduce a new variable R to the optimization 659

problem (26) to transform into a smooth optimization problem. 660

Thus, (26) can be equivalently formulated as 661

max
Pn,R

R 662

s.t. C1, C2, C4 663

C8 :{fk(P ) − gk(P )} ≥ R, ∀k. (27) 664

It is noted that constraint C8 in (27) is the difference of 665

two concave functions which can be effectively solved by 666

SCP [35]. At step t we can get an iterative power allocation pt. 667

Thus, we approximate gk(P ) by first-order Taylor expansion 668

at pt, i.e., 669

gk(P t) + ∇gT
k (P t)(P − P t), (28) 670

where ∇gk(P ) is the gradient of gk(P ) at P and is given by 671

∇gk(P ) =
mk∑

i=1,i�=k

Pi,kΥk,n + α2
k,n

. (29) 672

In (29) mk is a K dimensional column vector with mk(k) = 0 673

and mk(i) = gk,i

ln2 , k �= i. Moreover, the minimum data rate 674

constraint C1 can be equivalently written as 675

C′
1 : Pk,nΥk,n + (1 − 2Rreq

k /W ) 676

(
n−1∑

i=1,i�=k

Pi,nΥk,n + α2
k,n) ≥ 0. (30) 677

Combining (28) and (27), we can rewrite (27) as 678

max
Pn,R

R 679

s.t. C′
1, C2, C4 680

C8 :fk(P ) − [gk(P t) + ∇gT
k (P t)(P − P t)] ≥ R. 681

(31) 682

After this transformation, (31) is a smooth and standard convex 683

approximation of (21). The local optimal transmit power 684

can be efficiently calculated by solving (31). The algorithm 685

iteratively solves the convex optimization problem in (31). 686

We show the detailed power control algorithm in Algorithm 3. 687

Theorem 4: (a) The efficient iterative algorithm always 688

converges, and (b) with any feasible initial values, the opti- 689

mal transmit power converges to a stationary point of (31), 690

i.e., (21). 691

Proof: See Appendix D. 692

Once the power, Pn, for each subchannel n is determined, 693

the next step is to allocate power between multiplexed users 694

on the same subchannel based on users’ channel gain. Accord- 695

ing to the optimization in (22), both the strong and weak 696

users have the same minimum data rate requirement. Users 697

signals will be multiplexed together using assigned powers 698
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Algorithm 3 Iterative Algorithm Procedure for Pn∗
1: Initialize t = 0 and maximum tolerance ε > 0
2: Set P (0) calculate E0 = mink[fk(P 0) − gk(P 0)]
3: while ‖E(t+1) − E(t)‖ > ε do
4: Solve (29) to obtain the solution P ∗.
5: Set t = t + 1, P t = P ∗

6: E(t) = min(fk(P t) − gk(P t))
7: end while

and transmitted to users so that the total transmitted power per699

subchannel not to exceed from the allocated power budget, Pn.700

Furthermore, the transmit power of the weaker channel gain701

user must be higher than that of the strong channel gain702

user [2]. Consequently, an important conclusion about the703

transmission of power for the strong channel gain user in704

a NOMA can be drawn from [39]. In [39], the maximum705

power allocation to the strong channel gain user in downlink706

NOMA must be smaller than Pn

2m−1 , where m is the number707

of users grouped at the same subchannel and Pn is the power708

budget for each subchannel n [39]. Furthermore, according to709

constraint C5 in (22), we have Pk,n ≥ 0, k ∈ {1, 2}, ∀n ∈ N.710

Thus, the power allocated to the strong channel gain user711

can efficiently exploit in between 0 and Pn

2m−1 . Based on our712

analysis, we can apply an efficient bisection search method to713

realize the suboptimal solution of power allocation for users714

grouped at the same subcarrier, as given in Algorithm 4.715

Algorithm 4 Energy-Efficient Power Allocation Between Mul-
tiplexed Users

1: Initialize Pmin
1,n = 0, Pmax

1,n = Pn

2m−1 and termination
precision ε > 0

2: repeat
3: set P1,n = (Pmin

1,n + Pmax
1,n )/2

4: set P2,n = Pn − P1,n; solve Eq. (5) to obtain Rk,n

5: if
∑
n∈N

Rk,n ≤ Rreq
k then

6: Pmax
1,n = P1,n

7: else
8: Pmin

1,n = P1,n

9: end if
10: until (Pmax

1,n − Pmin
1,n ≤ ε)

11: output P ∗
1,n = P1,n, P ∗

2,n = Pn − P ∗
1,n

C. Computational Complexity Analysis716

In order to get some insights for the computational com-717

plexity of the proposed algorithm, we first recall the optimal718

subcarrier assignment scheme which can be achieved through719

exhaustive search. Let us recall the K users and N sub-720

carriers (i.e., K = 2N) scenario, we need to search (2N)!
2N721

combinations. Thus, the complexity of the exhaustive search722

becomes O( (2N)!
2N ) [19]. In the proposed greedy algorithm,723

the complexity comes from the sorting and assignment phases.724

In the sorting phase, the algorithm finds the minimum channel725

quality of K users and sorts them from the lower to higher726

value, which requires (K(K −1)/2) operations. Furthermore, 727

the algorithm starts from users with the worst channel quality 728

and assigns the subcarrier with the highest channel gain, 729

which requires (2KlnK) operations. Therefore, the proposed 730

subcarrier assignment algorithm requires (K(K − 1)/2 + 731

2KlnK) operations, yielding the complexity of O(K2). Let 732

L1 iterations are required to guarantee the error tolerance, ε, 733

for the bisection method. Also, let L2 denotes the number 734

of iterations required for the power allocation algorithms to 735

converge. Thus, the total complexity of the propose schemes 736

is therefore O(K2+L1L2KN), which shows lower computa- 737

tional complexity compared even with the optimal subcarrier 738

assignment algorithm alone. Thus, the proposed scheme can 739

be implemented in polynomial time. 740

V. SIMULATION RESULTS 741

In this part, we present simulation results to evaluate the 742

performance of the proposed schemes, especially in compari- 743

son with the baseline schemes in [19] and [16]. We consider 744

a single BS located in the cell center and users are uniformly 745

distributed inside a circular ring with a radius of 300 m. 746

We set the value of path loss exponent γ as 2 [25]. The 747

minimum distance from users to BS is limited 50 m. The 748

bandwidth of the system is set as 5 MHz. As it has already 749

been mentioned, the considered NOMA network system, two 750

users are assigned per subcarrier to reduce the complexity 751

of SIC. In the simulation, we set BS peak power P = 12 W , 752

and circuit power consumption Pc=1 W [19], and α2
n = B∗N0

N , 753

where N0 = −174 dBm/Hz is the AWGN power spectral 754

density. For simplicity, we consider each user has the same 755

weighted bandwidth B
N . The performance of the proposed 756

subcarrier assignment (WCUFSA) is compared to suboptimal 757

matching for subchannel assignment algorithm in NOMA 758

(SOMSA) [19] and OFDMA [16]. Regarding the power 759

allocation, the performance of the proposed NOMA-SCP 760

scheme is compared with differential convex programming 761

(NOMA-DC) [19] and OFDMA system as well as NOMA 762

with equal power allocation (NOMA-EQ) used in our proposed 763

subcarrier assignment scheme. Moreover, the proposed user 764

power allocation algorithm (UPA) for users grouped at the 765

same subcarrier is also compared with NOMA-DC-DC [19] 766

and FTPA (fractional transmitted power allocation), which is 767

widely used in NOMA and OFDMA [31]. 768

We first evaluate the feasibility and effectiveness of the 769

proposed algorithms. Fig. 2 and Fig. 3 show the conver- 770

gence behavior of the efficient iterative power allocation 771

Algorithm and the bisection method for EE (i.e., η∗), respec- 772

tively. It is noted that both Algorithms converge fast to reach 773

their solution set with different initial transmit power values 774

(i.e. P 0). Moreover, the Algorithms reach the solution point 775

within a few iterations. Thus, it is proved that the proposed 776

algorithms can reach to the solution set without being affected 777

by the initial guess power setting. Hence, we can conclude that 778

the proposed algorithms are of high practical value. 779

In Fig. 4, we compare the proposed subcarrier assignment 780

algorithm (WCUFSA) with SOMSA and OFDMA schemes 781

to evaluate the EE performance for n-th subcarrier as well 782
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Fig. 2. The convergence of the iterative power allocation algorithm with
ηj = 5 Mbits/joule.

Fig. 3. The convergence of the proposed algorithm 3, the bisection method
for maximizing the minimum user’s EE (Max-Min EE).

as the overall EE performance of the whole network. N in783

the figure denotes the n-th subcarrier. As can be seen in784

all schemes, they improve the network’s EE at the cost of785

individual EE for the user with the worst channel conditions.786

However, the proposed algorithm outperforms both SOMSA787

and OFDMA in terms of EE as well as fairness among users.788

In Fig. 5, we further compare the EE performance to evaluate789

the worst link, the best link, as well as the performance of the790

network’s EE among the comparable benchmark schemes in791

terms of EE. It is observed that there is a remarkable difference792

in the EE among the best link and the worst link in all793

considered scenarios. However, the EE of NOMA-SCP is well794

balanced with slightly reduced from network EE as compared795

to NOMA-DC and NOMA-EQ schemes in a system with796

8 subchannels. Fig. 6 shows the achieved data rate of the four797

schemes against number of users. As it can be seen in Fig. 6,798

all NOMA schemes are superior to OFDMA schemes in terms799

Fig. 4. The EE performance of the network and each subcarrier of three
schemes.

Fig. 5. Comparisons of the EE of the network, the best link, and the worst
link among the proposed NOMA-SCP, NOMA-DC,and NOMA-EQ schemes.

of data rate due to the multiplexing gains in NOMA system. 800

Moreover, it also noted that the performance of NOMA-SCP 801

outperforms that of NOMA-DC and NOMA-EQ. As it can 802

be observed from Fig. 6, the data rate of the proposed 803

NOMA-SCP scheme is 6.30% more than that of NOMA-DC 804

in a system with 8 users and followed by 28.01% and 805

35.12% more than that of NOMA-EQ and OFDMA scheme, 806

respectively. Therefore, NOMA-SCP can achieve a better 807

data rate transmission performance than that of all compa- 808

rable schemes. Fig. 7 presents the simulation results for the 809

data transmission performance of different power allocation 810

schemes against transmitted power with the same constraints 811

of Fig. 6. Thus, our proposed power allocation scheme through 812

SCP achieves better performance than the benchmark power 813

allocation scheme. 814

Fig. 8 presents the simulation results of the EE against the 815

number of K users for different power allocation schemes. 816

We set the precision accuracy as ε = 0.001. In the proposed 817

scheme, the achievable EE initially increases fast as the num- 818

ber of users increases and with slow growth rate afterwards. 819

This is due to the multiuser diversity gain by the NOMA 820

system. From Fig. 8, it is shown that the performance of all 821
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Fig. 6. Data transmission versus number of users.

Fig. 7. Data transmission versus transmitted power.

Fig. 8. Energy efficiency versus number of users.

NOMA schemes are much better than the OFDMA due to the822

multiplexing gains when NOMA is used. Moreover, it also823

noted that NOMA-SCP outperforms both NOMA-DC and824

NOMA-EQ in terms of EE. For example, when the number of825

user is 8, the EE of NOMA-SCP is 59.21 % more than that of826

Fig. 9. Energy efficiency versus transmitted power.

Fig. 10. Edge users EE versus transmitted power.

