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Abstract
Crowd flow prediction is a fundamental urban com-
puting problem. Recently, deep learning has been
successfully applied to solve this problem, but it re-
lies on rich historical data. In reality, many cities
may suffer from data scarcity issue when their tar-
geted service or infrastructure is new. To overcome
this issue, this paper proposes a novel deep spatio-
temporal transfer learning framework, called Re-
gionTrans, which can predict future crowd flow in a
data-scarce (target) city by transferring knowledge
from a data-rich (source) city. Leveraging social
network check-ins, RegionTrans first links a region
in the target city to certain regions in the source
city, expecting that these inter-city region pairs will
share similar crowd flow dynamics. Then, we pro-
pose a deep spatio-temporal neural network struc-
ture, in which a hidden layer is dedicated to keep-
ing the region representation. A source city model
is then trained on its rich historical data with this
network structure. Finally, we propose a region-
based cross-city transfer learning algorithm to learn
the target city model from the source city model
by minimizing the hidden representation discrep-
ancy between the inter-city region pairs previously
linked by check-ins. With experiments on real
crowd flow, RegionTrans can outperform state-of-
the-arts by reducing up to 10.7% prediction error.

1 Introduction
Predicting future crowd flow (i.e., the amount of inflow and
outflow of pedestrian, taxi, bus, bike, etc.) is a fundamental
problem in urban computing. For city planners, this prob-
lem is critical to traffic management and public safety issues
[Zhang et al., 2017]. For companies like Uber and DiDi,
accurate crowd flow prediction helps design better business
strategies to balance driver supply and passenger demand.

Recently, researchers begin to apply deep learning to the
crowd flow prediction problem, and verify that deep lean-
ing can outperform traditional machine learning and statis-
tic methods [Zhang et al., 2016; Zhang et al., 2017]. How-
ever, existing deep crowd flow prediction methods need a
long record of past crowd flow data for training, and many

cities may not meet this requirement in reality. For example,
local government may just start urban digitalization process
and do not have many historical data stored, or a company
opens its business in a new city. In such cases, it is hard
to build a robust deep prediction model only with the target
city’s own historical crowd flow data.

In this paper, we propose a deep transfer learning frame-
work, RegionTrans, to predict future crowd flow in a data-
scarce city (target city) by transferring knowledge of crowd
flow dynamic patterns learned from a data-rich city (source
city) at a region level. The principle idea is to find inter-city
region pairs that share similar crowd flow dynamic patterns
and then use such region pairs as proxies to efficiently trans-
fer knowledge from source city to the target. To achieve this
goal, we face two challenges:

(i) As there is few crowd flow data in the target city, we
may not be able to directly compute a reliable crowd flow
similarity between a region in the source city (source region)
and a region in the target city (target region). Then, how can
we find similar inter-city region pairs robustly?

(ii) As existing deep learning approaches are often de-
signed to predict citywide crowd flow as a whole, it is hard
to incorporate region-level knowledge into them. Then, how
can we leverage the inter-city region similarity information
for effective deep transfer learning?

To address the first issue, we turn to the social network
check-in data widely available across the world. Intuitively,
if two regions have similar check-in patterns, their crowd flow
dynamic patterns might also be similar. In other words, there
may be implicit relationship between check-ins and crowd
flows. With this intuition, we can model a check-in feature
representation to measure the similarity between source and
target regions, even though target regions have few crowd
flow data. Then, for each target region, we match it to its
top-k most similar source regions to construct a set of inter-
city similar-region pairs, which will later be used to facilitate
knowledge transfer.

To deal with the second issue, we propose a new deep
spatio-temporal neural network structure and a correspond-
ing region-based cross-city transfer learning algorithm. Com-
pared to existing deep spatio-temporal networks [Zhang et al.,
2017; Zhang et al., 2016], the key novelty of our network
structure is its capability to output region representations in
a hidden layer (i.e., a latent feature for each region). This al-
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lows us to encode inter-city region similarity information into
this layer for knowledge transfer. More specifically, we first
train a deep crowd flow prediction model in the source city
with its rich historical data. Then, with few historical data in
the target city, we optimize this model by minimizing not only
the prediction error, but also the discrepancy of the latent fea-
ture representations between inter-city similar-regions. This
ensures that the latent feature representation of each target re-
gion will be close to that of its corresponding source regions,
so as to boost the knowledge transfer performance.

