About
431
Publications
120,631
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
40,172
Citations
Introduction
Additional affiliations
September 1985 - present
September 1985 - present
Publications
Publications (431)
Key message
Climate change can limit yields of naturally resilient crops, like sorghum, challenging global food security.
Abstract
Agriculture under an erratic climate requires tapping into a reservoir of flexible adaptive loci that can lead to lasting yield stability under multiple abiotic stress conditions. Domesticated in the hot and dry region...
Background
Canola (Brassica napus L.) has high phosphorus demand, but its seedlings are sensitive to seed-placed phosphorus fertilizers. Optimizing phosphorus fertilizer managements (rates and placements) for canola is critical and can be aided by a better understanding of the root-associated microbiome, as it plays key roles in improving phosphoru...
The efficiency of N2-fixation in legume–rhizobia symbiosis is a function of root nodule activity. Nodules consist of 2 functionally important tissues: (a) a central infected zone (CIZ), colonized by rhizobia bacteria, which serves as the site of N2-fixation, and (b) vascular bundles (VBs), serving as conduits for the transport of water, nutrients,...
Background
On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency...
Root system architecture (RSA) plays a central role in water and nutrient acquisition in plants. Plasticity and genetic variation in RSA can be used as an adaptive strategy to optimize plant performance under variable environments. We quantified phenotypic variation for seedling RSA among 44 diverse pea (Pisum sativum L.) genotypes, including breed...
Under depleted external phosphate (Pi), many plant species adapt to this stress by initiating downstream signalling cascades. In plants, the vascular system delivers nutrients and signalling agents to control physiological and developmental processes. Currently, limited information is available regarding the direct role of phloem-borne long-distanc...
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi respon...
Main conclusion
Integrated root phenotypes and transcriptome analysis have revealed key candidate genes responsible for maize root growth and development in potassium deficiency.
Abstract
Potassium (K) is a vital macronutrient for plant growth, but our understanding of its regulatory mechanisms in maize root system architecture (RSA) and K ⁺ uptak...
Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phe...
The increasing human population and variable weather conditions, due to climate change, pose a threat to the world's food security. To improve global food security, we need to provide breeders with tools to develop crop cultivars that are more resilient to extreme weather conditions and provide growers with tools to more effectively manage biotic a...
Root system architecture (RSA) plays a pivotal role in efficient uptake of essential nutrients, such as phosphorous (P), nitrogen (N), and water. In soils with heterogeneous nutrient distribution, root plasticity can optimize acquisition and plant growth. Here, we present evidence that a constitutive RSA can confer benefits for sorghum grown under...
Nitrate distribution in soils is often heterogeneous. Plants have adapted to this by modifying their root system architecture (RSA). Previous studies showed that NITRATE-TRANSPORTER1.1 (NRT1.1), which also transports auxin, helps inhibit lateral root primordia (LRP) emergence in nitrate-poor patches, by preferentially transporting auxin away from t...
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi respon...
Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in th...
The soil contributes to the main pool of essential mineral nutrients for plants. These mineral nutrients are critical elements for the building blocks of plant biomolecules, play fundamental roles in cell processes, and act in various enzymatic reactions. The roots are the main entry point for mineral nutrients used within the plant to grow, develo...
It is now clear that the root microbiome, which consists of bacteria, archaea, and fungi that colonize both the rhizosphere and the internal space of the root, is one of the most complex ecosystems in nature and is very important for root and plant health and function.In this chapter we have focused on the role of the root microbiome functional tra...
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we ana...
Accurate segmentation of root system architecture (RSA) from 2D images is an important step in studying phenotypic traits of root systems. Various approaches to image segmentation exist but many of them are not well suited to the thin and reticulated structures characteristic of root systems. The findings presented here describe an approach to RSA...
Key message
Association analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants.
Abstract
Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestri...
Efficient acquisition and use of available phosphorus from the soil is crucial for plant growth, development, and yield. With an ever-increasing acreage of croplands with suboptimal available soil phosphorus, genetic improvement of sorghum germplasm for enhanced phosphorus acquisition from soil is crucial to increasing agricultural output and reduc...
Fatty acids in crop seeds are a major source for both vegetable oils and industrial applications. Genetic improvement of fatty acid composition and oil content is critical to meet the current and future demands of plant-based renewable seed oils. Addressing this challenge can be approached by network modeling to capture key contributors of seed met...
Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat...
Malate-efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1), which mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum-resistance in Arabidopsis thaliana. Several studies showed that root AtALMT1 expression is rapidly observed in r...
Key message
A multiparental random mating population used in sorghum breeding is amenable for the detection of QTLs related to tropical soil adaptation, fine mapping of underlying genes and genomic selection approaches.
Abstract
Tropical soils where low phosphorus (P) and aluminum (Al) toxicity limit sorghum [Sorghum bicolor (L.) Moench] productio...
Embryonic development represents an important reproductive phase of sexually reproducing plant species. The fusion of egg and sperm produces the plant zygote, a totipotent cell that through cell division and cell identity specification in early embryogenesis establishes the major cell lineages and tissues of the adult plant. The subsequent morphoge...
