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Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the
only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly
explained by the so-called soft interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between
the crowding agent and the protein, in addition to the hard nonspecific steric interactions. We suggest that the changes in
the solvent properties of aqueous media induced by the crowding agents may be the root of these “soft” interactions. To
check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability,
hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (dextran,
poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used
as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific,
and, in case of polyethylene glycol (PEG), molecular mass specific. Similarly sized polymers PEG and Ucon producing
different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggre-
gates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature
can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These
results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environ-
ment. Therefore, these changes should be taken into account for crowding effect analysis.

Keywords: macromolecular crowding; solvatochromic comparison; aqueous two-phase system; partition; solvent properties

Introduction

It is generally accepted that protein folding, protein/pro-
tein interactions, and other biochemically important pro-
cesses in vivo may differ from those in dilute solutions
commonly used in laboratory experiments (Elcock, 2010;
Nakano, Miyoshi, & Sugimoto, 2014; Phillip &
Schreiber, 2013; Zhou, Rivas, & Minton, 2008). One of
the reasons is believed to be the high overall concentra-
tions of biological macromolecules that may occupy up
to 40% of the cellular volume (Elcock, 2010; Nakano
et al., 2014; Phillip & Schreiber, 2013; Zhou et al.,
2008). The term “macromolecular crowding” is used to
stress that the influence of high macromolecule concen-
trations results from the steric interactions of crowding
agents with the biomolecules of interest. The crowding
molecules are supposed to be inert toward the protein or
nucleic acid under study. They physically occupy a sig-
nificant fraction of the solution volume, leaving only

restricted space available to biomolecules, hence the term
“excluded volume effect” is often used (Elcock, 2010;
Nakano et al., 2014; Phillip & Schreiber, 2013; Zhou
et al., 2008).

According to Elcock (see Ref. (Elcock, 2010)),

there is the question of whether truly inert crowding
agents exist that could be used in experiments to provide
a direct read out of excluded volume effects only, or
whether it is inevitable that all crowding agents will also
cause additional effects that must be considered.

The experimental data accumulated and reviewed in the
literature show that the excluded volume effect is not the
only factor affecting the behavior of biomolecules in a
crowded environment (Elcock, 2010; Nakano et al.,
2014; Phillip & Schreiber, 2013). In order to explain
some experimental observations inconsistent with the
excluded volume effect, it was suggested that there are
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“soft” interactions, such as electrostatic, hydrophobic,
and van der Waals interactions between the crowding
agent and the protein, in addition to hard nonspecific ste-
ric interactions (Nakano et al., 2014; Phillip & Schreiber,
2013). This hypothesis allows one to explain the experi-
mental data by a balance of attractive as well as repul-
sive crowding agent/protein interactions (Benton, Smith,
Young, & Pielak, 2012; Knowles, LaCroix, Deines,
Shkel, & Record, 2011; Nakano et al., 2014; Phillip &
Schreiber, 2013; Wang, Sarkar, Smith, Krois, & Pielak,
2012). It is generally ignored that there is a third compo-
nent in all crowded solutions – water, which is known to
be important for all the biochemical processes (protein
folding, aggregation, protein/protein interactions, etc.)
(Ben-Naim, 2003). The commonly used macromolecular
crowding agents include dextran, Ficoll, polyethylene
glycol (PEG), and polyvinylpyrrolidone (PVP), though
proteins, such as albumin or lysozyme, are sometimes
used as well. It was reported recently that under crowd-
ing conditions, there is an overlapping of hydration
shells for the crowding agent implying that water in the
solution is affected by the agent (King, Arthur, Brooks,
& Kubarych, 2014). This finding agrees with the sug-
gested water restructuring in the presence of low molecu-
lar weight osmolytes and in the presence of crowding
agents as an important factor in enhancement of protein
stability (Canchi & Garcia, 2013; Politi & Harries, 2010;
Sukenik, Sapir, Gilman-Politi, & Harries, 2013). There is
also a vast literature on the effects of small osmolytes on
protein structure and stability where osmolytes effects on
protein–water interactions are discussed (see, e.g., in
Ref. (Canchi & Garcia, 2013)) but this literature is
beyond the scope of the present discussion.

It is known that the dielectric and thermodynamic
properties of water in aqueous solutions of polymers,
such as dextran, Ficoll, PEG, and PVP, change signifi-
cantly relative to those in pure water (Arnold,
Herrmann, Pratsch, & Gawrisch, 1985; Zaslavsky,
1994). Furthermore, according to the theoretical analy-
sis, confinement of water molecules in a hydration shell
around the hydrophobic interface produces a thin layer
of water molecules characterized by low correlation,
entropy, dielectric constant, and slow reorientation of
their intrinsic molecular dipoles (Despa, Fernandez, &
Berry, 2004). This hydrophobe-structured water with the
hindered rotational motion of water molecules and
decreased dielectric constant can enhance the effective
forces between charged groups (Despa et al., 2004).
Solvent polarity of aqueous media in solutions of dex-
tran, Ficoll, and PEG was shown to change depending
upon the polymer type and concentration (Zaslavsky,
1994). Using the solvatochromic comparison method,
Kim et al. demonstrated that PEG can also affect the
hydrogen-bond donor (HBD) acidity of water (Kim
et al., 2002).