Briefly, this paper has the following contributions.
(i) To the best of our knowledge, this is the first work to

study how to facilitate crowd flow prediction in a data-scarce
city (target city) by transferring knowledge from a data-rich
city (source city) via deep learning.

(ii) We propose a novel deep transfer learning framework
called RegionTrans. We first learn a check-in feature from
social network data which correlates with the crowd flow dy-
namics of a region. Using this check-in feature, for each tar-
get region, we can find its top-k similar source regions and
form a set of inter-city similar-region pairs. Then, we con-
struct a novel deep spatio-temporal neural network structure
with hidden region representations. Finally, we propose a
region-based cross-city transfer learning algorithm to learn a
deep crowd flow prediction model for the target city by con-
sidering both the inter-city similar-region pairs and the deep
model of the source city.

(iii) Evaluations on real crowd flow dataset have shown the
effectiveness of RegionTrans. Compared to fine-tuned state-
of-the-art deep spatio-temporal crowd flow prediction meth-
ods, RegionTrans can reduce up to 10.7% prediction error.

2 Problem Formulation
In this section, we first define some key concepts, and then
formulate the problem of predicting the crowd flow of a data-
scarce city by transfer learning from a data-rich city.

Definition 1. Region [Zhang et al., 2016]. A city is parti-
tioned into W ×H equal-size grids (e.g., 1km×1km). Each
grid is called a region, denoted as r. We use r[i,j] to repre-
sent a city region whose coordinate is [i, j]. The whole set of
regions in a city is denoted as C.

Definition 2. Crowd flow [Zhang et al., 2016]. We have
two types of crowd flows: inflow and outflow. Inflow of a
region r at kth time interval, denoted as Ir,k, is the number of
objects (e.g., cars and pedestrians) which are in r at kth time
interval but outside of r at k − 1th time interval. Outflow
of r at kth time interval, denoted as Or,k, is the number of
objects which are outside of r at kth time interval but inside
r at k − 1th time interval.

For brevity, we only consider equal-length time interval
(e.g., one-hour) as in the previous research [Zhang et al.,
2016; Zhang et al., 2017].

Problem. Suppose that the current time interval is t and
there is a source city sc with a long historical record of crowd
flow data lasting for Tsc time intervals:

{(Iscr,k,Oscr,k)|r ∈ Csc, k ∈ [t− Tsc + 1, t]} (1)

Source city Target city
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Figure 1: Overview of RegionTrans.

There is another target city tc with a short historical record of
crowd flow data lasting for Ttc(� Tsc) time intervals:

{(Itcr,k,Otcr,k)|r ∈ Ctc, k ∈ [t− Ttc + 1, t]} (2)

The problem is to predict the crowd flow of tc in the next time
interval t+ 1:

{(Itcr,t+1,Otcr,t+1)|r ∈ Ctc} (3)

3 Methodology
To solve the above problem, we propose a deep transfer learn-
ing framework RegionTrans, which will be elaborated next.

3.1 Framework Overview
Figure 1 gives an overview of the RegionTrans framework. In
brief, RegionTrans consists of three novel components.

(i) Inter-city similar-region matching algorithm from
social check-in data. As the target city only has a short his-
tory of crowd flow, directly calculating the similarity between
a source region and a target region using flow data may not
yield robust results. For example, suppose that the target city
only has one day of crowd flow history and it happened to be
a rainy day, but it rarely rains in the source city. Apparently,
using such crowd flow data of the source and target city to
compute inter-city region similarity is inadequate. To address
this issue, we then rely on the social network check-ins in
both source and target cities to calculate the inter-city region
similarity. Our intuition is that if the check-in patterns of two
regions are similar, their crowd flow dynamic patterns may
be similar. As check-in data are widely and openly available,
we can get a much longer history of data so as to ensure the
check-in similarity measurement is more reliable.

(ii) Deep spatio-temporal neural network with region
representations. Existing literature has proposed a few deep
models for predicting citywide crowd flow [Zhang et al.,
2016; Zhang et al., 2017]. However, these models usually
predict citywide crowd flow as a whole, and thus are hard to
incorporate region similarity information for transfer learn-
ing. Therefore, we propose a new deep spatio-temporal neu-
ral network structure, in which a ‘region-representation’ layer
is dedicatedly designed to preserve region-level features.
Based on this neural network, we then learn a source city
crowd flow prediction model from its long historical record of
crowd flow and corresponding contexts (e.g., weather). This
source city model will be later used in transfer learning for
building the target city model.



