Lesley Ann Alton

Lesley Ann Alton
Monash University (Australia) · School of Biological Sciences, Clayton

PhD in Conservation Physiology

About

29
Publications
4,836
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
531
Citations
Introduction
Lesley Ann Alton currently works at the School of Biological Sciences, Clayton, Monash University (Australia). Lesley does research in Animal Ecophysiology. Their most recent publication is 'Drivers of amphibian declines: effects of ultraviolet radiation and interactions with other environmental factors'.
Additional affiliations
January 2011 - November 2015
The University of Queensland
Position
  • Research Assistant
May 2007 - June 2012
The University of Queensland
Position
  • PhD Student

Publications

Publications (29)
Preprint
Temperature and water availability are independently hypothesised to be important abiotic drivers of the evolution of metabolic rates and gas exchange patterns, respectively. Specifically, the metabolic cold adaptation hypothesis (MCA) predicts that cold environments select for faster metabolic rates to counter the thermodynamics of biochemical rea...
Article
Full-text available
Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from...
Article
Full-text available
Physiology is crucial for the survival of invasive species in new environments. Yet, new climatic conditions and the limited genetic variation found within many invasive populations may influence physiological responses to new environmental conditions. Here, we studied the case of the delicate skinks (Lampropholis delicata) invading Lord Howe Islan...
Article
Full-text available
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in...
Article
Physiological responses to climate can be used to quantify the environmental limits that a species can tolerate and are, therefore, key to biogeographical studies. Several ecophysiological responses to climatic factors may shape the distribution of species, but our knowledge is mostly centred in thermal ecophysiology. We applied an integrative appr...
Article
Full-text available
Globally, amphibian species are experiencing dramatic population declines, and many face the risk of imminent extinction. Endocrine-disrupting chemicals (EDCs) have been recognised as an underappreciated factor contributing to global amphibian declines. In this regard, the use of hormonal growth promotants in the livestock industry provides a direc...
Article
Anthropogenic climate change and invasive species are two of the greatest threats to biodiversity, affecting the survival, fitness and distribution of many species around the globe. Invasive species are often expected to have broad thermal tolerances, be highly plastic, or have high adaptive potential when faced with novel environments. Tropical is...
Chapter
The amphibian disease chytridiomycosis, caused by two fungal pathogens in the genus Batrachochytrium , has caused the greatest vertebrate biodiversity loss due to disease in recorded history. Both the pathogens and their amphibian hosts are impacted by biotic and abiotic conditions that are rapidly changing due to anthropogenic causes, challenging...
Article
Current policy has the world on track to experience around 3°C of warming by 2100. The responses of organisms to our warming world will be mediated by changes in physiological processes, including metabolic rate. Metabolic rate represents the energetic cost of living, and is fundamental to understanding the energy required to sustain populations. C...
Article
Ultraviolet B radiation (UVBR) damages the DNA of exposed cells, causing dimers to form between adjacent pyrimidine nucleotides. These dimers block DNA replication, causing mutations and apoptosis. Most organisms utilise biochemical or biophysical DNA repair strategies to restore DNA structure; however, as with most biological reactions, these proc...
Article
Full-text available
Organisms vary widely in size, from microbes weighing 0.1 pg to trees weighing thousands of megagrams — a 1021-fold range similar to the difference in mass between an elephant and the Earth. Mass has a pervasive influence on biological processes, but the effect is usually non-proportional; for example, a tenfold increase in mass is typically accomp...
Article
Full-text available
As a consequence of anthropogenic environmental change, the world is facing a possible sixth mass extinction event. The severity of this biodiversity crisis is exemplified by the rapid collapse of hundreds of amphibian populations around the world. Amphibian declines are associated with a range of factors including habitat loss/modification, human...
Article
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster...
Data
Appendix S1. Full data set and phylogenetic information.
Article
Full-text available
The energetic costs for animals to locomote on land influence many aspects of their ecology. Size accounts for much of the among-species variation in terrestrial transport costs, but species of similar body size can still exhibit severalfold differences in energy expenditure. We compiled measurements of the (mass-specific) minimum cost of pedestria...
Article
Full-text available
Many of the far-reaching impacts of climate change on ecosystem function will be due to alterations in species interactions. However, our understanding of the effects of temperature on the dynamics of interactions between species is largely inadequate. Inducible defences persist in prey populations because defensive traits increase survival in the...
Article
Full-text available
Burrowing is an important form of locomotion in reptiles, but no study has examined the energetic cost of burrowing for reptiles. This is significant because burrowing is the most energetically expensive mode of locomotion undertaken by animals and many burrowing species therefore show specialisations for their subterranean lifestyle. We examined t...
Article
Full-text available
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to pre...
Article
Full-text available
For the embryos and tadpoles of amphibian species, exposure to ultraviolet-B radiation (UVBR) can be lethal, or cause a variety of sublethal effects. Low temperatures enhance the detrimental effects of UVBR and this is most likely because the enzyme-mediated processes involved in the repair of UVBR-induced damage function less effectively at low te...
Article
Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are...
Article
Full-text available
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole...
Article
1. Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are thought to be contributing to the rapid disappearance of amphibian populations from pristine habitats around the world. Much research has been dedicated to understanding the effects of ultraviolet radiation (UVR) alone and in combination with oth...
Article
Full-text available
Increased ultraviolet-B (UV-B) radiation as a consequence of ozone depletion is one of the many potential drivers of ongoing global amphibian declines. Both alone and in combination with other environmental stressors, UV-B is known to have detrimental effects on the early life stages of amphibians, but our understanding of the fitness consequences...
Article
Full-text available
Recent catastrophic global amphibian declines have been partially linked to increases in UV-B radiation as a consequence of stratospheric ozone depletion. Previous studies have shown that in the presence of other environmental stressors including aquatic pH and temperature and the presence of contaminants or pathogens, the lethal effects of UV-B on...
Article
Amphibian declines are a prominent part of the global biodiversity crisis and have received special consideration because they have occurred relatively recently, on a global scale, and in seemingly pristine habitats where no obvious anthropogenic cause is apparent. Although several causes for declines have been implicated, the isolation of a singul...
Article
Full-text available
The effects of experimental alterations of aerial O2 partial pressure (PO2,air) on bimodal gas exchange and air-breathing behaviour were investigated in the aquatic air-breathing fish Trichogaster leeri in normoxic water. Fish responded to increasing PO2,air by decreasing air-breathing frequency, increasing aerial O2 consumption rate (VO2), increas...

Network

Cited By