It is well known that all the aforementioned synthetic
polymers in different combinations may form aqueous
two-phase systems (ATPS) (Zaslavsky, 1994). These sys-
tems arise in aqueous solutions of two particular poly-
mers, for example, dextran and poly(ethylene glycol) or
dextran and Ficoll, above certain concentration thresh-
olds. Two immiscible phases are formed with one phase
containing predominantly one polymer, and the other
phase containing predominantly the other, while both
containing 70–90% water. It is well established that
phase separation occurs because of different effects of
the two polymers on the water structure (Zaslavsky,
1994). The solvent properties of aqueous media in the
two phases are different (Madeira, Reis, Rodrigues,
Mikheeva, & Zaslavsky, 2010). These differences are
determined primarily by the polymer composition of the
phases. The solvent properties of different solvents may
be studied by the approach developed by Taft, Kamlet,
and others (Kamlet, Abboud, & Taft, 1977; Kamlet &
Taft, 1976; Taft & Kamlet, 1976). This approach is
based on using a set of solvatochromic dyes with the
wavelength positions of their UV–visible absorption
maximum shifting depending on different solvent proper-
ties. This approach was used to quantify the solvent’s di-
polarity/polarizability, HBD acidity, and hydrogen-bond
acceptor (HBA) basicity in the phases of ATPS (Madeira
et al., 2010) as well as in aqueous solutions of PEG of
different molecular mass (Kim et al., 2002). It was dem-
onstrated that partitioning of organic compounds and
proteins in ATPS can be described and even predicted
by a linear combination of different solute/water interac-
tions using solvatochromic solvent features of aqueous
media in the phases (Madeira et al., 2010). Therefore,
we suggest that the macromolecular crowding effect may
be related to the crowding agent influence on the solvent
features of aqueous media.

The purpose of this study was to explore how differ-
ent macromolecular crowding agents affect the solvent
properties of aqueous media in their solutions. We
explored here the solvent features of aqueous media in
solutions of several polymers (dextran, PEG, Ucon,
Ficoll, and PVP) of different molecular masses and dif-
ferent concentrations using a set of solvatochromic
probes. It was also crucial for the purpose of this study
to examine whether the solvatochromic dyes used are
able to bind to the polymers studied.

Materials and methods

Materials

Polymers

Dextran-75 (Dex-75; lot 119945), mass-average molecular
mass (MW) ~75 kDa was purchased from USB (Cleveland,
OH, USA), dextran-40 (Dex-40; lot 1387316 V), MW~
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40 kDa was purchased from Sigma-Aldrich (St. Louis,
MO, USA). PEG 10,000 (PEG-10 K; lot 043K2522), MW
~10 kDa; and PEG 4450 (PEG-4.5 K; lot 11608 EB), MW
~ 4.45 kDa; were purchased from Sigma-Aldrich. PEG 600
(PEG-600; lot 47171728), MW~ 600 Da was purchased
from EMD (Billerica, MA, USA). Ucon 50-HB-5100 (lot
SJ1955S3D2), MW = 3930 Da was purchased from Dow
to Chemical (Midland, MI, USA). Ficoll-70 (Ficoll-70; lot
128K1136), MW~ 70 kDa and PVP 40 (PVP-40; lot
WXBB3898V), MW~ 40 kDa were purchased from
Sigma-Aldrich. All polymers were used without further
purification.

SOLVATOCHROMIC DYES

The solvatochromic probes 4-nitrophenol (spectrophoto-
metric grade) was purchased from Sigma and 4-nitroani-
sole (GC > 99%) was supplied by Acros Organic (New
Jersey, USA). Reichardt’s carboxylated betaine dye
sodium {2,6-diphenyl-4-[4-(4-carboxylato-phenyl)-2,6-
diphenylpyridinium-1-yl])phenolate} was synthesized
according to the procedure reported previously
(Reichardt, Harbusch-Görnert, & Schäfer, 1988).

Other chemicals

Recombinant human α-synuclein was expressed in
E. coli BL21 (DE3) cells and purified as described previ-
ously (Yamin, Glaser, Uversky, & Fink, 2003). The pur-
ity of protein was confirmed by SDS PAGE and mass
spectrometry. All salts and other chemicals used were of
analytical-reagent grade. Deionized water was used for
preparation of all solutions.

Methods

Salvatochromic studies

The solvatochromic probes 4-nitroanisole, 4-nitrophenol,
and Reichardt’s carboxylated betaine dye were used to
determine the solvent dipolarity/polarizability π*, HBA
basicity (β), and HBD acidity (α) of the media in the
polymer solutions.

