Lennart Rubbert

Lennart Rubbert
National Institute of Applied Science | INSA · Department of Mechatronics

PhD in robotics
Design of compliant mechanisms for medical devices

About

36
Publications
13,983
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
158
Citations
Introduction
Lennart Rubbert currently works at the ICube, National Institute of Applied Science. Lennart does research in Mechanical Engineering and Biomedical Engineering.
Additional affiliations
September 2015 - present
National Institute of Applied Science
Position
  • Professor (Associate)

Publications

Publications (36)
Article
Full-text available
The rigid-body replacement method is often used when designing a compliant mechanism. The stiffness of the compliant mechanism, one of its main properties, is then highly dependent on the initial choice of a rigid-body architecture. In this paper, we propose to enhance the efficiency of the synthesis method by focusing on the architecture selection...
Article
Full-text available
We define isotropic springs to be central springs having the same restoring force in all directions. In previous work, we showed that isotropic springs can be advantageously applied to horological time bases since they can be used to eliminate the escapement mechanism. This paper presents our designs based on planar serial 2–DOF linear isotropic sp...
Article
Full-text available
Compliant Wren mechanisms (CWM) constitute specific compliant structures of particular interest. Derived from Wren mechanisms, they can exhibit a large variety of motions, from quasi translation to quasi rotation. In this paper, the development of models for the analysis and synthesis of CWM is considered. A kinematic model is introduced first to a...
Book
Flexure mechanism design is an art, and this book provides the theoretical and practical foundation for scientists and engineers to express their creativity in this field. Flexure mechanisms, also known as compliant mechanisms, rely on the elasticity of matter to provide motion to mechanism linkages. Flexure mechanisms eliminate the disadvantages o...
Article
Full-text available
Compliant mechanisms are of great interest in precision engineering. In this paper, we propose a higher-order continuation method to help their rigid-body kinematic design. The method helps to investigate the choice of a mechanism configuration through the whole exploration of the workspace, and eases the kinematic analysis to avoid, or take advant...
Article
Full-text available
In this paper, the use of the Kresling tower origami as a building block for compliant mechanism design is considered. Design tools to help building systems using this origami are introduced. First, a model which can describe the tower kinematics during its deployment is introduced. This model is exploited to link the origami pattern geometry to th...
Conference Paper
Full-text available
In this paper, the use of the Kresling tower origami as a building block for compliant mechanism design is considered. Two contributions are introduced to develop a synthesis method of such a building block. First, models to link the origami pattern geometry to the Kresling tower kinematics are derived. The position of stable configurations, the le...
Article
Full-text available
Manipulation at the sub-micron scale often requires force-sensing capabilities of milli- to nanonewton forces. This article presents a novel design of a compliant load cell with mechanically adjustable stiffness. The system enables adapting force sensitivity to the requirements of a specific application. The principle of the stiffness adjustment is...
Chapter
Full-text available
In this paper, we introduce the design of a variable-diameter wheel for mobile robots. The goal is to improve maneuverability and crossing capacity of such robots by actively controlling the diameter of wheels. Origami patterns have been recently considered in robotics for the design of compliant and deployable structures. In our context, complianc...
Chapter
Full-text available
In this paper, we present an experimental evaluation of tactile feedback for remote needle insertion in soft tissues. A needle with tip force sensing is used to detect changes of tissues and puncture events during insertion. This information is provided to the user during teleoperation by means of a tactile display. Evaluation is conducted by repro...
Conference Paper
Full-text available
Bistable mechanisms can be used for performing specific functions such as locking or negative stiffness generation. These compliant structures are then of interest at different scales, with different corresponding manufacturing technologies. One of them is additive manufacturing, which is interesting for the integration of such structures. Although...
Conference Paper
Full-text available
Remote manipulation in robotized percutaneous procedures can offer increased safety to radiologists as well as patients. Providing feedback to the radiologist on needle-tissue interactions is however mandatory in addition to the medical images. A tactile feedback strategy is developed in this paper. Two types of information are considered: tissue p...
Article
Full-text available
The use of mechanical bistable structures in the design of microrobots and mesorobots has many advantages especially for flexible robotic structures. However, depending on the used fabrication technology, the adequacy of theoretical and experimental mechanical behaviors can vary widely. In this paper, we present the manufacturing results of bistabl...
Conference Paper
Full-text available