OFDMA scheme. The main reason is that NOMA can support 827

more users in a single subchannel while OFDMA can only 828

support a single user per sub channel. As a result, the BS can 829

not fully utilize spectrum resources as the case of OFDMA 830

system. We also notice that NOMA-SCP improves the EE 831

about 10.38% compared to NOMA-DC. Fig. 9 demonstrates 832

the EE (i.e., η∗) performance versus BS power when fixed 833

circuit power Pc = 1 W and the BS power ranges from 1 W 834

to 12 W . It can be seen that the EE initially increases fast 835

with respect to BS transmitted power and converges with slow 836

growth, due to the total power constraints. This is because 837

when BS power is relatively low, the optimal transmit power 838

selection strategy uses all the available power at the BS. 839

However, when total BS power is large enough, the transmit 840

power selection strategy is limited to P∗ regardless of total 841

BS power. From Fig. 9, it is clearly shown that NOMA-SCP 842

can achieve higher EE than NOMA-DC, NOMA-EQ and 843

OFDMA schemes. 844

In Fig. 10, the effectiveness of different power allocation 845

schemes for multiplexed users is evaluated. Thus, we compare 846
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Fig. 11. Energy efficiency versus transmitted power.

the proposed NOMA-SCP-UPA1 scheme with NOMA-DC-DC847

and NOMA-EQ-FTPA, which is widely adopted in NOMA848

system for power allocation to users in the same subchan-849

nel [31], [19]. From Fig. 10, we can clearly see that by using850

NOMA-SCP-UPA scheme higher EE is achieved. Therefore,851

the proposed NOMA-SCP-UPA scheme outperforms both852

NOMA-DC-DC2 and NOMA-EQ-FTPA3 for edge users in853

terms of EE. This clearly indicates the effectiveness of the854

proposed algorithm.855

In order to get further insight on the performance of the856

proposed scheme, in Fig. 11, we compare the proposed scheme857

with the optimal solution through exhaustive search (i.e., ES)858

in terms of EE. It can be observed that the EE increases859

with the transmit power. It is also noticed that the proposed860

algorithm is capable of approaching the results of the exhaus-861

tive search. Recalling that the complexity of the proposed862

algorithm is much lower than the one of the exhaustive search,863

it is concluded that the proposed scheme achieves a good864

balance between complexity and performance.865

VI. CONCLUSION866

In this paper, we have investigated the downlink of867

MC-NOMA system where a single base station transmits a868

block of messages to multiple users. The focus has been on869

the maximization of the user with the lowest performance in870

terms of individual EE by optimizing subcarrier and power871

allocation. Since the optimization problem was non-convex,872

we formulated the subcarrier assignment and power allocation873

as a two stage-problem to reduce computational complex-874

ity. Then, a greedy subcarrier assignment scheme to assign875

1NOMA-SCP-UPA uses SCP approach to allocate power among different
subchannels and the bisection search method to assign power between users
grouped at the same subchannel.

2NOMA-DC-DC uses DC programming techniques to allocate power across
subchannels as well as to determine the power allocation factor to allocate
power between users grouped at the same subchannel.

3NOMA-EQ-FTPA uses equal power allocation across subchannels and
FTPA to determine the power allocation factor between users on the same
subchannel.

two users on each subcarrier was proposed. Furthermore, for 876

the power allocation, we transformed the non-convex problem 877

into a simpler subtractive form using a fractional programming 878

property. Thus, a suboptimal power allocation through the 879

subchannels was obtained by iteratively solving the convex 880

sub-problem using sequential convex programming. The pro- 881

vided simulation results have shown that the proposed resource 882

optimization method achieves fast convergence and guaran- 883

tees fairness. Consequently, the proposed resource allocation 884

method is particularly promising, since remarkable gains are 885

achieved compared to existing techniques, while it remains 886

appropriate for the practical case. 887

APPENDIX A 888

PROOF OF THEOREM 1 889

In complexity theory, to show a decision problem is 890

NP-hard, we usually follow three steps [48] 1) choose a 891

suitable known NP-complete decision problem A; 2) construct 892

a polynomial time transformation from any instance of A to an 893

instance of the required problem; 3) prove the two instances 894

have the same objective value under the transformation. In the 895

following section, we show that problems (14) is NP-hard. 896

Proof: The proof can be done into two cases for which 897

qk,n = 1 and qk,n > 1. 898

1) When qk,n = 1, (14) corresponds to an EE maximization 899

problem with respect to joint subcarrier and power allo- 900

cation for the conventional OFDMA system, which has 901

been proved to be NP-hard in [47]. 902

2) When qk,n > 1, we prove that the problem is NP-hard 903

even with known power allocation coefficients. In the 904

following, we construct an instance of problem (14) 905

with known power allocation coefficients. First, we will 906

associate an instance of problem (14) as an equivalent to 907

the Multiple Choice Knapsack problem (MCKP) prob- 908

lem, which is a well known NP-hard problem. We then 909

consider an instance with qk,n = 2. Thus, we prove 910

a simplified version of the joint subcarrier and power 911

allocation problem is reducible to the knapsack problem 912

which is a well-known NP-hard problem. 913

Definition 1: Multiple Choice Knapsack problem 914

(MCKP) [48] 915

Let’s assume that there are N1, N2, · · · , NS classes with 916

each class i containing ni items to be packed in a 917

knapsack with capacity, P. Each item j ∈ Ni has a 918

profit Ui,j and a weight Pi,j and the problem is to assign 919

some items to each class such that the profit is maximized 920

without having the total weight exceeds P. It is generally 921

considered that the profits, weights and the knapsack 922

capacities take non-negative values. 923

Thus, we next show that problem in (14) is reduced to 924

MCKP problem. Without loss of generality, we assume 925

that each subcarrier is a knapsack and each item in the 926

knapsack resembles a user to be packed in a knapsack of 927

capacity, Kn. The profit of each item in the knapsack is 928

the corresponding utility-function is Ui,j and the required 929

resource (weight) is pi,j , while the Problem in (14) aims 930

at choosing exactly Kn users (i.e., items) for each sub- 931

carrier (i.e., class) to maximize the EE, subject to the 932



IEE
E P

ro
of

MUHAMMED et al.: ENERGY-EFFICIENT RESOURCE ALLOCATION IN MC NOMA SYSTEMS WITH FAIRNESS 13

transmit power constraint, Pn. The EE maximization933

problem in (14) can be written in the following form:934

max
Q,P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
935

s.t. C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K,936

C4 :
K∑

k=1

qk,n ≤ Kn, ∀n ∈ N,937

C6 :qk,n ∈ {0, 1}, ∀k, n, (32)938

Thus, (32) is NP-hard because it is categorized as a939

MCKP which is a generalization of the ordinary knapsack940

problem. Thus, as (32) is a special case of problem (14),941

the general optimization problem (14) is an NP-hard942

problem. �943

APPENDIX B944

PROOF OF THEOREM 2945

Proof: Without loss of generality, we assume that946

Rk(P ) ≥ 0 and Pk(P ) ≥ 0, where P and P ∗ denote any947

feasible power allocation and optimal power allocation policy,948

respectively, in (14). We also define e∗k as the optimal EE for949

the original objective function in (14). Then, the EE is given950

by951

max
P∈D

min
K

η = Rk(P )
Pk(P ) , (33)952

The equivalent parametric problem related to (33) is953

max
P

min
K

{Rk(P ) − ηPk(P )}, ∀P ∈ D. (34)954

The following Lemma 1 is introduced to shows the relation955

between (33) and (34).956

Lemma 1: if P ∗ is the optimal solution of (33) with957

corresponding parameter introduced by η∗ = Rk(P∗)
Pk(P∗) , then958

P ∗ is also the optimal solution of (33).959

Since P ∗ maximizes {Rk(P ) − e∗kPk(P )}, ∀P ∈ D, we960

have961

Rk(P ) − e∗kPk(P ∗) ≤ Rk(P ∗) − η∗
kPk(P ∗), ∀P ∈ D. (35)962

From the definition of η∗, we have963

{Rk(P ∗) − η∗Pk(P ∗)}, ∀P ∈ D. (36)964

Combining (36) and (35), we obtain965

{Rk(P ) − ηP ∗
k (P )} ≤ {Rk(P ∗) − ηP ∗

k (P ∗)} = 0. (37)966

From this967

Rk(P ) − ηPk(P ∗) ≤ 0 or η∗ ≥ Rk(P )
Pk(P )

. (38)968

This indicates that969

η∗ =
Rk(P )
Pk(P )

, is the maximum of
Rk(P )
Pk(P )

, ∀P ∈ D. (39)970

In other words P ∗ is the optimal solution of (31). Therefore,971

the optimal resource allocation for the equivalent objective972

function is also the optimal resource allocation for the original973

objective function. This completes the proof.974

APPENDIX C 975

PROOF OF THEOREM 3 976

Proof: Let’s start with an initial interval [ηmin, ηmax], for 977

which 978

η =
(ηmin + ηmax)

2
and d = F (ηmin) · F (ηmax). (40) 979

� If d < 0, let ηmax = η and ηmin = ηmin. 980

981

� If d > 0, let ηmin = η and ηmax = ηmax. 982

983

� If d = 0, then η becomes the solution with the required 984

accuracy, ε. 985

For either of the two cases, the new interval is one half of 986

the width of the original. This new interval is reformed as 987

[ηmin, ηmax] and the procedure is repeated again. Over the 988

j-th iterations, it follows that 989

990

� The first interval is [η0
min, η0

max] and η0 = (η0
min+η0

max)
2 991

992

� The Second interval is [η1
min, η1

max] and η1 = (η1
min+η1

max)
2 993

994

� The j-th interval is [ηj
min, ηj

max] and ηj = (ηj
min+ηj

max)

2 995

where ηj
min = ηj−1 and ηj

max = ηj−1
max or ηj

min = ηj−1
min and 996

ηj
max = ηj−1. From this we can observe that 997

� The sequence {ηj
min}j=∞

j=0 is increasing sequence and 998

bounded above by ηmax. 999

� The sequence {ηj
max}j=∞

j=0 is decreasing sequence and 1000

bounded below by ηmin. 1001

� and the approximated sequence of ηj’s generated by 1002

the bisection is found on ηj
min ≤ ηj ≤ ηj

max, for 1003

all j. Moreover, the function F (η) is strictly decreas- 1004

ing in η [36], [37]. In addition, F (η) is negative for 1005

η → +∞ and positive for η → −∞. This satisfied 1006

F (ηmin
j ) · F (ηmax

j ) < 0. 1007

Furthermore, let us define the approximation at ηj after the 1008

j-th iteration as the midpoint 1009

ηj =
(ηj

min + ηj
max)