Aqueous solutions (ca. 10 mM) of each solvatochro-
mic dye were prepared and 5–15 μL of each was added
separately to a total volume of 500 μL of polymer solu-
tion. All aqueous polymer solutions were prepared in
.01 M sodium phosphate buffer (NaPB), pH 7.4 by
weight. NaPB was prepared by mixing appropriate
amounts of sodium phosphate monobasic monohydrate
(NaH2PO4·H2O) and sodium phosphate dibasic heptahy-
drate (Na2HPO4·7H2O). A strong base was added to the
samples (~5–15 μL of 1 M NaOH to 500 μL of the poly-
mer solution) containing Reichardt’s carboxylated betaine
dye to ensure a basic pH. A strong acid (~10 μL of 1 M

HCl to 500 μL of the solution) was added to the samples
containing 4-nitrophenol in order to eliminate charge-
transfer bands of the phenolate anion that were observed
in some solutions. The respective blank solutions without
dye were prepared separately. The samples were mixed
thoroughly in a vortex mixer and the absorption spectra
of each solution were acquired. To check the reproduc-
ibility, possible aggregation and specific interactions
effects, the position of the band maximum in each poly-
mer solution was measured in two separate aliquots from
each of three separately prepared polymer solutions of a
given concentration. UV–vis microplate reader spectro-
photometer SpectraMax Plus384 (Molecular Devices,
Sunnyvale, CA, USA) with a bandwidth of 2.0 nm, data
interval of 1 nm, and high resolution scan (~.5 nm/s)
was used for acquisition of the UV–vis molecular absor-
bance data. The absorption spectra of the probes were
determined over the spectral range from 240 to 600 nm
in each polymer solution in .01 M NaPB, pH 7.4. The
spectral response from appropriate blank was subtracted
before data analysis. The wavelength of maximum absor-
bance in each solution was determined using the PeakFit
software package (Systat Software Inc., San Jose, CA,
USA) and averaged. Standard deviation for the measured
maximum absorption wavelength was ≤.4 nm for all
dyes in all polymer solutions examined.

The behavior of the dyes (4-nitrophenol and
Reichardt’s carboxylated betaine dye) in several solvents
(water, n-hexane, methanol) was tested in the presence
and absence of HCl (for 4-nitrophenol) and NaOH (for
the betaine dye) at different concentrations of the dyes,
and the maximum absorption wavelengths of the dyes
were compared to the reference values reported in the lit-
erature and were found to be within the experimental
errors in all cases (data not shown).

The results of the solvatochromic studies were used
to calculate π*, β, and α as described by Marcus (1993).

Determination of the solvent dipolarity/polarizability π*

The π* values were determined from the wavenumber
(v (1)) of the longest-wavelength absorption band of
4-nitroanisole using the relationship:

p� ¼ :427ð34:12� vð1ÞÞ (1)

Determination of the solvent HBA basicity β

Each β value was determined from the wavenumber
(v (2)) of the longest-wavelength absorption band of
4-nitrophenol using the relationship:

b ¼ :346ð35:045� vð2ÞÞ � :57 � p� (2)

Solvent properties of aqueous media in macromolecular crowding effects 3
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Determination of the solvent HBD acidity α

The values of the parameter α (the solvent HBD acidity)
were determined from the longest-wavelength absorption
band of the Reichardt’s carboxylated betaine dye using
the relationship:

a ¼ :0649 � ET ð30Þ � 2:03� :72 � p� (3)

The ET(30) values are based on the solvatochromic
pyridinium N-phenolate betaine dye (Reichardt’s dye) as
a probe and are obtained directly from the wavelength
(λ, nm) of the absorption band of its carboxyl-substituted
derivative as follows:

ET ð30Þ ¼ ð1=:932Þ � ½ð28591Þ=k� 3:335� (4)

The determined wavelength used in Equation (4) and the
determined wavelength used in Equations (1) and (2)
(converted to wavenumber) correspond to the maximum
of the longest-wavelength solvatochromic absorption
band of each probe in each solution. Standard deviation
for the measured maximum absorption wavelength was
≤.4 nm for all dyes in all polymer solutions examined.
In order to check the reproducibility, possible aggrega-
tion and specific binding effects, the position of the band
maximum in each polymer solution was measured in
two separate aliquots from each of three separately pre-
pared polymer solutions of a given concentration. There-
fore, we believe that the maximum wavelength was
determined with high accuracy and precision.

Aqueous two-phase systems

Preparation of ATPS dextran-PEG and Ficoll-Ucon and
partitioning of the Reichardt’s betaine dye in these sys-
tems was performed as previously described (Madeira
et al., 2010). The protocols are described in more detail
in the Supporting Information.