C
he

ck
-in

 S
im

ila
rit

y

Crowd Flow Similarity0 1

1

Figure 2: Inter-city region check-in and crowd flow similarities.

(iii) Region-based cross-city transfer learning algo-
rithm. Based on the deep model with region representa-
tions, we propose a transfer learning algorithm to learn the
crowd flow prediction model for the target city, considering
the source city model, the inter-city similar-region pairs, and
the short period of crowd flow data of the target city.

3.2 Inter-city Similar-region Matching
To robustly measure the similarity between inter-city regions,
we turn to the widely accessible social media check-in data.
For a certain region r ∈ C in a city, we model the check-
in representation according to its hourly check-in counts in
workday and weekend/holiday as follows:

chr = 〈ch0, ch1, · · · , ch23, ch′0, ch′1, · · · , ch′23〉, r ∈ C
(4)

where chi is the average check-in counts in r at ith hour in
workday of the whole check-in historical record; ch′i is the
hourly average check-in counts in weekend/holiday.

With this representation, for each region of target city tc,
we then identify the top k regions of source city sc that have
the most similar check-in patterns. More specifically, we
measure the check-in similarity between regions using the
Pearson correlation coefficient. We denote the set of simi-
lar regions of a target city region r asM(r):

M(r) = {r∗1 , · · · , r∗k}, r ∈ Ctc, r∗1 , · · · , r∗k ∈ Csc (5)

ρr,r∗ ≥ ρr,r′ , r∗ ∈M(r), r′ ∈ Csc \M(r) (6)
ρr,r∗ = Pearson(chr, chr∗) (7)

To verify whether the similarity between check-in repre-
sentations can actually reflect the similarity of crowd flow
dynamics, we conduct an analysis with bikesharing data in
Washington D.C. and Chicago (details of the dataset are
shown in the evaluation section). Here, we measure the crowd
flow similarity between two regions by first counting the
hourly inflow/outflow counts and then use the Pearson cor-
relation coefficient. Figure 2 plots both the check-in similar-
ity (y axis) and crowd flow similarity (x axis) of each D.C.
region (blue point) with a selected Chicago region. From
the figure, we can observe that the D.C. regions with higher
check-in similarities tend to hold higher crowd flow similari-
ties, which verifies the effectiveness of our inter-city similar-
region matching method.

3.3 Deep Spatio-temporal Neural Network with
Region Representations

Figure 3 shows our network structure for citywide crowd flow
prediction. We first describe the crowd flow input and output.
Second, we illustrate the structure of our network in detail.

ConvLSTM
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+
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Figure 3: Our network structure.

Finally, we elaborate the most important part of our network
structure, i.e., region representations.

Crowd flow input and output. As pointed by Definition 1,
we convert a city map into W ×H regions. Suppose the his-
torical crowd flow lasts for T cycles, then the input crowd
flow Xflow is a tensor ∈ RT×W×H×2; each 2-length vector
Xflow[t, w, h, :] represents the value of the inflow and out-
flow of the region r[w,h] at the time interval t. The output of
our neural network, denoted as X̃res ∈ RW×H×2, is the pre-
dicted citywide crowd flow in the next time interval. The ob-
jective of our neural network is to minimize the mean squared
error between X̃res and the real crowd flow Xres in the next
time interval:

argmin
θ
||X̃res −Xres||22 (8)

where θ is the set of network parameters.
Network structure. The basic components of our net-

work are convolutional LSTM (ConvLSTM) layers [Shi et
al., 2015]. ConvLSTM is a variant of LSTM by replacing
dense kernels with convolution ones. It is able to capture
both spatial and temporal dependencies within the data. Our
neural network leverages ConvLSTM to construct hidden fea-
ture to catch both spatial and temporal patterns of crowd flow.
Briefly, a ConvLSTM layer can map a time sequence of input
∈ RT×W×H×2 to a time sequence of output ∈ RT×W×H×L,
where L is the number of hidden states. After stacking sev-
eral layers of ConvLSTM, for the last ConvLSTM layer, we
keep the last time interval in the output, leading to an output
∈ RW×H×Lr . With batch normalization, this hidden layer
output, denoted as Xrep, is a key part of our structure, which
actually can keep region representations (i.e., each region
r[w,h] has a Lr-length representation vector Xrep[w, h, :]).
We will discuss it later in more details.