2
. (41) 1010

Since the actual solution F (η∗) = 0 satisfies η ∈ ηj
max−ηj

min
2 , 1011

we have 1012

| ηj − η∗ |< 1
2
| ηj

max − ηj
min

2
| . (42) 1013

Since the length of the current search interval gets divided 1014

in half in each iteration, we have 1015

| εj |=| ηj − η∗ |≤
(

1
2

)j

| ηj
max − ηj

min

2
| . (43) 1016

From this, we have lim
j→∞

ej = 0. For lim
j→∞

1
2j = 0, we obtain 1017

ηj = η∗, which proves the global convergence of the bisection 1018

method. We interpret this behavior as linear convergence. 1019

Moreover, let the ε be the relative accuracy of the root, then 1020

to estimate the number of iteration j to achieve the accuracy 1021

is given by 1022

| ηj − η∗ |
| η∗ | ≤ ε. (44) 1023



IEE
E P

ro
of

14 IEEE TRANSACTIONS ON COMMUNICATIONS

Let’s assume that the root lies in [ηmin, ηmax] where ηmax >1024

ηmin > 0. Clearly, | η∗ |≥ ηmin and hence the above relation1025

is true if1026

| ηj − η∗ |
η∗ ≤ ε, (45)1027

which is true if1028

ηmax − ηmin

(2j+1)η∗ ≤ ε. (46)1029

Solving this we can find the minimum number of iterations1030

needed to obtain the desired accuracy. Now, it can be derived1031

that1032

| ej+1 |=| ηj+1 − η∗ |≤ 1
2
(ηj+1

max − ηj+1
min ) =

1
2
(
ηmax − ηmin

2
)1033

(47)1034

and1035

| ej |=| ηj − η∗ |≤ 1
2
(ηj

max − ηj
min). (48)1036

Thus, we find | ej+1 |≈ 1
2 | ej |.1037

Therefore, the proposed bisection method in order to deter-1038

mine η∗ converges linearly. This completes the proof.1039

APPENDIX D1040

PROOF OF THEOREM 41041

As P t is feasible to (31), it follows that1042

Et = min
k

(fk(P t+1) − gk(P t+1) ≥ min
k

(fk(P ) − [gk(P t)1043

+∇gT
k (P t)(P t+1 − P t)] ≥ min

k
(fk(P t) − gk(P t))1044

= Et+1 (49)1045

The next solution P t+1 is always better than the previous1046

solution P t. That is min(fk(P t) − gk(P t)) monotonically1047

decreases when the iteration t increases. With successive1048

iterations of the algorithm, the value of E(t) = min(fk(P t)−1049

gk(P t)) decreases . Moreover, for every E(t) the power vector1050

P that maximize fk(P ) − [gk(P t) + ∇gT
k (P t)(P − P t)] is1051

found. Thus, iteration process terminates after a finite iteration1052

at min(fk(P t)−gk(P t)) ≤ ε (no solution progress) with some1053

threshold ε ≥ 0. Hence, the iterative power control algorithm1054

converges in a finite step. Furthermore, since the constraint set1055

is compact, by Cauchy Theorem the sequence P t of improved1056

solution always converges [42]. From this, we can conclude1057

that Algorithm 3 is guaranteed to converge.1058

b) Proof of optimal transmit power converges to a stationary1059

point Consider Proof of algorithm convergence, we now prove1060

problem (28) in algorithm 3 for optimal transmit power1061

converges to a stationary point under an additional assumption1062

fk(P ) and gk(P ) defined in fk(P ) − gk(P ) are continuous1063

and differentiable over a given constraint sets. Since −gk(P )1064

is approximate by its convex function as1065

gk(P t) + ∇gT
k (P t)(P − P t) (50)1066

The objective function is rewritten as1067

Qk(P ) = fk(P t) − [gk(P t) + ∇gT
k (P t)(P − P t)] (51)1068

In the limit all inequalities in (36) become equality. In other 1069

words, P t and P t+1 are optimal point of the objective function 1070

over the defined constraint sets [35]. Hence, P t =P t+1 and 1071

P t+1 = arg maxP∈{C′1,C2,C4}min
K

Qk(P ) (52) 1072

Furthermore, according to optimality condition [35], 1073

we have 1074

min
K

∇QT
k (P t)(P−P t)= min

K
{∇Qk(P t+1)(P−P t+1)} ≤ 0 1075

(53) 1076

which can be equivalent to [40] 1077

min
K

{∇fk(P t) + ∇gT
k (P t)(P − P t)} ≤ 0. (54) 1078

Thus, P t is the stationary point to (31) i.e. (21). This 1079

completes the proof. 1080
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Abstract— Non-orthogonal multiple access (NOMA) has1

attracted both academic and industrial interest since it has been2

considered as one of the promising 5G technologies in order3

to increase connectivity and spectral efficiency. In this paper,4

we focus on a downlink multicarrier (MC) NOMA network,5

where a single base station serves a set of users through multiple6

subchannels. The goal is to jointly optimize energy efficiency7

(EE) and fairness among users with respect to the subcarrier8

and power allocation parameters. To achieve this with acceptable9

complexity, a novel greedy subcarrier assignment scheme based10

on the worst-user first principle is proposed. Due to the fractional11

form of the EE expression and the existence of interference,12

the power allocation problem is non-convex and NP-hard. To this13

end, we first transform this into an equivalent subtractive14

form, which is then solved by using fractional programming15

with sequential optimization of the inter/intra-subchannel power16

allocation vectors. Simulation results reveal the effectiveness of17

the proposed scheme in terms of EE and fairness among users18

compared to baseline schemes. Finally, the proposed algorithms19

are of fast convergence, low complexity, and insensitive to the20

initial values.21

Index Terms— Non-orthogonal multiple access, successive22

interference cancellation, quality of service, energy efficiency,23

power allocation.24

I. INTRODUCTION25

W ITH the explosive growth of the internet-of-things26

(IoT), and the cloud-based applications, wireless com-27

munications require a paradigm shift to support large-scale28
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connectivity and diverse data and latency requirements. 29

To this direction, non-orthogonal multiple access (NOMA) 30

has attached great interest from both academia and indus- 31

try [1], due to its superiority in gaining spectral efficiency, 32

mass connectivity and low latency, compared to orthogonal 33

multiple access (OMA). Even though intra-cell interference 34

is increased, NOMA can simultaneously serve multiple users 35

over the power domain (PD), by using the same spectrum 36

band [2]. PD-NOMA uses superposition coding (SC) to 37

broadcast multiple users’ message signals by considering the 38

difference of their channel gain conditions. At the receiving 39

end, each user applies successive interference cancellation 40

(SIC) to extract its own signal from the aggregate received 41

signal. 42

The integration of NOMA in current wireless com- 43

munication technology creates several challenges, due to 44

multipath transmission, low signal strength, and intra-cell 45

interference [1], [3]. Also, the utilization of the entire band- 46

width by all users might be prohibitive in terms of com- 47

plexity. To this end, NOMA can be combined with OMA 48

schemes in order to design wireless communication schemes 49

with practical value. For example, multicarrier NOMA 50

(MC-NOMA) can be used [1], [2], which enables the simulta- 51

neous utilization of a subset of subcarriers from solely a subset 52

of users. Moreover, it is useful to consider an efficient resource 53

allocation technique, which can achieve high transmission 54

rate, low complexity, small latency, and seamless connectivity 55

through network coverage. Furthermore, an effective method 56

for adaptive bandwidth and power allocation is urgently 57

required, in order to avoid the inevitable “spectrum crunch”, 58

due to the limited bandwidth and increasing number of users. 59

A. Related Works 60

Resource allocation for NOMA has been investigated 61

in [4] and [5], where, the primary focus has been on the sum 62

rate maximization under the total power and proportional rate 63

constraints. Furthermore, MC-NOMA was investigated in [6] 64

and [7]. In [6], by considering perfect channel state informa- 65

tion (CSI) at the base station (BS), a near optimal solution 66

for power allocation was proposed, while in [7], an efficient 67

power allocation scheme under imperfect CSI for different 68

quality-of-service (QoS) requirements was introduced. In the 69

aforementioned studies, the ultimate goal was to minimize 70

the total transmit power. Besides, joint power allocation 71

0090-6778 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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and subcarrier assignment for NOMA has been investigated72

in [9]–[11]. More specifically, a suboptimal joint power and73

subcarrier allocation was presented in [9], for the maximiza-74

tion of the weighted system throughput. Furthermore, in [10],75

the authors investigated the optimal power allocation under76

QoS constraints in order to maximize the weighted sum rate77

and in [11], the authors presented theoretical insights and78

an algorithm for the sum rate maximization. However, these79

schemes maximize either the system throughput or the overall80

sum rate maximization, where user fairness is not considered,81

which is of crucial criterion in the design on NOMA networks.82

Several works have been investigated for resource allocation83

in NOMA to ensure fairness, e.g., [12]–[15]. The power84

allocation scheme for NOMA networks with α-fairness con-85

sideration was studied in [12]. Moreover, the optimal power86

allocation based on max-min fairness for users on a single87

channel was investigated in [13] and [14], using statistical88

CSI and instantaneous CSI, respectively. The authors of [15]89

exploited the proportional fairness scheduling to maximize the90

weighted max-min fairness, where the optimal solution was91

only achieved for two users on a single resource block. It is92

notable that the aforementioned works in NOMA consider93

user fairness in terms of achievable rate under the max-94

min optimization approach. However, no works have been95

considered on the max-min optimization to ensure fairness of96

EE among users.97

The enormous growth of data traffic and wireless terminal98

leads to an inevitable increase of the energy consumption of99

wireless networks, and thus the energy-efficient design for100

the next generations of wireless communication systems is of101

paramount importance [45]. To this end, the design of resource102

allocation schemes which aim to improve the EE has become103

an important research topic in the design of NOMA networks.104

For example, in [17], an energy-efficient power allocation105

strategy in millimeter wave massive MIMO with NOMA has106

been investigated. In [18], an energy-efficient transmission107

scheme has been studied for SISO-NOMA systems. More-108

over, the joint power allocation and channel assignment for109

maximizing the EE in NOMA systems was considered in110

[19]. The same authors in [20] further extended the work111

in [19] proposing a joint subchannel and power optimization112

framework for the downlink NOMA heterogeneous network113

to improve the EE. However, the proposed solution focused114

solely on improving the overall systems EE, which results in115

unbalanced use of network resources.116

B. Motivation and Contribution117

The works mentioned above [17]–[20], mainly focus on the118

improvements of the overall system’s EE, which is defined as119

the ratio of sum-rate and the overall energy consumption of120

all users. The overall EE is a significance performance metric121

for system design, however, the system mainly benefits from122

users in better channel conditions or lower interference and123

thus, improvements are obtained at the cost of users in the124

poor channel conditions [40]. Thus, the overall EE causes125

unfairness among users [40], which is a challenging problem126

in practical MC-NOMA networks [44]. On the other hand,127

the EE for each individual user is a particularly useful metric, 128

since it can provide higher performance to the weaker users, 129

while also reducing the utilized energy [16], [33]. Thus, 130

different from the existing works [17]–[20], in this paper, 131

we investigate a fairness based optimization in downlink 132

MC-NOMA systems to maximize the individual EE which 133

is expressed as the ratio of the user rate to its consumed 134

power (bits/Joule) [16], [22]. For this purpose, we choose 135

the max-min approach to be the objective function, which 136

apart from EE, also preserves fairness among all users in the 137

system [40]. The max-min optimization approach can provide 138

fairness for all users, which is particularly important in net- 139

works where some users may have stringent EE requirement. 140

To the best of our knowledge, the max-min optimization 141

approach to maximize EE while ensuring fairness among users 142

by jointly optimizing the subcarrier and power allocation in 143

MC-NOMA network has not been considered in the open 144

literature. Meanwhile, an energy-efficient resource allocation 145

that considers user’s fairness is of vital importance for the 146

next-generation communication systems in order to share 147

resources fairly while maximizing the EE. To this end, this 148

paper investigates for the first time in existing literature the 149

max-min optimization for energy-efficient resource allocation 150

in downlink MC-NOMA systems aiming at improving the 151

EE with fairness. Therefore, in this study, we focus on the 152

most common fairness indication, the max-min EE metric [25], 153

which aims to guarantee fairness for all users by maximizing 154

the minimum EE in the network for the overall available 155

subbands, which motivates the research in this treatise. More- 156

over, the advantages of this study over the existing works in 157

NOMA is that it considers MC systems, while it preserves 158

both fairness and energy efficiency. 159

Furthermore, several iterative algorithms have been pro- 160

posed to solve the problem of EE maximization in NOMA 161

networks, e.g., in single cell NOMA system [19], in NOMA 162

HetNets [20] and for massive MIMO networks in [26]. 163

Although the iterative approach has been applied to various 164

scenarios, the network setting that we consider in this paper 165

is very different, making the existing solutions not directly 166

applicable. For example, if some rules of fairness requirement 167

is strictly imposed in order to guarantee the fairness among 168

all users, the solutions developed in [19], [20], [26] are no 169

longer applicable. To this end, we adopt the SCA techniques 170

to systematically address the critical issue of the inter/intra 171

interference of users in the MC-NOMA networks to maximize 172

users with lowest EE performance. In this setting, we are 173

interested in maximizing the minimum individual EE under 174

the power and minimum rate constraints to optimally allocate 175

the subchannels and transmit power. Moreover, the main 176

contributions of the study are summarized as follows: 177

� We propose and investigate the maximization of the 178

minimum individual EE under the transmit power and 179

QoS requirements to guarantee fairness among users. 180

The optimization problem of interest is a non-convex 181

problem and, thus, difficult to solve directly due to the 182

fractional structure in the EE expression and the binary 183

variable in the channel allocation indicator. We first 184

decompose the original non-convex problem into two 185
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subproblems, namely subchannel assignment and power186