Protein aggregation

Aggregation of α-synuclein (.5 mg/ml) was conducted in
20 mM Hepes, pH 7.5 in the presence of .1 M NaCl,
and .025 mg/ml heparin sulfate. α-synuclein was initially
dissolved in 5 mM NaOH at 4 mg/ml, incubated in this
solution for 1 min and diluted into the final reaction buf-
fer. Protein aggregation was carried out for four days in
a reaction volume of .1 ml in black, flat-bottomed
96-well plates in the presence of 5 μM ThT. Aggregation
was analyzed in the absence or presence of various
concentrations of PEG 4450 (MW ~ 4.45 kDa) or Ucon
50-HB-5100 (MW 3930 Da). Polymer concentrations
used in this study were 5 or 15% for PEG and 2 or 15%
for Ucon. Two Teflon or polyethylene balls (2.38 mm
diameter, Engineering Laboratories, Oakland, NJ) were
placed into each well of a 96-well plate. The reaction

mixture containing protein and ThT (320 μl) was split
into three wells (100 μl into each well), the plates were
covered by Mylar septum sheets (Thermo), and incu-
bated with continuous orbital shaking at 280 rpm in an
Infinite M200 Pro microplate reader (Tecan). The kinet-
ics was monitored by top reading of fluorescence inten-
sity every 6 min using 444 nm excitation and 485 nm
emission filters (data not shown).

Electron microscopy

5 μl aliquots of protein solutions were adsorbed onto
prewashed 200 mesh formvar-/carbon-coated nickel grids
for 5 min. The grids were washed with water (20 μl),
stained with 2% uranyl acetate for 2 min, and washed
with water again. The samples were analyzed with a
JEM 1400 transmission electron microscope (JEOL)
operated at 80 kV.

Results and discussion

Polymer interactions with the solvatochromic dyes

There are numerous methods and tools to examine the
existing interactions between different compounds in
solution; however, it is close to impossible to prove
experimentally the lack of such interactions. No matter
what experimental technique is employed, it is always
possible that the sensitivity of the technique is insuffi-
cient. The empirical Collander relationship applied to a
given substance in ATPS formed by various pairs of
polymers was previously suggested as a reliable test for
lack of solute/polymer interactions in ATPS (Madeira,
Teixeira, Macedo, Mikheeva, & Zaslavsky, 2008).

The so-called Collander linear solvent regression
equation describes an empirical relationship between dis-
tribution coefficients of solutes in different organic sol-
vent/water two-phase systems as (Hansch & Leo, 1995):

log Dj
i ¼ ajo � log Do

i þ bjo (5)

where Di is the distribution coefficient of i-th solute in
the two-phase system “j” or “o,” and ajo and bjo are con-
stants for the given type of solutes of same chemical nat-
ure (Hansch & Leo, 1995). Both coefficients and the bjo
value in particular depend on the chemical nature of the
compounds being partitioned. This dependence results
from differences between specific solute/solvent interac-
tions for various compounds in different organic solvents
under comparison (Hansch & Leo, 1995; Zaslavsky,
1994).

It was established previously that the partition coeffi-
cients of solutes in ATPS formed by different pairs of
nonionic polymers are typically interrelated according to
Equation (5) (Madeira et al., 2008, 2013; Zaslavsky,
1994). Both coefficients ajo and bjo are constant and

4 L.A. Ferreira et al.
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independent of the nature of the solute being partitioned
(from simple organic compounds to proteins and nucleic
acids). This finding implies two possible explanations
(Madeira et al., 2008, 2013; Zaslavsky, 1994): (1) All
the compounds, independent of their chemical nature,
bind to the phase-forming polymers in a similar manner,
which is extremely unlikely or (2) The solutes being par-
titioned do not specifically bind to the polymers but are
differently affected by aqueous solvent media in two
phases due to the differently changed properties of the
solvent media in these phases. This explanation agrees
with the measurements of various solvent characteristics
in the phases of ATPS and serves as a basis for different
analytical applications of aqueous two-phase partitioning
(Madeira et al., 2010, 2013; Zaslavsky, 1994).

Analysis of the partition coefficients for the solvato-
chromic dyes presented in Table S1 shows that they all
fit the Collander relationship reported previously
(Madeira et al., 2008; Zaslavsky, 1994). The data from
Table S1 are plotted in Figure 1 for ATPS formed by dif-
ferent pairs of polymers, dextran-PEG, and Ficoll-Ucon.
The linear relationship in Figure 1 can be described as
follows:

log KFicoll�Ucon
j ¼ :0ð�:02Þ þ 1:19ð�:035Þ � log KDextran�PEG

j

(5a)

N = 25; r2 = .9806; SD = .10; F = 1163
where Kj

Ficoll-Ucon and Kj
Dextran-PEG are the partition coef-

ficients for the j-th compound in the dextran-PEG and
Ficoll-Ucon ATPS; N is the number of compounds
examined (10 proteins, 8 free and dinitrophenylated
amino acids, 7 organic compounds, including the solva-
tochromic dyes used here); r is the correlation coeffi-

cient; SD is the standard deviation; and F is the ratio of
variance.