After getting Xrep, we incorporate the external context
factors into the network structure. External context factors
include temperature, weather, wind speed, day type (work-
day/holiday), etc., which will also impact the crowd flow dy-
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namics. Same as [Zhang et al., 2017], we encode the external
factors of the next time interval t+1 into a Le-length feature
vector1, and replicate it for all the regions to get a citywide ex-
ternal representation Xext ∈ RW×H×Le . By concatenating
Xrep and Xext to form a representation ∈ RW×H×(Lr+Le),
we finally employ several convolution 2D layers with 1 × 1
filters (Conv2D1×1, first introduced in [Lin et al., 2014]) to
predict the next-time-interval crowd flow X̃res ∈ RW×H×2.
In fact, why we use Conv2D1×1 layers here is to make Xrep

be able to reflect region representation, as discussed below.
Region representation. Now we elaborate the key novel

component of our proposed neural network structure, i.e., the
region representation Xrep. First, we explain why Xrep can
be seen as region representation. As we use Conv2D1×1 lay-
ers after we combining Xrep and Xext, the final output pre-
dicted crowd flow in a region will only be affected by the cor-
responding Lr-length vector in Xrep. For example, the pre-
dicted inflow and outflow of region r[1,1], i.e., 2-length vec-
tor X̃res[1, 1, :], will only be affected by the Lr-length vec-
tor Xrep[1, 1, :]. In other words, from the perspective of the
single region r[1,1], we can see Xrep[1, 1, :], after concatenat-
ing the Le-length external feature vector, connects to several
dense layers and then outputs the predicted crowd flow for
region r[1,1]. Therefore, conceptually we can see Xrep[1, 1, :]
as a representation of r[1,1] to reflect its crowd flow dynamics.
Figure 4 visualizes the above explanation.

We note that such a region representation design is differ-
ent from previous work [Zhang et al., 2017; Zhang et al.,
2016] where the citywide crowd flow is seen as a whole. Al-
though previous methods can also be used in cross-city trans-
fer learning with mechanisms such as fine tunning, we high-
light that our neural network structure with region representa-
tions has several distinct advantages for cross-city knowledge
transfer.

(i) Fine-grained region-level transfer. With previous meth-
ods which see citywide crowd flow as a whole, we can only
transfer the knowledge from the whole source city to the tar-
get city. If two cities are not similar, the transfer performance
may be poor. However, with region representation, we can
make fine-grained knowledge transfer based on region simi-
larity. As long as we can find similar region pairs between

1Some external factors, like weekday/holiday of the time interval
t + 1 can be directly obtained. The others, like weather, can be set
to the value of time interval t for approximation as the time interval
length is usually short (e.g., 30 minutes) so that these values will not
change significantly in general [Zhang et al., 2017].

Algorithm 1 Region-based cross-city transfer learning
Input:
θsc: Pre-trained network parameters on source city with a long period of data
TRtc: target city training data (a short time period T∗)
TRsc: source city training data (a short time period T∗)
M: inter-city similar-region matching scheme

Output:
θtc: network parameters for the target city

1: Initialize network parameters: θ ← θsc
2: epoch← 0
3: while epoch≤MAX EPOCH do
4: for each {Xflow,Xext,Xres} ∈ TRtc do
5: Get corresponding {X′flow,X

′
ext,X

′
res} ∈ TRsc (same time span)

6: X′rep ← region representation of network (θ) with input X′flow,X
′
ext

7: for i ∈ [1, k] do
8: X̂i

rep ← 0W×H×Lr (a tensor with all zeros)
9: for r[w,h] ∈ Ctc do

10: r′
[w′,h′] ←M(r[w,h])[i] (note that r′

[w′,h′] ∈ Csc)

11: X̂i
rep[w, h, :]←X′rep[w

′, h′, :]
12: end for
13: end for
14: θ ← argmin

θ
w(

1

k

∑
1≤i≤k

||ρi ◦ (Xrep − X̂
i
rep)||

2
2)

+ (1− w)||X̃res −Xres||22
15: end for
16: epoch ++
17: end while
18: θtc ← θ
19: return θtc

cities, the effective transfer may be conducted.
(ii) Transfer between cities with different sizes. Since

our neural network structure can actually be seen from re-
gion view (Figure 4), even if two cities have different sizes
(i.e., different W × H in Def. 1), it is possible to train a
model on a source city and then transfer the learned net-
work parameters to the target city at the region level. How-
ever, with previous network structures [Zhang et al., 2017;
Zhang et al., 2016], if we want to transfer a learned model
from the source city to the target one, the two cities have to
be the same size.