allocation. As a result, the original problem is solved187

by a two-stage algorithm that involves approxima-188

tion and relaxations. We also prove that the max-min189

EE maximization problem in MC-NOMA is NP-hard190

with respect to joint subcarrier and power allocation.191

� Then, in the first step, we propose a low complexity sub-192

optimal subcarrier assignment scheme. This is achieved193

through a greedy algorithm, which incur a reduced194

computational complexity compared to its exhaustive-195

searching counterparts.196

� Based on the proposed subchannel assignment algo-197

rithm, the power allocation subproblem is formulated198

as a non-convex one due to the existence of the intra-199

group interference in NOMA networks and the fractional200

expression in the objective function. Then, by exploiting201

the property of fractional programming, the fractional202

form non-convex optimization is transformed into one203

of tractable form. Finally, we invoke the framework of204

sequential successive convex approximation (SCA) [34]205

to iteratively update the power allocation vector by206

solving the approximate convex problem. As a result,207

a low complexity inter/intra subchannel power allocation208

scheme is proposed, which avoids the high computational209

complexity of the power optimization problem involving210

users on the same subcarrier as well as across subcarriers.211

We also prove the convergence of the proposed algo-212

rithm and analyze its complexity in practical MC-NOMA213

networks.214

� Finally, suboptimal power-subcarrier allocation policies215

are proposed for iteratively improving the EE. Simu-216

lations confirm that the MC-NOMA system with the217

proposed subcarrier assignment and power allocation218

lead to a considerable performance gain compared to219

existing works, in terms of both EE and fairness. The220

proposed scheme achieves near similar performance to221

the exhaustive-search method at significantly lower com-222

putational complexity.223

C. Structure224

The remaining part of the paper is organized as follows:225

Section II presents the MC-NOMA system model and prob-226

lem formulation. In section III, we propose a low complex-227

ity greedy based subcarrier assignment scheme. Section IV,228

presents the fractional programming together with sequential229

convex programming (SCP) approach to propose an iterative230

power control algorithm and suboptimal user power allocation231

scheme to allocate the available power on multiplexed users.232

Finally, the performance of the proposed method is evaluated233

in section V by computer simulation, while the paper is234

concluded in section VI.235

II. SYSTEM MODEL AND PROBLEM FORMULATION236

In this section, we introduce the system model of the237

considered downlink MC-NOMA systems, while we also for-238

mulate the problem of energy-efficient optimization problem239

to maximize the minimum users’ EE with both subcarrier240

assignment and power allocation.241

Fig. 1. Downlink NOMA for K users through power domain multiplexing.

A. System Model 242

A single-cell based downlink MC-NOMA system sce- 243

nario is considered, where a BS simultaneosuly transmits 244

information to K users, as illustrated in Fig.1. All trans- 245

ceivers are equipped with a single-antenna. Let Pt denote 246

the total transmit power. The total available bandwidth B is 247

equally divided into N subcarriers, each with a bandwidth of 248

W = B
N . In this paper, the terms subchannel and subcarrier are 249

used interchangeably. In addition, we assume that each user 250

can occupy only S subcarriers and each of the N subcarriers 251

is allocated at most Kn users. The channel between user k 252

and the BS on subcarrier n is denoted by hk,n, and we 253

assume that the BS has perfect knowledge of CSI. Based 254

on the CSI of each channel, the BS assigns a subset of 255

subchannels to the users and allocates different levels of power 256

to them. Let Kn ∈ {K1, K2, ..., KN} be the number of users 257

using subchannel n = {1, 2, 3, . . .N} and UEk,n denotes 258

user k on each subchannel n for k = {1, 2, 3, . . .Kn}. Then, 259

the corresponding transmitted signal on each subchannel n is 260

represented by 261

xn =
Kn∑
k=1

√
pk,nsk, (1) 262

where sk is the symbol of UEk,n and pk,n is the 263

power allocated to the k-th user over the n-th subchannel 264

(i.e., UEk,n). The received signal at UEk,n is 265

yk,n =
√

pk,nhk,nsk +
Kn∑

i=1,i�=k

√
pi,nhk,nsi + zk,n, (2) 266

where hk,n = gk,nd−γ
k is the channel coefficient from the BS 267

to UEk,n and gk,n is the small scale fading parameter that fol- 268

lows a complex Gaussian distribution, i.e., gk,n ∼ CN(0, 1), 269

dn is the distance between the BS and UEk,n, γ is the path 270

loss exponent, and zk,n ∼ CN(0, α2
n) is the additive white 271

Gaussian noise (AWGN). 272

Using the main principle of power-domain NOMA, multi- 273

user signal separation is conducted at the receiver side using 274

the SIC approach [2]. By exploiting SIC and assuming perfect 275

CSI, the users with better channel conditions can successfully 276

decode the messages of the weaker users. Let Υk,n = |hk,n|2
α2

n
277

denotes the channel response normalized by noise (CRNN) 278

and consider that Kn users are allocated on the n-th subchan- 279

nel. Without loss of generality, the users at the n-th subchannel 280
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are sorted in a descending order as Υ1,n ≥ · · · ≥ Υk,n · · · ≥281

Υkn,n. Thus, UE1,n is the user which has the best channel282

conditions on subcarrier n, while UEKn,n is the user which283

has the worst channel condition on the same subcarrier on284

channel n. According to the NOMA protocol [23], the BS will285

allocate more power to the weaker users to provide fairness286

and facilitate the SIC process, which results in p1,n ≤ · · · ≤287

pk,n ≤ · · · ≤ pKn,n. Note that the first user (the user with the288

best channel conditions) will cancel interference from all other289

users, while the last user (Kn) will see interference from all290

other users when decoding its own message. In general, UEk,n291

is able to decode signals of UEi,n for i > k and remove them292

from its own signals, but treats the signals from UEi,n for293

i < k as interference. Thus, the interference (Ik,n) experienced294

by each user on each subcarrier with this decoding order will295

be [19]296

Ik,n =
Kn−1∑

i=1,i�=k

pi,nΥk,n. (3)297

Hence, the received signal to the interference plus noise ratio298

(SINR) of the k-th user on subchannel n is written as299

SINRk,n =
Pk,n|hk,n|2
α2

n + Ik,n
=

Pk,nΥk,n

1 +
∑Kn−1

i=1,i�=k pi,nΥk,n

, (4)300

where α2
n = E�|zk,n|2� is the noise power and Υk,n =301

|hk,n|2
α2

n
represents the channel response normalized by noise302

of the k-th user. Thus, the data rate of k-th user is [14]303

Rk,n = W log2(1 + SINRk,n). (5)304

Furthermore, let Pn is the power allocated over subchan-305

nel n, then the subchannel power budget and BS power306

constraints can be expressed as307

Kn∑
k∈K

Pk,n = Pn, (6)308

and309

N∑
n=1

pn ≤ Pt, (7)310

respectively. Accordingly, as there are Kn users on subchannel311

n and N subchannels in the system, the data rate on subchannel312

n and the total sum rate is given by313

Rn(Pn) =
Kn∑
n=1

Rk,n(Pk,n), (8)314

and315

R =
N∑

n=1

Rn(Pn), (9)316

respectively. Moreover, the overall power consumed by each317

user can be expressed as318

PT
k,n = ζPk,n + PC

k,n, (10)319

where ζ represents the inverse of the power amplifier effi-320

ciency, PC
k,n is the additional circuit power consumption of321

the k-th transmitter. Individual user’s EE is defined as the ratio 322

between the data rate and consumed power for each user [36]. 323

This metric becomes particularly important when a balance 324

between these two metrics is desired for all users. Thus, the EE 325

for each user k is defined as [18] 326

Eη(Pk,n) =
Rk,n(Pk,n)
PT

k,n(Pk,n)
. (11) 327

Moreover, in the downlink MC-NOMA, the SIC process is 328

carrying out at the receiver side [21], [29]. This leads to high 329

computational complexity and possibly a delay at the receiver 330

side as the number of users grouped at the same subchannel 331

increases. Thus, to reduce the computational complexity [19], 332

[25], hereinafter, we consider that each user can occupy one 333

subcarrier and only two users can be multiplexed over a 334

particular subchannel. Thus, Kn = 2, for k = 1, 2 . . .K and 335

K = 2N. In this case, we assume that the CNRs of UE1,n 336

and UE2,n are ordered as Υ1,n ≥ Υ2,n. Then, the data rate 337

of the strong user U1 on subchannel n can be written as 338

R1,n = W log2(1 + P1,nΥ1,n), (12) 339

Furthermore, as the weak user U2 does not perform SIC and 340

treats the signal from strong user as noise, then data rate of 341

the weak user on subchannel n can also be expressed as 342

R2,n = W log2(1 +
P2,nΥ2,n

P1,nΥ2,n + 1
). (13) 343

B. Problem Formulation 344

In this section, we introduce an optimization problem for 345

downlink MC-NOMA. Thus, given the expression for the 346

individual EE for each user, the optimization problem can be 347

formulated as 348

max
Q,P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
, 349

s.t. C1 :
∑
n∈N

Rk,n ≥ Rreq
k , ∀k ∈ K, 350

C2 :
N∑

n=1

Pn ≤ Pt, 351

C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K, 352

C4 :
K∑

k=1

qk,n ≤ Kn, ∀n ∈ N, 353

C5 :Pk,n ≥ 0, ∀k, n, 354

C6 :qk,n ∈ {0, 1}, ∀k, n, (14) 355

where the set Q with elements qk,n and P with elements pk,n 356

are the subcarrier allocation policy and the power allocation 357

strategy, respectively. Constraint C1 guarantees that all users 358

meet their minimum QoS requirements, determined by the rate 359

threshold Rreq
k for each user k. C2 and C3 are constraints 360

for the transmission power of the BS and power budget 361

for each subchannel n, respectively. C4 ensures that one 362

subcarrier can be with at most Kn users. C5 retains the 363
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power allocation variables to non-negative values. C6 is a364