This experimental observation confirms that the dyes
employed here do not interact with the polymers and can
be used as solvatochromic probes for characterization of
solvent features of aqueous media in the polymer solu-
tions. This analysis also revealed that the recombinant
human α-synuclein used in our study to look on the
effects of PEG and Ucon on protein aggregation does
not bind to these polymers too.

It was shown previously that the relationship
described by Equation (5) exists for ATPS formed by
similar polymers of different molecular masses and those
of different polymer concentrations for a given pair of
polymers (Madeira et al., 2008, 2013; Zaslavsky, 1994).
Hence, the established Collander relationship (Equation
(5a)), indicating the lack of solvatochromic dye/polymer
interactions for ATPS formed by dextran, PEG, Ucon,
and Ficoll of the particular molecular masses, may be
extended over all ATPS formed by similar polymers of
different molecular masses and at different polymer con-
centrations. Therefore, we conclude that the solvatochro-
mic dyes under discussion can be used for the analysis
of solvent properties of aqueous media in solutions of
polymers used as crowding agents.

Solvent properties of aqueous media in solutions of
crowding agents

It should be mentioned that the original Kamlet-Taft
methodology requires the use of several different solva-
tochromic dyes in order to compensate for idiosyncratic
results obtained with a single dye by averaging the val-
ues obtained with the different dyes used. This issue is
discussed in detail by Ab Rani et al. (2011). The set of
the dyes used here was previously used for analysis
of solvent properties of media in coexisting phases of
ATPS, and it was demonstrated that the data obtained
allow one to predict the partition behavior of simple
organic compounds and proteins in ATPS (Madeira
et al., 2008, 2013; Zaslavsky, 1994). An additional
equally important factor affecting solute partitioning in
ATPS was found to be the electrostatic properties of the
aqueous media in the coexisting phases. Unfortunately,
these properties cannot be quantified by solvatochromic
dyes. Therefore, the description of the polymer-induced
changes in the solvent properties of aqueous media is
admittedly incomplete. On the other hand, it was demon-
strated that the difference between the relative hydropho-
bic character of the coexisting phases in ATPS may be
quantified in terms of the parameters derived from the
use of the solvatochromic dyes (π*, β, and α) (Madeira
et al., 2012).

It should be kept in mind that the results obtained
are to be viewed as relative estimates of the solvent

Figure 1. Partition coefficients K, experimentally measured
for all the compounds in dextran-PEG, plotted against K-values
for the same compounds in Ficoll-Ucon ATPS (see in
Table S1).

Solvent properties of aqueous media in macromolecular crowding effects 5
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properties in the solutions under study. The results
obtained are listed in Supplementary Materials (Tables
S2–S4) and illustrated graphically in Figures 2–4. The
data presented in Table S2 indicate that the solvent dipo-
larity/polarizability (π*) of aqueous media increases with
the polymer concentration for all polymers examined
except Ucon. The polymer effect on the solvent dipolari-
ty/polarizability (π*) characterizing the interactions of
aqueous media with solute dipoles and induced dipoles
decreases in the following sequence: PVP-40 > dextran-
40 = dextran-75 = Ficoll-70 > PEG-10 K = PEG-4.5 K >
PEG-600 > Ucon, at both concentrations of 30 and 40%.

The data presented in Table S3 and illustrated in
Figure 3 indicate that the solvent HBA basicity (β) of
aqueous media increases with the polymer concentration
for all polymers examined. The polymer effect decreases
in the sequence: PVP-40 = Ucon > PEG-10 K = PEG-
4.5 K > PEG-600 > Ficoll-70 > dextran-40 > dextran-75,
at both concentrations of 30 and 40%. It should be noted
that this sequence is different from the one found for the
polymer effect on the solvent dipolarity/polarizability.

The data presented in Table S4 and illustrated in
Figure 4 show that the solvent HBD acidity (α) of aque-
ous media decreases with the polymer concentration for
all polymers examined. The polymer effect decreases
in the sequence: Ucon > PEG-4.5 K ≥ PEG-10 K > PEG-
600 > PVP-40 > Ficoll-70 > dextran-75 = dextran-40, at
both concentrations of 30 and 40%. It should be noted
that the sequence is almost similar to the one determined
for the polymer effect on the solvent HBA basicity (β)
with only difference in the PVP position.

In order to analyze the possible role of the estab-
lished influence of polymers on the solvent properties of
aqueous media in the crowding effects of these
polymers, it is important to consider how significant

these effects are. The dipolarity/polarizability parameter,
π*, of aqueous media in 40% Ucon solution (see
Table S2) differs from that of the polymer-free media by
.022. The difference between the π* values for such
organic solvents as methanol and ethanol is .06 (Kamlet,
Abboud, Abraham, & Taft, 1983); that is, three times lar-
ger. In the aqueous two-phase system formed by dex-
tran-75 and Ficoll-70 (Madeira et al., 2008, 2013;
Zaslavsky, 1994), however, the difference between the
π* values for the coexisting phases amounts only to
.003, and this difference affects the distribution of small
compounds and proteins between the two phases.