3.4 Region-based Cross-City Transfer Learning
With our neural network structure, we can first train a deep
crowd flow prediction model in the source city with its rich
history of crowd flow data (e.g., several months). We denote
θsc as the network parameters learned from the source city.
Then, with θsc as the pre-trained network parameters, we pro-
pose a region-based cross-city transfer learning algorithm to
further optimize the parameters to improve its performance
on the target city, considering a short period T ∗ (e.g., only
a few days) of the crowd flow data in the target city and the
inter-city similar-region matching scheme M. The detailed
algorithm is shown in Algorithm 1.

The principle idea of our transfer learning algorithm is
when optimizing the network parameters θ, we not only make
the predicted crowd flow close to the true crowd flow in the
training data during T ∗ on the target city, but also let the hid-
den representation Xrep of a target region r be close to the
representations of its top-k similar-regions in the source city,
i.e.,M(r). More specifically, if a target region and a source
region have a higher check-in similarity, we put a higher
weight on minimizing the difference between their represen-



tations. Suppose the target city has the map size of W ×H ,
then we can write the optimization objective as follows:

argmin
θ

w(
1

k

∑
1≤i≤k

||ρi ◦ (Xrep − X̂i
rep)||22)

+ (1− w)||X̃res −Xres||22

(9)

where ◦ is element-wise multiplication; X̂i
rep ∈ RW×H×Lr ,

and X̂i
rep[w, h, :] is the hidden representation of the ith

similar-region of the target region r[w,h]; ρi ∈ RW×H is a
matrix where each element stores the check-in Pearson corre-
lation coefficient of a target region and its ith similar-region;
w is the weight to trade off between minimizing the repre-
sentation difference or minimizing the prediction error. The
transfer learning process continues until when the parameters
converge or iterations reach the maximum number.

4 Experiments
4.1 Settings
Datasets. Following previous studies [Hoang et al., 2016;
Zhang et al., 2016; Zhang et al., 2017], we use bike flow as
a case of crowd flow for evaluation. Two bike flow datasets
collected from Washington D.C. and Chicago are used. Each
dataset covers a two-year period (2015-2016). In both cities,
the center area of 20km × 20km are selected as the studied
area. The area is split to 20 × 20 regions (i.e., each region
is 1km × 1km). Social network check-in data come from
Foursquare [Yang et al., 2016]. Weather data are from Open-
WeatherMap. We summarize the dataset statistics in Table 1.

Scenarios. We evaluate two scenarios: using Washington
D.C. as the source city and Chicago as the target, and vice
versa. In each scenario, we assume that the source city has all
its historical crowd flow data, but only a very limited period
of historical crowd flow data exists in the target city (e.g., one
day). The last two month data are chosen for testing. The
evaluation metric is root mean square error (RMSE). Same
as [Zhang et al., 2017], the reported RMSE is the average
RMSE of inflow and outflow.

Network Implementation. Our network structure im-
plemented in the experiment has two layers of ConvLSTM
with 5 × 5 filters and 32 hidden states, to generate Xrep ∈
R20×20×32. With Xrep as the input, there is one layer
of Conv2D1×1 with 32 hidden states, followed by another
layer of Conv2D1×1 linking to the output crowd flow predic-
tion. For the external factors, e.g., temperature, wind speed,
weather, and day type, we use the same feature extraction
method as [Zhang et al., 2017] and obtain an external feature
vector with a length of 28.

Parameters. RegionTrans has two parameters to set. The
first is k in top-k similar-regions detected by the inter-city
similar-region matching algorithm. We set k to 5 as the de-
fault value. The second isw in Eq. 9, which is used to balance
the optimization trade-off between representation difference
and prediction error. We set w to 0.75 as the default value.