subcarrier allocation variable indicator, which becomes 1 if365

the user k is multiplexed on subcarrier n, and zero otherwise.366

Note that (14) is a non-convex optimization problem due to the367

binary constraint in C5 and the existence of the interference368

term and fractional expression in the objective function, and369

also NP-hard problem [40]. In Appendix A, we will prove370

that the problem is NP-hard. It is thus impossible to find the371

optimal solution within a polynomial time.372

Theorem 1: Problem (14) is an NP-hard problem (i.e., joint373

subcarrier and power allocation problem to maximize the EE is374

NP-hard problem).375

Proof: See the proof in Appendix A376

Once an optimization problem is shown to be NP-hard,377

we no longer insist on having an efficient algorithm that378

can find its global optimum in polynomial time [48].379

Instead, we have to look at high quality approximate solu-380

tions or locally optimal solutions of the problem in polynomial381

time, which is more realistic in practice. Thus, it is useful382

to transform this into a sequence of linear programs (LPs)383

and develop a customized low-complexity algorithm. To make384

the problem tractable, we first relax qk,n from discrete value385

of 0 or 1 to continuous real numbers that range in 0 ≤ qk,n ≤386

1, ∀(k, n) ∈ K × N [43]. This considered as a time sharing387

factor for subchannel n that user k is assigned during one388

block of transmission. Now, the optimization problem in (14)389

can be reformulated as390

max
Q,P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
391

s.t. C1, C2, C3, C4, C5,392

C6 : qk,n ∈ [0, 1], ∀k, n. (15)393

Since problem in (15) is still a fractional non-convex program,394

it is challenging to find an optimal solution. To this end,395

we next propose a two-stage algorithm, according to which396

the subchannel and power allocation processes are sequentially397

performed.398

III. ENERGY-EFFICIENT SUBCARRIER399

ASSIGNMENT SCHEME400

In this section, we propose a low complexity greedy based401

subchannel algorithm by assuming equal power allocation402

across the subchannels and fractional transmitted power allo-403

cation (FTPA) among multiplexed users on each subcarrier.404

We prefer FTPA, due to its ability to dynamically allocate405

power considering different channel gains among users with406

low complexity [19], [31]. In the FTPA scheme, the transmit407

power of UEk on subchannel n is assigned based on the408

channel gains of all the multiplexed users on subchannel n,409

as described in [19], is given by410

Pk,n = Pn
(Hk,n)−σ

Kn∑
i=1

(Hi,n)−σ

, (16)411

where H is the channel gain of user k and i on subchannel n412

and σ (0 ≤ σ ≤ 1) is a decay factor. From (14), it can be413

seen that as σ increases more power is allocated to users with414

lower channel gain. The procedure of our proposed suboptimal 415

subcarrier allocation scheme for downlink MC-NOMA system 416

is listed in Algorithm 1. The subcarrier allocation scheme aims 417

at assigning the subcarriers to the k-th user, so that mink ∈ 418

K, n ∈ N{Hk,n} is maximized. For example, we consider a 419

general channel quality matrix to demonstrate the operation 420

of each algorithm when assigning users on each subcarrier. 421

To this end, we consider a NOMA system which employs 422

N = 4 subcarriers to support K = 8 users in order to allocate 423

two users on the same subcarrier. Moreover, an OFDMA 424

system which employs N = 4 subcarriers to support K = 4 425

users is considered since only one user is assigned for 426

each subcarrier in OFDMA system. We initially consider an 427

OFDMA system. The channel qualities of the 4 users with 428

respect to 4 subcarriers are given in (M1). 429⎡
⎢⎢⎢⎢⎣

users U1 U2 U3 U4

Sc1 2.37 3.59 4.61 1.93
Sc2 1.09 1.90 0.46 0.05
Sc3 0.84 1.39 3.82 1.96
Sc4 1.31 6.60 5.22 1.65

⎤
⎥⎥⎥⎥⎦ (M1) 430

where the boldface shows the worst channel quality correspond 431

to each user and the underlined numbers are channel qualities 432

of the subcarrier assigned to users. In the case of the greedy 433

algorithm used in [16], users one by one are allocated to 434

subcarriers with the best channel conditions compared to 435

the available options. As a result, user 1 (U1) chooses best 436

subcarrier from available four options. So, U1 selects the 437

1-st (Sc1) subcarrier. Next, user 2 (U2) selects the best sub- 438

carrier from the remaining three which is subcarrier 4 (Sc4). 439

Furthermore, user 3 (U3) is assigned to subcarrier 3 (Sc3). 440

Under the lack of any other option, the subcarrier with the 441

worst channel quality is assigned to user 4, i.e., subcarrier 2 442

(Sc2). Therefore, the allocated subcarriers to the four users 443

by this algorithm are given by Sc1 = {U1}, Sc2 = {U4}, 444

Sc3 = {U3} and Sc4 = {U2}. Accordingly, according to 445

this algorithm, Sc3 is assigned to U4 which has the poorest 446

channel quality 0.05. Therefore, one of the disadvantages of 447

a greedy-based algorithm used by [16] is that users at the 448

latter stage are left with limited option. Specifically, as it 449

becomes apparent from the example, at the final stage the 450

2-nd subcarrier is selected to be assigned to U4, even though 451

the corresponding channel quality of 0.05 is the worst of all. 452

Consequently, the achievable performance will be governed by 453

this worst subcarrier channel quality. That is mink ∈ K, n ∈ 454

N {hk,n} = 0.05. 455

Another important subcarrier allocation algorithm used 456

by [19] is the suboptimal matching for subchannel assignment 457

(SOMSA) algorithm. The main idea of this algorithm is that 458

each user sends a matching request to its most preferred 459

subchannel. However, this subchannel has the permission to 460

accept the user request if this results to the highest EE, 461

otherwise, the request will be rejected. Thus, the algorithm 462

gives priority to users having the best channel qualities. 463

The operation of this algorithm is demonstrated in detail 464

by using the example in (M2). To begin with, subchannels 465

are ordered in decreasing order of their channel gains as 466

{Sc4, Sc2, Sc1, Sc3} based on their best channel qualities, 467
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forming the matrix shown below:468

⎡
⎢⎢⎢⎢⎣

users U1 U2 U3 U4 U5 U6 U7 U8

Sc4 1.31 6.60 5.22 1.65 2.12 0.59 1.02 0.06
Sc2 1.09 1.90 0.46 0.05 4.72 3.64 4.70 2.37
Sc1 2.37 3.59 4.61 1.93 1.73 4.34 1.09 2.72
Sc3 0.84 1.39 3.82 1.96 1.98 2.47 1.68 1.38

⎤
⎥⎥⎥⎥⎦469

(M2)470

According to (M2), the allocated subcarriers to the eight471

users by SOMSA algorithm are given by Sc1 = {U1, U6},472

Sc2 = {U5, U7}, Sc3 = {U4, U8} and Sc4 = {U2, U3}.473

The worst channel quality of the allocated subcarrier in this474

case become mink ∈ K, n ∈ N{hk,n} = 1.38, which shows475

significant improvement compared to greedy algorithm in [16].476

Even though SOMSA is capable of achieving better allocation477

results compared to [16], at the last stage user 8 (U8) is478

forced to select 1.38 value. In NOMA systems where the479

number of users are more than the number of subcarriers and480

more users are assigned to the same subcarrier, to achieve481

a better performance, subcarrier allocation in user oriented482

approach is more preferable, since it helps to avoid the assign-483

ment of subcarriers with poor channel quality [8]. Inspired484

by this observation, in this paper, we introduce the worst-485

case user first subcarrier allocation (WCUFSA) algorithm.486

The WCUFSA algorithm is a greedy based algorithm that487

allows the users with the worst channel quality to select their488

desired subcarrier first. To this end, users are arranged in489

ascending order with respect to the worst channel qualities490

of all users, as given in (M3). Then, the algorithm first finds491

the worst channel qualities of the unassigned users and then492

assigns the best subcarrier to the user with the poorest channel493

value.494

⎡
⎢⎢⎢⎢⎢⎣

users U4 U8 U3 U6 U1 U7 U2 U5

Sc1 1.93 2.72 4.61 4.34 2.73 1.09 3.59 1.73
Sc2 0.05 2.37 0.46 3.64 1.09 4.70 1.90 4.72
Sc3 1.96 1.38 3.82 2.47 0.84 1.68 1.39 1.98
Sc4 1.65 0.06 5.22 0.59 1.31 1.02 6.60 2.12

⎤
⎥⎥⎥⎥⎥⎦

495

(M3)496

As shown in the considered example in (M3), U4 has the497

worst channel quality at 2-nd subchannel with channel gain498

value of 0.05. As a result, it is the first user to select the499

subcarrier with the best channel quality among the available500

four subcarriers, which corresponds to the value 1.96. Thus,501

in the first column, which corresponds to the 4-th user,502

Sc3 has the best channel quality. Likewise, other assignments503

are treated in similar manner using the algorithm iteratively504

till all subcarriers are assigned to all users (i.e., two users505

per subcarrier bases). Finally, the set of allocated subcarriers506

becomes Sc1 = {U6, U8}, Sc2 = {U2, U7}, Sc3 =507

{U4, U5}, and Sc4 = {U1, U3}. The gain of the weakest508

channel utilized for transmission when WCUFSA is used509

becomes mink ∈ K, n ∈ N {hk,n} = 1.98. It is clear510

that WCUFSA is capable of yielding the highest achievable511

performance in assigning better channel quality to assign a512

subcarrier to users, compared to the greedy algorithm and513

Algorithm 1 Subcarrier Allocation Algorithm

1: Initialize Uu = K, A = N, Rk,n = 0, qk,n = 0, Si = ∅,
Pn = Pt

N
2: Construct channel gain H ≡ ∣∣hk,n

∣∣
N×K

3: Obtain the minimum channel gain of each user: Hmin
k =

mink ∈ K{Hk,n}, i ∈ A, k ∈ U . Then the number of
worst channel quality arranged in ascending order (i.e from
the worst to best) as Hmin

i,0 ≤ Hmin
i,1 ≤ ... ≤ Hi(N−1),

where i0, i1, ..., iN−1 indicates subcarrier index in A.
4: while Uu �= ∅ do
5: for k = 1 to K do

(a) Find the user with the minimum channel quality: k =
argmink∈U{Hmin

k,i }, ∀k ∈ K
(b) Assign user k with the subcarrier with the best channel

quality: n = arg maxn∈A{Hk,n}
(c) Update Sk = Sk ∪ {k} and remove k from Uu = Uu −

{k}
6: if (|Sk|) = 2 then, A = A − {n}
7: A set of two users Sk are assigned on every subcarrier n

satisfying the maximum EE
8: end if
9: Obtain power allocation for every two users based on their

channel gain using FTPA in (16) or Algorithm 4:Pk,n =
|Sk|Pn

10: Update user data rate Rk,n based on the current subcarrier
allocation:

11: Rk,n = log2(1 + Pk,nΥk,n

1+
�n−1

i=1,i�=k pi,nΥk,n
)