Similarly, the polymer influence on the HBA basicity
β of aqueous media is rather small. The difference
between the β values for aqueous media in 40% dextran-
75 solution and for polymer-free media is .033. Similar
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Figure 2. Solvent dipolarity/polarizability (π*) of aqueous
media as a function of polymer concentration in solutions of
different polymers (lines are added for eye-guidance only).
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difference for methanol and ethanol is .15 (Kamlet et al.,
1983). On the other hand, the difference between the
HBA basicity β for aqueous media in the coexisting
phases of dextran-75-PEG-600 is just .005 (Madeira
et al., 2008, 2013; Zaslavsky, 1994).

The polymer influence on the HBD acidity α of
aqueous media is quite significant. The difference
between the α values for aqueous media in 40% dextran-
40 solution and for polymer-free media is .223, much
larger than the difference between the α values for meth-
anol and ethanol of just .10 (Kamlet et al., 1983). In
polymer/polymer ATPS, the differences between the
HBD acidity α of the aqueous media in the coexisting
phases varies from 0 in Ficoll-70-PEG-6000 to .181 in
dextran-75-Ucon ATPS, depending on the polymer and
salt composition (Madeira et al., 2008, 2013; Zaslavsky,
1994).

It follows from the experimental data obtained here
that nonionic polymers used as macromolecular crowd-
ing agents change the solvent properties of water in their
aqueous solutions. If the data obtained in the studies of
polymer/protein interactions are considered with regard
to the aforementioned data, it becomes clear that the con-
clusions about polymer/protein interactions (Phillip &
Schreiber, 2013) are commonly based on the deviation
of the experimental data from one or the other model
chosen by the respective authors. As an example, heats
of mixing lysozyme or ovalbumin solutions with those
of PEG were measured calorimetrically (Pico, Bassani,
Farruggia, & Nerli, 2007). Heats of corresponding dilu-
tions of these solutions were measured separately, and it
was found that the sum of heats of dilutions was not
equal to the heat of mixing. The difference observed was
interpreted as evidence of protein/PEG interactions,
though it may readily be explained by protein transfer
from water to aqueous media with PEG-induced changes
in the solvent properties (Pico et al., 2007). Similarly,
the conclusion about PEG/lysozyme interactions was
made by Bloustine, Virmani, Thurston, and Fraden
(2006), based on deviation of the light scattering data
from the water depletion model, while the same data
may be explained by the effect of PEG-induced changes
in the solvent properties of water. Same explanation may
be applicable to the other data reported (Crowley, Brett,
& Muldoon, 2008; Kulkarni, Chatterjee, Schweizer, &
Zukoski, 2000). The studies of partition behavior of
numerous different proteins in different polymer/polymer
ATPS do not indicate protein/polymer interactions,
though this possibility cannot be excluded for any partic-
ular protein.

It should be mentioned that the possible involvement
of aqueous media in the crowding effects was discussed
in the literature (Canchi & Garcia, 2013; Harada, Sugita,
& Feig, 2012; Nakano et al., 2014; Politi & Harries,
2010; Sukenik et al., 2013). In order to test whether the

changes of the solvent properties of aqueous media are
relevant for macromolecular crowding effects, we ana-
lyzed the results of the studies where the numerical
experimental data were reported.

The oxidative refolding of reduced, denatured hen
egg white lysozyme was examined in the presence of
bovine albumin, dextran-70 and Ficoll-70 (Zhou, Liang,
Du, Zhou, & Chen, 2004). The refolding yield of lyso-
zyme reported was examined in terms of solvent proper-
ties of aqueous media in dextran-75 and Ficoll-70
solutions (see Tables S2–S4) (Zhou et al., 2004). It has
been shown previously (Madeira et al., 2010, 2012,
2014) that different properties of solutes in aqueous solu-
tions may be expressed as linear combination of different
solvent properties of the aqueous media. Therefore, we
attempted to use the similar expression for protein fold-
ing/refolding in the presence of crowding agents. To this
end, the data were fit with the simplest linear model
based on previously reported linear relationships between
a variety of solvation related parameters for various pro-
teins and small organic compounds and the dipolarity,
donor acidity, and acceptor basicity of aqueous media.
The observed relationship shown graphically in Figure 5
can be described as follows:

Yield ð%Þ ¼ 4200ð�902Þ � 3200ð�653Þ � p� � 440ð�152Þ � a
(6)

N = 4; r2 = .9849; SD = 4.2; F = 32.7

where yield is as indicated above; π* and α are the sol-
vent dipolarity/polarizability and solvent HBD acidity in
aqueous polymer solution, respectively; N is the number