Microbiota analysis is a fundamental element for a better understanding of microbiota role, its relationship with the human body and its impact on different pathologies. There is today no non-invasive tool for easy collection of the microbiota in the small intestine. In this paper, we describe the development of such a device that opens the way to...
Article
Full-text available
Classical mechanical watch plain bearing pivots have frictional losses limiting the quality factor of the hairspring-balance wheel oscillator. Replacement by flexure pivots leads to a drastic reduction in friction and an order of magnitude increase in quality factor. However, flexure pivots have drawbacks including gravity sensitivity, nonlinearity...
Chapter
Robot design in contexts such as computer-assisted medical interventions remains challenging. Compact, dexterous mechanisms with particular mobilities are needed, the synthesis of which requires a systematic evaluation of workspace and singular positions. The evaluation of singular positions and their classification are still difficult to perform i...
Article
Full-text available
In previous work, we showed that two degree of freedom oscillators can be advantageously applied to horological time bases since they can be used to eliminate the escapement mechanism. We subsequently examined planar two degree of freedom oscillators based on parallel flexure stages. We noted that these oscillators are strongly affected by the orie...
Article
An original exploration strategy for the analysis of parallel mechanisms based on a generic higher-order continuation method is proposed for accurate calculation of the numerical solutions. The method requires the closed-loop kinematic equations only, which makes it easy to implement. As an illustration, the paper discusses the kinematic analysis o...
Patent
Full-text available
The mechanical isotropic harmonic oscillator comprises at least a two degrees of freedom linkage supporting an orbiting mass with respect to a fixed base with springs having isotropic and linear restoring force properties wherein the mass has a tilting motion. The oscillator may be used in a timekeeper, such as a watch.
Patent
Full-text available
The mechanical isotropic harmonic oscillator comprises at least a two degrees of freedom linkage supporting an orbiting mass with respect to a fixed base with springs having isotropic and linear restoring force properties wherein the mass has a tilting motion. The oscillator may be used in a timekeeper, such as a watch.
Patent
The mechanical isotropic harmonic oscillator comprises at least a two degrees of freedom linkage supporting an orbiting mass with respect to a fixed base with springs having isotropic and linear restoring force properties. The oscillator may be used in a timekeeper, such as a watch.
Conference Paper
Full-text available
Résumé Depuis son introduction en 1675, le balancier-spiral est la base de temps exclusive de la montre mécanique. Or cet oscillateur présente deux difficultés limitatives qui n'ont jusqu'à présent pas été contournées : un facteur de qualité limité (en particulier par des phénomènes tribologiques), ainsi que la nécessité d'un échappement, mécanisme...
Conference Paper
Full-text available
In this paper we present the design of a compact active cardiac stabilizer based on planar compliant mechanisms and piezoelectric actuators. Considering an assembly of planar manufactured structures helps to simplify the manufacturing process and may increase the compactness. Parallel architectures constitute interesting solutions for their intrins...
Article
Full-text available
Surgical robotics helps to increase the surgeon's accuracy and limits the invasiveness of the surgery. The complexity of an operation room implies to design surgical devices that are as compact as possible and that can be easily sterilized. One interesting design approach is to combine compliant mechanisms, which have a monolithic structure, and pi...
Conference Paper
Full-text available
This paper presents a design method dedicated to compliant mechanisms, with emphasis on the use of ant colony optimization to determine the optimal geometry of a mechanism. Ant colony optimization is of particular interest because it does not need any fine tuning of its internal parameters. This robustness and the efficiency of the design method ar...
Conference Paper
Full-text available
Giving assistance to surgeons during beating heart procedures is currently a great challenge in medical robotics: a high level of safety is required while the beating heart yields high forces and dynamics. In this article, we investigate the design of an active cardiac stabilizer that will provide a motionless area of interest during the surgery. A...
Conference Paper
Full-text available
A new design method for parallel compliant mechanisms based on the singularity analysis of parallel mechanisms is presented in this paper. Here a 3-US parallel mechanism is introduced and its singular configurations are analyzed with Grassmann–Cayley algebra for the design of a compliant mechanism with RRP mobilities. A novel architecture of compli...
Article
Full-text available
In this paper, three aspects of the use of compliant mechanisms for a new surgical tool, an active cardiac stabilizer, are outlined. First, the interest of compliant mechanisms in the design of the stabilizer is demonstrated with in vivo experimental evaluation of the efficiency of a prototype. We then show that the specific surgical constraints le...

Network

Cited By

Projects

Projects (5)
Archived project
Design of an active cardiac stabilizer based on compliant mechanisms and piezoelectric actuator