12: set EEk,n = Rk,n

ζPk,n+P C
k,n

13: end for
14: Until Uu = ∅
15: end while

SOMSA algorithm, demonstrated in (M1) and (M2), respec- 514

tively. Therefore, WCUFSA algorithm successfully avoids the 515

assignment of channel with low channel quality even in the 516

last stage. As a summary, the WCUFSA subcarrier allocation 517

scheme is presented in Algorithm 1. 518

IV. ENERGY-EFFICIENT POWER ALLOCATION 519

FOR NOMA SYSTEM 520

In this section, we focus on power allocation optimization 521

with the aim to further improve the EE of the NOMA network 522

and guarantee the maximum fairness for NOMA users. The 523

performance of NOMA depends on the selection of the user 524

set over a particular subchannel and allocation of power to 525

the multiplexed users on the subchannel [3], [30]. We assume 526

that the users are assigned to different subchannels by using 527

the subcarrier assignment algorithm, proposed in the previous 528

section. The resulting optimization problem can be expressed 529

as 530

max
P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
531

s.t. C1 :
∑
n∈N

Rk,n ≥ Rreq
k , ∀k ∈ K, 532
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C2 :
N∑

n=1

Pn ≤ Pt,533

C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K,534

C5 :Pk,n ≥ 0, ∀k, n, (17)535

The optimization problem in (17) is still non-convex due to536

the fact that the objective function is the ratio of two real-value537

functions [16], [32], [33]. Thus, in order to obtain an optimal538

solution, an exhaustive search is required which is generally539

computationally infeasible. In order to efficiently solve (17),540

we transform this into the substractive form, which is more541

tractable. Thus, we need to introduce the following problem542

transformation.543

A. Problem Transformation and Iterative Algorithm Design544

Since the objective function in (17) is not concave, the frac-545

tional programming tool fails to maximize the EE glob-546

ally [36]. Thus, the standard convex optimization algorithm547

is not guaranteed to solve (17), and specific algorithms are548

required. As a result, we first transform (15) into its equivalent549

more tractable subtractive form. Without loss of generality,550

we assume that Rk,n(Q, P ) > 0 and PT
k,n(Q, P ) > 0. For the551

sake of simplicity, we define D as a set of feasible solutions552

of the optimization in (14) and {P, Q} ∈ D. Let η∗ and553

P ∗ denote the maximum EE and optimal solution of power554

allocation, respectively. Thus, we define the maximum EE η∗
555

of (17) as556

η∗ = max
P

min
k=1...,K

Rk,n(Q, P )
PT

k,n(Q, P )
557

= min
k

Rk,n(Q∗, P ∗)
PT

k,n(Q∗, P ∗)
(18)558

where (·)∗ denotes optimality. Based on (18), we present the559

following essential theorem.560

Theorem 2: A vector P ∗ ∈ D solves (17) if and only561

if [36], [37]562

563

max
P∈D

min
k=1...K

{Rk,n(Q, P ) − η∗PT
k,n(Q, P )}564

= min
k=1...K

{Rk,n(Q, P ∗) − η∗PT
k,n(Q, P ∗)} = 0. (19)565

Proof: See in appendix B566

Theorem 2 reveals for an optimization problem whose567

objective function in fractional form can be solved by its568

equivalent subtractive form, i.e., we can solve (17) via (19)569

equivalently. Thus, the optimal solution of the auxiliary prob-570

lem (19) is also the optimal solution of (17) [36], [37].571

To explain in another way, solving (17) is equivalent to572

finding η∗. Let F (η) is the optimum objective value of (17).573

Thus, solving (17) is essentially equivalent to finding η = η∗
574

with F (η) = 0. Moreover, the function F (η) is strictly575

decreasing in η [36], [37]. Thus, with a given reasonable range,576

there is an optimal minimum EE η∗, satisfying F (η∗) = 0.577

In addition, F (η) is negative for η → +∞ and positive for578

η → −∞. Thus, the bisection iterative algorithm can be579

employed to determine η since the monotonicity of F (η) and 580

the opposite signs at the two sides of η∗. To this end, the η will 581

reach its optimal solution when F (η∗) = 0 and the solution 582

for P ∗ is achieved by addressing the auxiliary problem of (19) 583

at the given minimum EE. The iterative algorithm based on 584

the bisection method is summarized as Algorithm 2. Given a 585

tolerance, Algorithm 2 can be used for solving the optimiza- 586

tion problem (17) through the auxiliary problem of (19). The 587

fundamental mathematical principle underlying the bisection 588

method is the intermediate value theorem. 589

Theorem 3: Let F be a continuous function on the interval 590

[ηmin, ηmax] and F (ηmin) · F (ηmax) are nonzero of opposite 591

sign. Then, the optimal solution η∗ for F is found in the 592

interval [ηmin, ηmax], which shows convergence to its solution. 593

Proof: Refer to Appendix C for the proof of 594

convergence. 595

Algorithm 2 Main Procedure for η∗

1: Initialize
2: set iteration index j = 0, the maximum iteration Imax and

termination precision ε > 0
3: set ηmin and ηmax, such that ηmin ≤ η∗ ≤ ηmax

4: repeat
5: ηj = (ηmin + ηmax)/2
6: solve (20) for a given ηj and obtain power allocation P j

7: if |F (ηj)| = |min[Rk,n(P ) − ηjPT
k,n(P )]| ≤ ε then

8: P ∗ = P j and η∗ = mink[Rk,n(P j)

P T
k,n(P j)

]
9: break

10: else
11: if |F (ηj) < 0 then
12: ηmax = ηj

13: else
14: ηmin = ηj

15: end if
16: end if
17: set j = j + 1
18: until j > Imax

Therefore, the solution for the transmit power P ∗ can be 596

achieved by addressing the optimization problem of (20), 597

which need to be solved at line 6 of Algorithm 2 for a given ηj . 598

Thus, hereinafter, we focus on the following objective 599

function: 600

max
P

min
k=1,··· ,K

{Rk,n(Q, P ) − ηPT
k,n(Q, P )} 601

s.t. C1, C2, C3.,C5. (20) 602

The power optimization problem in (20) involves a two- 603

level of power allocation. The power allocation among dif- 604

ferent subchannels and the power allocation to the grouped 605

users at the same subchannel n. Thus, we introduce a two- 606

level inter/intra-subchannel power allocation algorithm that 607

allocates the available power among subchannels, as well as 608

between users on the same subchannel. To provide an efficient 609

solution to the problem, we first optimize the power allocation 610

between subchannels. Therefore, objective function of (20) can 611
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be reformulated as612

max
Pn

min
k=1,··· ,K

{Rk,n(Q, P ) − ηPT
k,n(Q, P )}613

s.t. C1 :
∑
n∈N

Rk,n >= Rreq
k , ∀k ∈ K,614

C2 :
N∑

n=1

Pn ≤ Pt,615

C7 :Pn ≥ 0, ∀n ∈ N. (21)616

Then, given the power allocation among different subchan-617

nels, we further optimize the power allocation for the two618

users grouped at subchannel n. This leads to the following619

optimization problem:620

max
Pk,n

min
k=1,··· ,K

{Rk,n(Q, P ) − ηPT
kn,(Q, P )}621

s.t. C1 :
∑
n∈N

Rk,n >= Rreq
k , ∀k ∈ K,622

C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K,623

C5 :Pk,n ≥ 0, ∀k ∈ K. (22)624

Considering the fractional nature of the EE, the main625

mathematical tool for solving (21) is fractional program-626

ming [28], [36]. This principle holds when the numerator and627

denominator of the EE optimization problem are concave and628

convex respectively over convex constraint sets [36]. However,629

the optimization problem that needs to be solved in (21) is non-630

convex with respect to the transmit power Pn due to the terms631

of multiuser interference. Hence, we invoke the framework632

of sequential successive convex approximation (SCA) [34] to633

iteratively update the power allocation vector by solving the634

approximate convex problem.635

B. Sequential Convex Programming (SCP) for P ∗
636

In this subsection, we propose an SCP optimal approach637

to obtain an energy-efficient power allocation scheme by638

iteratively solving the given problem. The proposed iterative639

power allocation scheme for this paper is named as non-640

orthogonal multiple access-sequential convex programming641

(NOMA-SCP). The basic idea of SCP is to approximate642

a non-convex problem by a sequence of convex problems643

iteratively [34]. In each iteration, all non-convex constraints644

are replaced by their inner convex approximations [36]. Due to645

the non-convexity of problem (20), it is hard to solve it directly646

with polynomial time complexity. To this end, the objective647

function in (21) can be rearranged into a difference of two648

concave function with respect to P as649

Rk,n(P ) − ηPT
k,n(P ) = fk(P ) − gk(P ) (23)650

where,651

fk(P ) = log2

N∑
i=1

W (1 + Pk,nΥk,n) − ηkPk(P ) (24)652

gk(P ) = log2

N∑
i=1,i�=k

(Pi,nΥk,n + α2
k,n) (25)653

Now, we can equivalently rewrite (21) as 654

max
P

min
k

{fk(P ) − gk(P )} 655

s.t. C1, C2, C4. (26) 656

It is noted that the objective function in (26) is not smooth 657

at each iteration of different minimum of fk(P ) − gk(P ). 658

Thus, we introduce a new variable R to the optimization 659

problem (26) to transform into a smooth optimization problem. 660

Thus, (26) can be equivalently formulated as 661

max
Pn,R

R 662

s.t. C1, C2, C4 663

C8 :{fk(P ) − gk(P )} ≥ R, ∀k. (27) 664

It is noted that constraint C8 in (27) is the difference of 665

two concave functions which can be effectively solved by 666

SCP [35]. At step t we can get an iterative power allocation pt. 667

Thus, we approximate gk(P ) by first-order Taylor expansion 668

at pt, i.e., 669

gk(P t) + ∇gT
k (P t)(P − P t), (28) 670

where ∇gk(P ) is the gradient of gk(P ) at P and is given by 671

∇gk(P ) =
mk∑

i=1,i�=k

Pi,kΥk,n + α2
k,n

. (29) 672

In (29) mk is a K dimensional column vector with mk(k) = 0 673

and mk(i) = gk,i

ln2 , k �= i. Moreover, the minimum data rate 674

constraint C1 can be equivalently written as 675

C′
1 : Pk,nΥk,n + (1 − 2Rreq

k /W ) 676

(
n−1∑

i=1,i�=k

Pi,nΥk,n + α2
k,n) ≥ 0. (30) 677

Combining (28) and (27), we can rewrite (27) as 678

max
Pn,R

R 679

s.t. C′
1, C2, C4 680

C8 :fk(P ) − [gk(P t) + ∇gT
k (P t)(P − P t)] ≥ R. 681

(31) 682

After this transformation, (31) is a smooth and standard convex 683

approximation of (21). The local optimal transmit power 684

can be efficiently calculated by solving (31). The algorithm 685

iteratively solves the convex optimization problem in (31). 686

We show the detailed power control algorithm in Algorithm 3. 687

Theorem 4: (a) The efficient iterative algorithm always 688

converges, and (b) with any feasible initial values, the opti- 689

mal transmit power converges to a stationary point of (31), 690

i.e., (21). 691

Proof: See Appendix D. 692

Once the power, Pn, for each subchannel n is determined, 693

the next step is to allocate power between multiplexed users 694

on the same subchannel based on users’ channel gain. Accord- 695

ing to the optimization in (22), both the strong and weak 696

users have the same minimum data rate requirement. Users 697

signals will be multiplexed together using assigned powers 698
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Algorithm 3 Iterative Algorithm Procedure for Pn∗
1: Initialize t = 0 and maximum tolerance ε > 0
2: Set P (0) calculate E0 = mink[fk(P 0) − gk(P 0)]
3: while ‖E(t+1) − E(t)‖ > ε do
4: Solve (29) to obtain the solution P ∗.
5: Set t = t + 1, P t = P ∗

6: E(t) = min(fk(P t) − gk(P t))
7: end while

and transmitted to users so that the total transmitted power per699

subchannel not to exceed from the allocated power budget, Pn.700

Furthermore, the transmit power of the weaker channel gain701

user must be higher than that of the strong channel gain702

user [2]. Consequently, an important conclusion about the703

transmission of power for the strong channel gain user in704

a NOMA can be drawn from [39]. In [39], the maximum705

power allocation to the strong channel gain user in downlink706

NOMA must be smaller than Pn

2m−1 , where m is the number707

of users grouped at the same subchannel and Pn is the power708

budget for each subchannel n [39]. Furthermore, according to709

constraint C5 in (22), we have Pk,n ≥ 0, k ∈ {1, 2}, ∀n ∈ N.710

Thus, the power allocated to the strong channel gain user711

can efficiently exploit in between 0 and Pn

2m−1 . Based on our712

analysis, we can apply an efficient bisection search method to713

realize the suboptimal solution of power allocation for users714

grouped at the same subcarrier, as given in Algorithm 4.715

Algorithm 4 Energy-Efficient Power Allocation Between Mul-
tiplexed Users

1: Initialize Pmin
1,n = 0, Pmax

1,n = Pn

2m−1 and termination
precision ε > 0

2: repeat
3: set P1,n = (Pmin

1,n + Pmax
1,n )/2

4: set P2,n = Pn − P1,n; solve Eq. (5) to obtain Rk,n

5: if
∑
n∈N

Rk,n ≤ Rreq
k then

6: Pmax
1,n = P1,n

7: else
8: Pmin

1,n = P1,n

9: end if
10: until (Pmax

1,n − Pmin
1,n ≤ ε)