0

25

50

75

100

1.10
1.11

1.12
1.13

1.14
1.15

1.101.121.141.161.181.201.221.24

R
ef

ol
di

ng
 y

ie
ld

, %

π*

α

1

2 3

4

Figure 5. The refolding yield of denatured reduced lysozyme
reported in Ref. (Zhou et al., 2004) as a function of the solvent
dipolarity/polarizability (π*) and HBD acidity (α) of aqueous
media in the absence and presence of dextran and Ficoll. (1)
Absence of polymer, (2) 10% dextran, (3) 10% Ficoll, and (4)
20% dextran.
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of experimental data; all the other parameters are as
defined above. The number of the experimental data is
extremely small (the yields reported in Ref. (Zhou et al.,
2004) in the presence of 10 and 20% dextran, 10%
Ficoll, and in polymer-free solution were used), and
hence the relationship (Equation (6)) cannot be viewed
as sufficiently reliable. However, the fact that it exists at
all, even though the ionic composition of the refolding
media used differs from that used in our solvatochromic
measurements, is of interest (Zhou et al., 2004).

Similarly, the yield of refolded rabbit muscle creatine
kinase can be described in terms of solvent properties
for dextran-70 and Ficoll-70 (see Figure 6) (Du et al.,
2006), but not for PEG-2000 effect which may be
assigned to different volume-excluded effects of PEG-
2000 and those of dextran and Ficoll of the same molec-
ular mass. It was established that the effects of PEG-600
and PEG-4500 on the solvent properties of aqueous
media are different. Since the PEG-2000 effects were not
examined, we could not include the PEG-2000 crowding
effect data in our analysis. The relationship shown in
Figure 6 can be described as follows:

Yield ð%Þ ¼ 4000ð�1339Þ � 2800ð�974Þp � �600�218a (7)

N = 5; r2 = .8104; SD = 6.3; F = 4.2
where yield is the yield of refolded rabbit muscle crea-
tine kinase; all the other parameters are as indicated
before. The yields reported in Ref. (Du et al., 2006) in
the presence of 10 and 20% dextran, 10 and 20% Ficoll,
and in the polymer-free solution were used. It should be
noted that the protein refolding was analyzed in .05 M
aqueous Tris–HCl, pH 7.5 (Du et al., 2006), and the
ionic composition of the polymer solutions was already

shown to affect the solvent properties of aqueous media
(Miklos, Sarkar, Wang, & Pielak, 2011). Therefore, the
observed relationship should be only viewed as a trend
and not as a reliable correlation.

The relationships described by Equations (6) and (7)
do not provide unambiguous experimental evidence, but
they clearly support the assumption that polymer-induced
changes in the solvent properties of aqueous media may
play an important role in macromolecular crowding
effects. We suggest that the solvent properties measured
here by solvatochromic dyes represent one aspect of the
structure of water in the solutions of crowding agents.
The data accumulated so far do not allow one to answer
the most important question – if the macromolecular
crowding effect is the effect of agent-induced changes on
the properties of aqueous media or a combination of
size-exclusion effect together with the solvent restructur-
ing effects. The issue is complicated not only by our cur-
rent limited views of the water structure but also by the
essentially complete lack of knowledge of relationship
between specific properties of biological macromolecules
and the solvent properties of aqueous media. At this
time, we may suggest the combination of the two effects
results in the experimentally observed changes in bio-
molecule behavior in crowded solutions. The relative
importance of the two types of the effects may be spe-
cific for the protein or nucleic acid under analysis.

Protein aggregation is very sensitive to environmental
conditions. It was suggested that high concentrations of
inert polymers, that are used to mimic macromolecular
crowding in in vitro experiments, may have a large influ-
ence on the behavior of biological macromolecules
(Bismuto et al., 2002; Eggers & Valentine, 2001a,
2001b; Minton, 2000b), affecting protein–protein interac-
tions in general (Martin et al., 2014; Minton, 2000a;
Morar, Olteanu, Young, & Pielak, 2001) and could mod-
ulate both the rate and the extent of amyloid formation
in vivo (Lansbury, 1999; Minton, 2000a). Accelerated
in vitro aggregation and fibrillation in the presence of
crowding agents have been reported for human
apolipoprotein C-II (Hatters, Minton, & Howlett, 2002),
α-synuclein (Breydo et al., 2014; Munishkina, Ahmad,
Fink, & Uversky, 2008; Munishkina, Cooper, Uversky,
& Fink, 2004; Munishkina, Fink, & Uversky, 2008;
Shtilerman, Ding, & Lansbury, 2002; Uversky, Cooper,
Bower, Li, & Fink, 2002), β-synuclein (Yamin et al.,
2005), amyloid-β peptide (Lee, Bird, Shaw, Jean, &
Vaux, 2012), human tau protein (Ma, Hu, Chen, &
Liang, 2013), and human copper, zinc superoxide dismu-
tase (Ma et al., 2013). Crowders of similar chemical nat-
ure are known to affect protein aggregation on a
concentration-dependent manner (Uversky et al., 2002).
Also, crowders of different chemical nature can modulate
protein aggregation in a different manner (Assarsson,
Linse, & Cabaleiro-Lago, 2014; Breydo et al., 2014;
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Figure 6. The refolding yield of denatured rabbit muscle crea-
tine kinase as a function of the solvent dipolarity/polarizability
(π*) and HBD acidity (α) of aqueous media in the absence and
presence of solutions of dextran and Ficoll (Du et al., 2006).
(1) Absence of polymer, (2) 10% dextran, (3) 10% Ficoll, (4)
20% dextran, and (5) 20% Ficoll.
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Uversky et al., 2002). For example, in the case of the
Aβ42 aggregation, accelerating effects were observed
from the positively charged polymers, whereas no aggre-
gation modulating effects were seen from the negative or
neutral polymers (Assarsson et al., 2014). It was also
shown that rigid and flexible polysaccharides influence
protein aggregation via different mechanisms. Further-
more, it has been suggested that, in addition to excluded
volume effects, changes in solution viscosity and non-
specific “soft” protein–polymer interactions might influ-
ence the structure and dynamics of proteins in crowded
environments (Breydo et al., 2014).

