Leon Hostetler

Leon Hostetler
Michigan State University | MSU · Department of Physics and Astronomy

PhD Student

About

8
Publications
161
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11
Citations
Additional affiliations
May 2018 - May 2022
Michigan State University
Position
  • PhD Student
Education
May 2018 - May 2020
Michigan State University
Field of study
  • Physics
May 2018 - May 2022
Michigan State University
Field of study
  • Physics, CMSE
August 2015 - May 2018
Florida State University
Field of study
  • Physics, Applied/Computational Mathematics

Publications

Publications (8)
Preprint
Full-text available
We discuss recent progress in Tensor Lattice Field Theory and economical, symmetry preserving, truncations suitable for quantum computations or simulations. We focus on spin and gauge models with continuous Abelian symmetries such as the Abelian Higgs model and emphasize noise-robust implementations of Gauss's law. We discuss recent progress concer...
Preprint
Full-text available
The $q$-state clock model is a classical spin model that corresponds to the Ising model when $q=2$ and to the $XY$ model when $q\to\infty$. The integer-$q$ clock model has been studied extensively and has been shown to have a single phase transition when $q=2$,$3$,$4$ and two phase transitions when $q>4$.We define an extended $q$-state clock model...
Preprint
It is not possible, using standard lattice techniques in Euclidean space, to calculate the complete fermionic spectrum of a quantum field theory. Algorithms running on quantum computers have the potential to access the theory with real-time evolution, enabling a direct computation. As a testing ground we consider the 1 + 1-dimensional Schwinger mod...
Article
Full-text available
Motivated by recent attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we define an extended-O(2) model by adding a γcos(qφ) term to the ordinary O(2) model with angular values restricted to a 2π interval. In the γ→∞ limit, the model becomes an extended q-state clock model that reduces to t...
Preprint
Full-text available
We define an extended-O(2) model by adding a $\gamma \cos(q\varphi)$ term to the ordinary O(2) model with angular values restricted to a $2\pi$ interval. In the $\gamma \rightarrow \infty$ limit, the model becomes an extended $q$-state clock model that reduces to the ordinary $q$-state clock model when $q$ is an integer and otherwise is a continuat...

Network

Cited By