11: output P ∗
1,n = P1,n, P ∗

2,n = Pn − P ∗
1,n

C. Computational Complexity Analysis716

In order to get some insights for the computational com-717

plexity of the proposed algorithm, we first recall the optimal718

subcarrier assignment scheme which can be achieved through719

exhaustive search. Let us recall the K users and N sub-720

carriers (i.e., K = 2N) scenario, we need to search (2N)!
2N721

combinations. Thus, the complexity of the exhaustive search722

becomes O( (2N)!
2N ) [19]. In the proposed greedy algorithm,723

the complexity comes from the sorting and assignment phases.724

In the sorting phase, the algorithm finds the minimum channel725

quality of K users and sorts them from the lower to higher726

value, which requires (K(K −1)/2) operations. Furthermore, 727

the algorithm starts from users with the worst channel quality 728

and assigns the subcarrier with the highest channel gain, 729

which requires (2KlnK) operations. Therefore, the proposed 730

subcarrier assignment algorithm requires (K(K − 1)/2 + 731

2KlnK) operations, yielding the complexity of O(K2). Let 732

L1 iterations are required to guarantee the error tolerance, ε, 733

for the bisection method. Also, let L2 denotes the number 734

of iterations required for the power allocation algorithms to 735

converge. Thus, the total complexity of the propose schemes 736

is therefore O(K2+L1L2KN), which shows lower computa- 737

tional complexity compared even with the optimal subcarrier 738

assignment algorithm alone. Thus, the proposed scheme can 739

be implemented in polynomial time. 740

V. SIMULATION RESULTS 741

In this part, we present simulation results to evaluate the 742

performance of the proposed schemes, especially in compari- 743

son with the baseline schemes in [19] and [16]. We consider 744

a single BS located in the cell center and users are uniformly 745

distributed inside a circular ring with a radius of 300 m. 746

We set the value of path loss exponent γ as 2 [25]. The 747

minimum distance from users to BS is limited 50 m. The 748

bandwidth of the system is set as 5 MHz. As it has already 749

been mentioned, the considered NOMA network system, two 750

users are assigned per subcarrier to reduce the complexity 751

of SIC. In the simulation, we set BS peak power P = 12 W , 752

and circuit power consumption Pc=1 W [19], and α2
n = B∗N0

N , 753

where N0 = −174 dBm/Hz is the AWGN power spectral 754

density. For simplicity, we consider each user has the same 755

weighted bandwidth B
N . The performance of the proposed 756

subcarrier assignment (WCUFSA) is compared to suboptimal 757

matching for subchannel assignment algorithm in NOMA 758

(SOMSA) [19] and OFDMA [16]. Regarding the power 759

allocation, the performance of the proposed NOMA-SCP 760

scheme is compared with differential convex programming 761

(NOMA-DC) [19] and OFDMA system as well as NOMA 762

with equal power allocation (NOMA-EQ) used in our proposed 763

subcarrier assignment scheme. Moreover, the proposed user 764

power allocation algorithm (UPA) for users grouped at the 765

same subcarrier is also compared with NOMA-DC-DC [19] 766

and FTPA (fractional transmitted power allocation), which is 767

widely used in NOMA and OFDMA [31]. 768

We first evaluate the feasibility and effectiveness of the 769

proposed algorithms. Fig. 2 and Fig. 3 show the conver- 770

gence behavior of the efficient iterative power allocation 771

Algorithm and the bisection method for EE (i.e., η∗), respec- 772

tively. It is noted that both Algorithms converge fast to reach 773

their solution set with different initial transmit power values 774

(i.e. P 0). Moreover, the Algorithms reach the solution point 775

within a few iterations. Thus, it is proved that the proposed 776

algorithms can reach to the solution set without being affected 777

by the initial guess power setting. Hence, we can conclude that 778

the proposed algorithms are of high practical value. 779

In Fig. 4, we compare the proposed subcarrier assignment 780

algorithm (WCUFSA) with SOMSA and OFDMA schemes 781

to evaluate the EE performance for n-th subcarrier as well 782
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Fig. 2. The convergence of the iterative power allocation algorithm with
ηj = 5 Mbits/joule.

Fig. 3. The convergence of the proposed algorithm 3, the bisection method
for maximizing the minimum user’s EE (Max-Min EE).

as the overall EE performance of the whole network. N in783

the figure denotes the n-th subcarrier. As can be seen in784

all schemes, they improve the network’s EE at the cost of785

individual EE for the user with the worst channel conditions.786

However, the proposed algorithm outperforms both SOMSA787

and OFDMA in terms of EE as well as fairness among users.788

In Fig. 5, we further compare the EE performance to evaluate789

the worst link, the best link, as well as the performance of the790

network’s EE among the comparable benchmark schemes in791

terms of EE. It is observed that there is a remarkable difference792

in the EE among the best link and the worst link in all793

considered scenarios. However, the EE of NOMA-SCP is well794

balanced with slightly reduced from network EE as compared795

to NOMA-DC and NOMA-EQ schemes in a system with796

8 subchannels. Fig. 6 shows the achieved data rate of the four797

schemes against number of users. As it can be seen in Fig. 6,798

all NOMA schemes are superior to OFDMA schemes in terms799

Fig. 4. The EE performance of the network and each subcarrier of three
schemes.

Fig. 5. Comparisons of the EE of the network, the best link, and the worst
link among the proposed NOMA-SCP, NOMA-DC,and NOMA-EQ schemes.

of data rate due to the multiplexing gains in NOMA system. 800

Moreover, it also noted that the performance of NOMA-SCP 801

outperforms that of NOMA-DC and NOMA-EQ. As it can 802

be observed from Fig. 6, the data rate of the proposed 803

NOMA-SCP scheme is 6.30% more than that of NOMA-DC 804

in a system with 8 users and followed by 28.01% and 805

35.12% more than that of NOMA-EQ and OFDMA scheme, 806

respectively. Therefore, NOMA-SCP can achieve a better 807

data rate transmission performance than that of all compa- 808

rable schemes. Fig. 7 presents the simulation results for the 809

data transmission performance of different power allocation 810

schemes against transmitted power with the same constraints 811

of Fig. 6. Thus, our proposed power allocation scheme through 812

SCP achieves better performance than the benchmark power 813

allocation scheme. 814

Fig. 8 presents the simulation results of the EE against the 815

number of K users for different power allocation schemes. 816

We set the precision accuracy as ε = 0.001. In the proposed 817

scheme, the achievable EE initially increases fast as the num- 818

ber of users increases and with slow growth rate afterwards. 819

This is due to the multiuser diversity gain by the NOMA 820

system. From Fig. 8, it is shown that the performance of all 821
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Fig. 6. Data transmission versus number of users.

Fig. 7. Data transmission versus transmitted power.

Fig. 8. Energy efficiency versus number of users.

NOMA schemes are much better than the OFDMA due to the822

multiplexing gains when NOMA is used. Moreover, it also823

noted that NOMA-SCP outperforms both NOMA-DC and824

NOMA-EQ in terms of EE. For example, when the number of825

user is 8, the EE of NOMA-SCP is 59.21 % more than that of826

Fig. 9. Energy efficiency versus transmitted power.

Fig. 10. Edge users EE versus transmitted power.

OFDMA scheme. The main reason is that NOMA can support 827

more users in a single subchannel while OFDMA can only 828

support a single user per sub channel. As a result, the BS can 829

not fully utilize spectrum resources as the case of OFDMA 830

system. We also notice that NOMA-SCP improves the EE 831

about 10.38% compared to NOMA-DC. Fig. 9 demonstrates 832

the EE (i.e., η∗) performance versus BS power when fixed 833

circuit power Pc = 1 W and the BS power ranges from 1 W 834

to 12 W . It can be seen that the EE initially increases fast 835

with respect to BS transmitted power and converges with slow 836

growth, due to the total power constraints. This is because 837

when BS power is relatively low, the optimal transmit power 838

selection strategy uses all the available power at the BS. 839

However, when total BS power is large enough, the transmit 840

power selection strategy is limited to P∗ regardless of total 841

BS power. From Fig. 9, it is clearly shown that NOMA-SCP 842

can achieve higher EE than NOMA-DC, NOMA-EQ and 843

OFDMA schemes. 844

In Fig. 10, the effectiveness of different power allocation 845

schemes for multiplexed users is evaluated. Thus, we compare 846
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Fig. 11. Energy efficiency versus transmitted power.

the proposed NOMA-SCP-UPA1 scheme with NOMA-DC-DC847

and NOMA-EQ-FTPA, which is widely adopted in NOMA848

system for power allocation to users in the same subchan-849

nel [31], [19]. From Fig. 10, we can clearly see that by using850

NOMA-SCP-UPA scheme higher EE is achieved. Therefore,851

the proposed NOMA-SCP-UPA scheme outperforms both852

NOMA-DC-DC2 and NOMA-EQ-FTPA3 for edge users in853

terms of EE. This clearly indicates the effectiveness of the854

proposed algorithm.855

In order to get further insight on the performance of the856

proposed scheme, in Fig. 11, we compare the proposed scheme857

with the optimal solution through exhaustive search (i.e., ES)858

in terms of EE. It can be observed that the EE increases859

with the transmit power. It is also noticed that the proposed860

algorithm is capable of approaching the results of the exhaus-861

tive search. Recalling that the complexity of the proposed862

algorithm is much lower than the one of the exhaustive search,863

it is concluded that the proposed scheme achieves a good864

balance between complexity and performance.865

VI. CONCLUSION866

In this paper, we have investigated the downlink of867

MC-NOMA system where a single base station transmits a868

block of messages to multiple users. The focus has been on869

the maximization of the user with the lowest performance in870

terms of individual EE by optimizing subcarrier and power871

allocation. Since the optimization problem was non-convex,872

we formulated the subcarrier assignment and power allocation873

as a two stage-problem to reduce computational complex-874

ity. Then, a greedy subcarrier assignment scheme to assign875

1NOMA-SCP-UPA uses SCP approach to allocate power among different
subchannels and the bisection search method to assign power between users
grouped at the same subchannel.

2NOMA-DC-DC uses DC programming techniques to allocate power across
subchannels as well as to determine the power allocation factor to allocate
power between users grouped at the same subchannel.

