# Leon HostetlerIndiana University Bloomington | IUB · Department of Physics

Leon Hostetler

Doctor of Philosophy

## About

13

Publications

432

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

35

Citations

Additional affiliations

May 2018 - May 2022

Education

May 2018 - May 2020

May 2018 - May 2022

August 2015 - May 2018

## Publications

Publications (13)

We present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation (ASP) is proved to be effective, in practice it leads to large CNOT gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provide...

Motivated by attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we study an extended-O(2) model in two dimensions that differs from the ordinary O(2) model by the addition of an explicit symmetry breaking term − h q cos ( q φ ) . Its coupling h q allows to smoothly interpolate between the O...

Motivated by attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we consider an extended-O(2) model that differs from the ordinary O(2) model by an explicit symmetry breaking term. Its coupling allows to smoothly interpolate between the O(2) model (zero coupling) and a $q$-state clock model...

We discuss recent progress in Tensor Lattice Field Theory and economical, symmetry preserving, truncations suitable for quantum computations or simulations. We focus on spin and gauge models with continuous Abelian symmetries such as the Abelian Higgs model and emphasize noise-robust implementations of Gauss's law. We discuss recent progress concer...

The $q$-state clock model is a classical spin model that corresponds to the Ising model when $q=2$ and to the $XY$ model when $q\to\infty$. The integer-$q$ clock model has been studied extensively and has been shown to have a single phase transition when $q=2$,$3$,$4$ and two phase transitions when $q>4$.We define an extended $q$-state clock model...

It is not possible, using standard lattice techniques in Euclidean space, to calculate the complete fermionic spectrum of a quantum field theory. Algorithms running on quantum computers have the potential to access the theory with real-time evolution, enabling a direct computation. As a testing ground we consider the 1 + 1-dimensional Schwinger mod...

Motivated by recent attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we define an extended-O(2) model by adding a γcos(qφ) term to the ordinary O(2) model with angular values restricted to a 2π interval. In the γ→∞ limit, the model becomes an extended q-state clock model that reduces to t...

We define an extended-O(2) model by adding a $\gamma \cos(q\varphi)$ term to the ordinary O(2) model with angular values restricted to a $2\pi$ interval. In the $\gamma \rightarrow \infty$ limit, the model becomes an extended $q$-state clock model that reduces to the ordinary $q$-state clock model when $q$ is an integer and otherwise is a continuat...