To further clarify factors affecting protein fibrillation
in crowded environments, we examined the effects of
PEG and Ucon of similar size (~4.0 kDa) on aggregation
of α-synuclein into amyloid fibrils under conditions clo-
sely resembling physiological. We want to emphasize
here once again that the analysis of the partition of
recombinant human α-synuclein in aqueous dextran-PEG
and Ficoll-Ucon two-phase systems (namely, using the
Collander solvent regression relationship between the
proteins partition coefficients in different ATPSs) sug-
gested that this protein does not specifically bind to the
polymers used in our study (see Figure 1).

Aggregation was conducted at neutral pH at 40 °C
and in the presence of a low concentration (.025 mg/ml)
of heparin sulfate, a negatively charged natural polysac-
charide often used to accelerate protein aggregation.
Under these conditions, α-synuclein efficiently converts
to amyloid fibrils with the lag phase of several hours.
Figure 7 shows that in the presence of PEG, fibrils were
formed, although they became shorter at high PEG con-
centrations. In the presence of Ucon, however, fibril
yield significantly decreased, and at higher Ucon concen-
trations, they disappeared entirely and were replaced by
oligomeric aggregates.

It is important to note that the aforementioned aston-
ishing difference in the effects of similar concentrations
of similarly sized Ucon and PEG on aggregation of
α-synuclein, where protein efficiently fibrillated in the
presence of high PEG concentrations, whereas no amy-
loid-like fibrils were formed in the presence of Ucon,
clearly shows that not all crowders are made equal and
that their influence on protein aggregation cannot be
attributed to the simple excluded volume effects. It is
likely that the mentioned difference in the aggregation
behavior of α-synuclein in the presence of similar
concentrations of similarly sized PEG and Ucon can be

Figure 7. Morphology of amyloid fibrils of α-synuclein grown in the presence of either PEG 4450 (MW ~ 4.45 kDa) or Ucon
50-HB-5100 (MW of 3930 Da) polymers. The image of amyloid fibrils was obtained by electron microscopy. Fibrils were grown at
pH 7.5 for four days in the presence of .025 mg/ml heparin sulfate and various polymer concentrations: 5% PEG (A); 15% PEG (B);
2% Ucon (C); and 15% Ucon (D). White bar at the left bottom corner of each panel correspond to 100 nm.
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attributed to the different effects of these polymers on
solvent properties of aqueous media in their solutions.

Proteins such as albumin, lysozyme, and others were
used as crowding agents (Miklos et al., 2011; Sarkar,
Lu, & Pielak, 2014). It is important therefore to examine
whether these and other proteins may also affect the sol-
vent properties of aqueous media. Further studies in this
direction are currently in progress in our laboratories.

Conclusions

It is shown that macromolecular crowding agents change
solvent properties of aqueous media in their solutions.
The solvent dipolarity/polarizability, HBD acidity, and
HBA basicity of aqueous media evaluated in solutions of
crowding agents are agent-specific and dependent on
agent concentration. Polymers, such as PEG and copoly-
mer of ethylene glycol and propylene glycol (Ucon), of
the same size but producing different changes in the sol-
vent properties of water in their solutions induce mor-
phologically different α-synuclein aggregate forms.
Analysis of several examples from the literature shows
that the effects of different crowding agents on protein
refolding and stability may be described in terms of the
solvent properties of the aqueous media in the solutions
of crowding agents. These data suggest that crowding
agent-induced changes in the solvent properties of aque-
ous media are important contributors to the macromolec-
ular crowding effects.

Therefore, it is suggested that the so-called ‘soft
interactions’ for a biological macromolecule with crowd-
ing agents may be viewed as the interactions between
the macromolecule and aqueous media with solvent
properties altered under the crowding agent influence.
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