3NOMA-EQ-FTPA uses equal power allocation across subchannels and
FTPA to determine the power allocation factor between users on the same
subchannel.

two users on each subcarrier was proposed. Furthermore, for 876

the power allocation, we transformed the non-convex problem 877

into a simpler subtractive form using a fractional programming 878

property. Thus, a suboptimal power allocation through the 879

subchannels was obtained by iteratively solving the convex 880

sub-problem using sequential convex programming. The pro- 881

vided simulation results have shown that the proposed resource 882

optimization method achieves fast convergence and guaran- 883

tees fairness. Consequently, the proposed resource allocation 884

method is particularly promising, since remarkable gains are 885

achieved compared to existing techniques, while it remains 886

appropriate for the practical case. 887

APPENDIX A 888

PROOF OF THEOREM 1 889

In complexity theory, to show a decision problem is 890

NP-hard, we usually follow three steps [48] 1) choose a 891

suitable known NP-complete decision problem A; 2) construct 892

a polynomial time transformation from any instance of A to an 893

instance of the required problem; 3) prove the two instances 894

have the same objective value under the transformation. In the 895

following section, we show that problems (14) is NP-hard. 896

Proof: The proof can be done into two cases for which 897

qk,n = 1 and qk,n > 1. 898

1) When qk,n = 1, (14) corresponds to an EE maximization 899

problem with respect to joint subcarrier and power allo- 900

cation for the conventional OFDMA system, which has 901

been proved to be NP-hard in [47]. 902

2) When qk,n > 1, we prove that the problem is NP-hard 903

even with known power allocation coefficients. In the 904

following, we construct an instance of problem (14) 905

with known power allocation coefficients. First, we will 906

associate an instance of problem (14) as an equivalent to 907

the Multiple Choice Knapsack problem (MCKP) prob- 908

lem, which is a well known NP-hard problem. We then 909

consider an instance with qk,n = 2. Thus, we prove 910

a simplified version of the joint subcarrier and power 911

allocation problem is reducible to the knapsack problem 912

which is a well-known NP-hard problem. 913

Definition 1: Multiple Choice Knapsack problem 914

(MCKP) [48] 915

Let’s assume that there are N1, N2, · · · , NS classes with 916

each class i containing ni items to be packed in a 917

knapsack with capacity, P. Each item j ∈ Ni has a 918

profit Ui,j and a weight Pi,j and the problem is to assign 919

some items to each class such that the profit is maximized 920

without having the total weight exceeds P. It is generally 921

considered that the profits, weights and the knapsack 922

capacities take non-negative values. 923

Thus, we next show that problem in (14) is reduced to 924

MCKP problem. Without loss of generality, we assume 925

that each subcarrier is a knapsack and each item in the 926

knapsack resembles a user to be packed in a knapsack of 927

capacity, Kn. The profit of each item in the knapsack is 928

the corresponding utility-function is Ui,j and the required 929

resource (weight) is pi,j , while the Problem in (14) aims 930

at choosing exactly Kn users (i.e., items) for each sub- 931

carrier (i.e., class) to maximize the EE, subject to the 932



IEE
E P

ro
of

MUHAMMED et al.: ENERGY-EFFICIENT RESOURCE ALLOCATION IN MC NOMA SYSTEMS WITH FAIRNESS 13

transmit power constraint, Pn. The EE maximization933

problem in (14) can be written in the following form:934

max
Q,P

min
k=1,··· ,K

Eη(Q, P ) =
Rk,n(Q, P )
PT

k,n(Q, P )
935

s.t. C3 :
Kn∑
k=1

qk,nPk,n ≤ Pn, ∀k ∈ K,936

C4 :
K∑

k=1

qk,n ≤ Kn, ∀n ∈ N,937

C6 :qk,n ∈ {0, 1}, ∀k, n, (32)938

Thus, (32) is NP-hard because it is categorized as a939

MCKP which is a generalization of the ordinary knapsack940

problem. Thus, as (32) is a special case of problem (14),941

the general optimization problem (14) is an NP-hard942

problem. �943

APPENDIX B944

PROOF OF THEOREM 2945

Proof: Without loss of generality, we assume that946

Rk(P ) ≥ 0 and Pk(P ) ≥ 0, where P and P ∗ denote any947

feasible power allocation and optimal power allocation policy,948

respectively, in (14). We also define e∗k as the optimal EE for949

the original objective function in (14). Then, the EE is given950

by951

max
P∈D

min
K

η = Rk(P )
Pk(P ) , (33)952

The equivalent parametric problem related to (33) is953

max
P

min
K

{Rk(P ) − ηPk(P )}, ∀P ∈ D. (34)954

The following Lemma 1 is introduced to shows the relation955

between (33) and (34).956

Lemma 1: if P ∗ is the optimal solution of (33) with957

corresponding parameter introduced by η∗ = Rk(P∗)
Pk(P∗) , then958

P ∗ is also the optimal solution of (33).959

Since P ∗ maximizes {Rk(P ) − e∗kPk(P )}, ∀P ∈ D, we960

have961

Rk(P ) − e∗kPk(P ∗) ≤ Rk(P ∗) − η∗
kPk(P ∗), ∀P ∈ D. (35)962

From the definition of η∗, we have963

{Rk(P ∗) − η∗Pk(P ∗)}, ∀P ∈ D. (36)964

Combining (36) and (35), we obtain965

{Rk(P ) − ηP ∗
k (P )} ≤ {Rk(P ∗) − ηP ∗

k (P ∗)} = 0. (37)966

From this967

Rk(P ) − ηPk(P ∗) ≤ 0 or η∗ ≥ Rk(P )
Pk(P )

. (38)968

This indicates that969

η∗ =
Rk(P )
Pk(P )

, is the maximum of
Rk(P )
Pk(P )

, ∀P ∈ D. (39)970

In other words P ∗ is the optimal solution of (31). Therefore,971

the optimal resource allocation for the equivalent objective972

function is also the optimal resource allocation for the original973

objective function. This completes the proof.974

APPENDIX C 975

PROOF OF THEOREM 3 976

Proof: Let’s start with an initial interval [ηmin, ηmax], for 977

which 978

η =
(ηmin + ηmax)

2
and d = F (ηmin) · F (ηmax). (40) 979

� If d < 0, let ηmax = η and ηmin = ηmin. 980

981

� If d > 0, let ηmin = η and ηmax = ηmax. 982

983

� If d = 0, then η becomes the solution with the required 984

accuracy, ε. 985

For either of the two cases, the new interval is one half of 986

the width of the original. This new interval is reformed as 987

[ηmin, ηmax] and the procedure is repeated again. Over the 988

j-th iterations, it follows that 989

990

� The first interval is [η0
min, η0

max] and η0 = (η0
min+η0

max)
2 991

992

� The Second interval is [η1
min, η1

max] and η1 = (η1
min+η1

max)
2 993

994

� The j-th interval is [ηj
min, ηj

max] and ηj = (ηj
min+ηj

max)

2 995

where ηj
min = ηj−1 and ηj

max = ηj−1
max or ηj

min = ηj−1
min and 996

ηj
max = ηj−1. From this we can observe that 997

� The sequence {ηj
min}j=∞

j=0 is increasing sequence and 998

bounded above by ηmax. 999

� The sequence {ηj
max}j=∞

j=0 is decreasing sequence and 1000

bounded below by ηmin. 1001

� and the approximated sequence of ηj’s generated by 1002

the bisection is found on ηj
min ≤ ηj ≤ ηj

max, for 1003

all j. Moreover, the function F (η) is strictly decreas- 1004

ing in η [36], [37]. In addition, F (η) is negative for 1005

η → +∞ and positive for η → −∞. This satisfied 1006

F (ηmin
j ) · F (ηmax

j ) < 0. 1007

Furthermore, let us define the approximation at ηj after the 1008

j-th iteration as the midpoint 1009

ηj =
(ηj

min + ηj
max)

2
. (41) 1010

Since the actual solution F (η∗) = 0 satisfies η ∈ ηj
max−ηj

min
2 , 1011

we have 1012

| ηj − η∗ |< 1
2
| ηj

max − ηj
min

2
| . (42) 1013

Since the length of the current search interval gets divided 1014

in half in each iteration, we have 1015

| εj |=| ηj − η∗ |≤
(

1
2

)j

| ηj
max − ηj

min

2
| . (43) 1016

From this, we have lim
j→∞

ej = 0. For lim
j→∞

1
2j = 0, we obtain 1017

ηj = η∗, which proves the global convergence of the bisection 1018

method. We interpret this behavior as linear convergence. 1019

Moreover, let the ε be the relative accuracy of the root, then 1020

to estimate the number of iteration j to achieve the accuracy 1021

is given by 1022

| ηj − η∗ |
| η∗ | ≤ ε. (44) 1023
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Let’s assume that the root lies in [ηmin, ηmax] where ηmax >1024

ηmin > 0. Clearly, | η∗ |≥ ηmin and hence the above relation1025

is true if1026

| ηj − η∗ |
η∗ ≤ ε, (45)1027

which is true if1028

ηmax − ηmin

(2j+1)η∗ ≤ ε. (46)1029

Solving this we can find the minimum number of iterations1030

needed to obtain the desired accuracy. Now, it can be derived1031

that1032

| ej+1 |=| ηj+1 − η∗ |≤ 1
2
(ηj+1

max − ηj+1
min ) =

1
2
(
ηmax − ηmin

2
)1033

(47)1034

and1035

| ej |=| ηj − η∗ |≤ 1
2
(ηj

max − ηj
min). (48)1036

Thus, we find | ej+1 |≈ 1
2 | ej |.1037

Therefore, the proposed bisection method in order to deter-1038

mine η∗ converges linearly. This completes the proof.1039

APPENDIX D1040

PROOF OF THEOREM 41041

As P t is feasible to (31), it follows that1042

Et = min
k

(fk(P t+1) − gk(P t+1) ≥ min
k

(fk(P ) − [gk(P t)1043

+∇gT
k (P t)(P t+1 − P t)] ≥ min

k
(fk(P t) − gk(P t))1044

= Et+1 (49)1045

The next solution P t+1 is always better than the previous1046

solution P t. That is min(fk(P t) − gk(P t)) monotonically1047

decreases when the iteration t increases. With successive1048

iterations of the algorithm, the value of E(t) = min(fk(P t)−1049

gk(P t)) decreases . Moreover, for every E(t) the power vector1050

P that maximize fk(P ) − [gk(P t) + ∇gT
k (P t)(P − P t)] is1051

found. Thus, iteration process terminates after a finite iteration1052

at min(fk(P t)−gk(P t)) ≤ ε (no solution progress) with some1053

threshold ε ≥ 0. Hence, the iterative power control algorithm1054

converges in a finite step. Furthermore, since the constraint set1055

is compact, by Cauchy Theorem the sequence P t of improved1056

solution always converges [42]. From this, we can conclude1057

that Algorithm 3 is guaranteed to converge.1058

b) Proof of optimal transmit power converges to a stationary1059

point Consider Proof of algorithm convergence, we now prove1060

problem (28) in algorithm 3 for optimal transmit power1061

converges to a stationary point under an additional assumption1062

fk(P ) and gk(P ) defined in fk(P ) − gk(P ) are continuous1063

and differentiable over a given constraint sets. Since −gk(P )1064

is approximate by its convex function as1065

gk(P t) + ∇gT
k (P t)(P − P t) (50)1066

The objective function is rewritten as1067

Qk(P ) = fk(P t) − [gk(P t) + ∇gT
k (P t)(P − P t)] (51)1068

In the limit all inequalities in (36) become equality. In other 1069

words, P t and P t+1 are optimal point of the objective function 1070

over the defined constraint sets [35]. Hence, P t =P t+1 and 1071

P t+1 = arg maxP∈{C′1,C2,C4}min
K

Qk(P ) (52) 1072

Furthermore, according to optimality condition [35], 1073

we have 1074

min
K

∇QT
k (P t)(P−P t)= min

K
{∇Qk(P t+1)(P−P t+1)} ≤ 0 1075

(53) 1076

which can be equivalent to [40] 1077

min
K

{∇fk(P t) + ∇gT
k (P t)(P − P t)} ≤ 0. (54) 1078

Thus, P t is the stationary point to (31) i.e. (21). This 1079

completes the proof. 1080
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