Crop tolerance to multiple abiotic stresses has long been pursued as a Holy Grail in plant breeding efforts that target crop adaptation to tropical soils. On tropical, acidic soils, aluminum (Al) toxicity, low phosphorus (P) availability and drought stress are the major limitations to yield stability. Molecular breeding based on a small suite of pl...
Organic acids (OA) are released from roots in response to aluminum (Al), conferring an Al tolerance to plants that is regulated by OA transporters such as ALMT (Al‐activated malate transporter) and multi‐drug and toxic compound extrusion (MATE). We have previously reported that the expression level polymorphism (ELP) of AtALMT1 is strongly associat...
On acid soils, the trivalent aluminium ion (Al³⁺) predominates and is very rhizotoxic to most plant species. For some native plant species adapted to acid soils including tea (Camellia sinensis), Al³⁺ has been regarded as a beneficial mineral element. In this study, we discovered that Al³⁺ is actually essential for tea root growth and development i...
Previous studies have alternately supported and discounted the hypothesis that the maternal genome plays a predominant role in early embryogenesis in plants. We used 24 embryo defective (emb) mutants of Arabidopsis thaliana to test for maternal and paternal effects in early embryogenesis. 5 emb mutants had equal maternal and paternal effects, 5 sho...
The mechanisms involved in the regulation of gene expression in response to phosphate (Pi) deficiency have been extensively studied, but their chromatin‐level regulation remains poorly understood.
We examined the role of histone acetylation in response to Pi deficiency by using the histone deacetylase complex1 (hdc1) mutant. Genes involved in root...
Modern wheat production comes from two polyploid species, Triticum aestivum and Triticum turgidum (var durum), which putatively arose from diploid ancestors Triticum urartu, Aegilops speltoides, and Aegilops tauschii. How gene expression during embryogenesis and grain development in wheats has been shaped by the differing contributions of diploid g...
Although citrate transporters are involved in iron (Fe) translocation or aluminum (Al) tolerance in plants, none of them have been shown to confer both biological functions in Fe absorption strategy I plant species so far. We demonstrate that AhFRDL1, a citrate transporter gene from peanut (Arachis hypogaea L.) induced by both Fe-deficiency and Al-...
Background
Phosphorus (P) fixation on aluminum (Al) and iron (Fe) oxides in soil clays restricts P availability for crops cultivated on highly weathered tropical soils, which are common in developing countries. Hence, P deficiency becomes a major obstacle for global food security. We used multi-trait quantitative trait loci (QTL) mapping to study t...
Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al ³⁺ , but can exhibit reduced expression when introgressed into different lines. We show that al...
Rapeseed (Brassica napus) is an important oil crop worldwide. However, severe inhibition of rapeseed production often occurs in the field due to nitrogen (N) deficiency. The root system is the main organ to acquire N for plant growth, but little is known about the mechanisms underlying rapeseed root adaptions to N deficiency. Here, dynamic changes...
Main conclusion:
An SPL-type transcription factor, LeSPL-CNR, is negatively involved in NO production by modulating SlNR expression and nitrate reductase activity, which contributes to Cd tolerance. Cadmium (Cd) is a highly toxic pollutant. Identifying factors affecting Cd accumulation in plants is a prerequisite for minimizing dietary uptake of C...
Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and gen...
Root damage due to aluminum (Al) toxicity restricts crop production on acidic soils, which are extensive in the tropics. The sorghum root Al-activated citrate transporter, SbMATE, underlies the Al tolerance locus, AltSB, and increases grain yield under Al toxicity. Here, AltSB loci associated with Al tolerance were converted into Amplification Refr...
Background:
Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines...
Al-induced organic acid secretion from the root apex is an important Al resistance mechanism. However, it remains unclear how plants fine-tune root organic acid secretion which can contribute significantly to the loss of fixed carbon from the plant. Here, we demonstrate that Al-induced citrate secretion from the rice bean root apex is biphasic, con...
Low-phosphorus (P) availability caused by P fixation on soil clay minerals is a serious constraint for agricultural production and food security, particularly in the humid tropics and subtropics. Here we look at the underlying basis of root phenotypes that can potentially enhance a crop’s ability to acquire P under low availability in the soil. In...
About 50% of the world's arable land is strongly acidic (pH ≤ 5). The low pH solubilizes root-toxic ionic aluminium (Al3+) species from clay minerals, driving the evolution of counteractive adaptations in cultivated crops. The food crop Sorghum bicolor upregulates the membrane-embedded transporter protein SbMATE in its roots. SbMATE mediates efflux...
This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital c...
A deficiency of the micronutrient copper (Cu) leads to infertility and grain/seed yield reduction in plants. How Cu affects fertility, which reproductive structures require Cu, and which transcriptional networks coordinate Cu delivery to reproductive organs is poorly understood. Using RNA-seq analysis, we showed that the expression of a gene encodi...