Baselines. We compare RegionTrans to two types of base-
lines. The first type only uses the short crowd data history of
target city for training its prediction model:

Washington D.C. Chicago
#Trip records 6,519,741 6,690,351
Time span 2015.1.1 - 2016.12.31
Time interval 30 minutes
Region size 1km× 1km

City map size 20× 20

Table 1: Dataset statistics.

D.C.→Chicago Chicago→D.C.
1-day 3-day 7-day 1-day 3-day 7-day

Target Data Only
ARIMA 0.740 0.694 0.679 0.707 0.661 0.647
DeepST 0.771 0.711 0.636 1.075 0.767 0.691
ST-ResNet 0.914 0.703 1.053 0.869 0.738 1.054
Source & Target Data
DeepST (FT) 0.652 0.611 0.566 0.672 0.619 0.586
ST-ResNet (FT) 0.667 0.615 0.613 0.695 0.623 0.608
RegionTrans 0.587 0.576 0.553 0.600 0.581 0.573

Table 2: Evaluation results.

• ARIMA: Auto-Regressive Integrated Moving Average is
a widely-used time series prediction method.
• DeepST [Zhang et al., 2016]: a deep spatio-temporal

neural network based on convolutional network. The
complete DeepST model has three components: close-
ness, period, and trend. But the period and trend com-
ponents can only be activated if the training data last for
more than one day and seven days, respectively. There-
fore, if the target city does not have enough data, we
have to deactivate the corresponding components.
• ST-ResNet [Zhang et al., 2017]: a deep spatio-temporal

neural network based on residual network [He et al.,
2016]. Same as DeepST, ST-ResNet has three compo-
nents. We then adapt ST-ResNet in the same way as
DeepST in our experiments.

The second type of baselines first trains a deep model on
the source city data, and fine-tune it with the target city data:
• DeepST (FT): fine-tuned DeepST.
• ST-ResNet (FT): fine-tuned ST-ResNet.
As mentioned in Sec. 3.3, DeepST and ST-ResNet predict

the city crowd flow as a whole, and thus we cannot fine tune
their models between two cities of different sizes. Therefore,
to make the comparison possible, our experiment selects the
same area size in the two cities. Note that RegionTrans is able
to transfer knowledge between two cities of different sizes,
and thus is more flexible than DeepST and ST-ResNet.

4.2 Results
Comparison with baselines. Table 2 shows our evaluation
results. In both scenarios, RegionTrans can consistently out-
perform the best baseline by reducing the prediction error
by 2.2%-10.7%. In particular, when the recorded history of
the target city is shorter, the improvement of RegionTrans
is more significant. This indicates that the introduced inter-
city similar-region pairs are valuable for transfer learning es-
pecially when target data are extremely scarce. Among the
baselines, we observe that the deep models, i.e., DeepST and
ST-Resnet with only target data for training, perform rather
poorly and unstably, often worse than ARIMA. Fine-tuned
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Figure 5: Other results of RegionTrans (D.C. → Chicago).

DeepST and ST-Resnet are much better, as the pre-trained
model on the source city gives a good start point for optimiz-
ing network parameters. RegionTrans, by further considering
the inter-city region similarity information in transfer learn-
ing, is able to outperform the two fine-tuned deep models.

Tuning w. Here, we tune w in Eq. 9 to see how it will
affect the performance. The larger w is, the higher weight
is put on minimizing the similar-region representation differ-
ence. Figure 5a shows the results. If we set w = 0, i.e.,
ignoring the inter-city similar-region representation in trans-
fer learning, the performance is significantly worse than when
w > 0, by incurring up to 5% higher error. This highlights the
effectiveness of our proposed inter-city similar-region match-
ing scheme in cross-city knowledge transfer. For other set-
tings of w > 0, the performance difference is minor. A larger
w performs slightly better when we have a very short period
of target city crowd flow data, e.g., one day of record.

Tuning k. In the inter-city similar-region matching step,
for each target region, we link it to the top-k similar source
regions. By tuning k, we consider different numbers of simi-
lar source regions in transfer learning. The prediction error of
RegionTrans of different settings of k is shown in Figure 5b.
Generally, different settings of k perform quite similarly.

Effect of check-in similarity. To verify the effectiveness
of check-ins in matching inter-city similar regions, we change
the matching criteria from check-in similarity to the short pe-
riod crowd flow similarity (i.e., using 1/3/7-day crowd flow
data to calculate inter-city region similarity and select top-k
similar regions). Figure 5c shows results. If we use short
crowd flow data for region matching, the error is higher than
RegionTrans with check-in data for region matching. This
verifies that the inter-city region check-in similarity is more
reliable for our transfer learning task.

Computation time. The experiment platform is equipped
with Intel Xeon CPU E5-2650L, 128 GB RAM, and Nvidia
Tesla M60 GPU. We implement RegionTrans with Tensor-
Flow in CentOS. Training the source city model on two years
of data needs about 20 minutes, and the transfer learning for
the target city model costs about 50, 100, and 160 minutes for
1, 3, 7-day data, respectively. This running time efficiency is
acceptable in real-life deployments.

5 Related Work
Crowd flow prediction is a fundamental problem in urban
computing [Zheng et al., 2014]. Most studies on this topic
predicts the traffic volumes in a single or multiple road seg-
ments or regions [Silva et al., 2015; Wang et al., 2017b]. Re-
cently, researchers begin to take the whole city into consid-
eration and predict the citywide crowd flow all together on

various scenarios, e.g., taxi and bike flows [Li et al., 2015;
Chen et al., 2016; Hoang et al., 2016; Zhang et al., 2016;
Zhang et al., 2017]. Inspired by the deep network structures
proposed for spatio-temporal learning tasks such as precipita-
tion nowcasting [Shi et al., 2015] and future video frame pre-
diction [Mathieu et al., 2016], deep learning is also adopted in
crowd flow prediction and becoming the state-of-the-art solu-
tion when there exists a rich history of crowd flow data. Var-
ious deep models have been used, e.g., CNN [Zhang et al.,
2016] and ResNet [Zhang et al., 2017]. Compared to these
works, the significant difference of our work lies in both the
objective and the method. We aim to apply the deep model to
a target city which only has a short history of crowd data, and
thus propose RegionTrans to effectively transfer knowledge
from a data-rich source city to the target city at the region
level.

Transfer learning is adopted to address the machine learn-
ing problem when labeled and training data is scarce [Pan
and Yang, 2010]. In urban computing, data scarcity prob-
lem often exists when the targeted service or infrastructure
is new. There are generally two strategies to deal with ur-
ban data scarcity. The first strategy is using auxiliary data
of the target city to help build the targeted application. Ex-
amples include using temperature to infer humidity and vice
versa [Wang et al., 2017b], and leveraging the taxi GPS traces
to detect ridesharing cars such as Uber [Wang et al., 2017a].
The second strategy is to find a source city with adequate data
to transfer knowledge to the target city. Guo et al. design a
cross-city transfer learning framework with collaborative fil-
tering and AutoEncoder to conduct chain store site recom-
mendation in a new city [Guo et al., 2018]. As our prob-
lem is prediction rather than recommendation, the method in
[Guo et al., 2018] cannot be applied. Another relevant work
is [Wei et al., 2016], which proposes a transfer learning al-
gorithm FLORAL to predict air quality category in a target
city by transferring knowledge from a source city. There are
two difficulties to apply FLORAL to our task: (1) crowd flow
prediction is a regression task but FLORAL is designed for
classification; (2) FLORAL is not designed for deep learning.
In brief, to the best of our knowledge, RegionTrans is the first
deep spatio-temporal transfer learning framework that facili-
tates urban crowd flow prediction in a data-scarce target city.

6 Conclusion and Future Work
In this paper, to address the data scarcity issue in crowd flow
prediction, we propose a novel deep spatio-temporal transfer
learning framework, called RegionTrans. Our novelties lie in
three aspects. (1) We use auxiliary data (i.e., check-ins) to
obtain inter-city region similarities correlated to crowd flow
dynamics. (2) We design a deep spatio-temporal model with
a hidden layer dedicated to storing region latent representa-
tions. (3) We propose a learning algorithm to transfer knowl-
edge from a source city to a target one by considering the
latent representations of the inter-city similar-region pairs.

In the future, we plan to extend RegionTrans in several di-
rections. First, we will further improve the reliability of inter-
city similar-region pairs by exploiting other sources of auxil-
iary data such as points-of-interests. Second, we will consider



a more general scenario where multiple data-rich source cities
are available. Finally, we will try to employ RegionTrans in
other real-world applications, e.g., facility deployment, where
deep spatio-temporal learning is still applicable.
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