
PD
F

PR
O

O
F

Public-key Primitives

Lejla BATINA a,1, Stefaan SEYS a, Bart PRENEEL a, and Ingrid VERBAUWHEDE a

a SCD/COSIC, Dept. Electrical Engineering (ESAT), K. U. Leuven, Belgium

Abstract. Wireless sensor networks consist of tiny senor nodes with limited com-
puting and communicating capabilities and, more importantly, with limited energy
resources. In this chapter we evaluate the power consumption of Public-key al-
gorithms and investigate whether these algorithms can be used within the power
constrained sensor nodes. We evaluate conventional digital signature schemes and
encryption schemes, one-time signature schemes and Public-key authentication
schemes.

Keywords. Public-key cryptography, efficient implementation, power consumption

1. Introduction and Motivation

The suitability of Public-key (PK) algorithms for sensor networks is an open research
problem as limitations in costs, area and power are quite severe. There exists a common
concept of Public-key Cryptography (PKC) being too slow and too expensive for low-
cost pervasive applications and most of the protocol proposals deal only with symmetric-
key cryptography.

However, the security in wireless sensor networks is becoming more and more rele-
vant as a large number of nodes is exposed in sometimes hostile environments. The key
protection is therefore of utmost importance and for that reason there is a clear advantage
of using PKC.

Besides, various cryptographic services are required for these applications such
as encryption, broadcast authentication, key exchange etc. Usual solutions to use
symmetric-key algorithms such as AES and MACs are not just complicating issues such
as key protection and management but can be at the same time even more expensive with
respect to power and energy consumed. In addition, the use of PKC reduces power due
to less protocol overhead [1].

To the best of our knowledge very few papers discuss the possibility for PKC in
these applications although the benefits of PKC are evident especially for key distribu-
tion between the nodes and various authentication protocols. For example, the authenti-
cation of the base station is easily performed assuming the Public key of the base station
can be stored in each node [2]. One of the reasons is that software-only approach for
PKC is very expensive. There has a been a several studies showing that pure software
implementations are to slow on some platforms to fulfil the security requirements [4].

1Corresponding Author: Lejla Batina, SCD/COSIC, Dept. Electrical Engineering (ESAT), K. U. Leuven,
Belgium; E-mail: lejla.batina@esat.kuleuven.be.

Wireless Sensor Network Security
J. Lopez and J. Zhou (Eds.)
IOS Press, 2008
© 2008 The authors and IOS Press. All rights reserved.

77

PD
F

PR
O

O
F

However, already a small hardware module to accelerate computationally intensive finite
field operations results in a huge improvement in performance of a factor of almost 2 or-
ders of magnitude [5]. Nevertheless, one of the recent works shows that PKC for sensor
nets might be possible even as a pure software solution [3].

In this chapter we describe Public-key Cryptography based solutions for security
services such as encryption, key-distribution and authentication as required for wireless
sensor networks. We discuss suitable protocols and the costs they imply. We restrict our-
selves to existing protocols, although we believe that a substantial improvement can be
obtained by revisiting and eventually redesigning the existing solutions. So, the selection
of algorithms we address in this work is mainly based on previous proposals. We also
argue that a custom hardware assisted approach to implement PKC in order to obtain
stronger cryptography as well as to minimize the power might be the right one for light-
weight applications as proposed by several publications so far [14,1,7]. We discuss and
elaborate our design choices on all levels of the protocols hierarchy. Our results show
feasible solution for Public-key Cryptography for these applications.

As an example we show that the Elliptic Curve Cryptography (ECC) algorithms that
minimize the memory requirements and that require the fewest field operations seem to
be a suitable for sensor nets applications. Furthermore, as we focus on hardware assisted
approach for ECC implementations we describe a very compact arithmetic and control
unit to support ECC protocols [14].

The chapter is organized as follows. In sections 2 and 3 we describe Public-key
algorithms that can be used for encryption and digital signatures respectively. Next to
traditional signature schemes, section 3 also includes a selection of efficient one-time
signature schemes based on a general one-way function (OWF) f . Next we describe
a number of authentication schemes in section 4. Finally, in section 5 we describe the
performance of the different systems we described. This includes both a performance
evaluation in software and in hardware.

2. Public-key Encryption Schemes

2.1. RSA Encryption

The best known Public-key encryption scheme is RSA. It was invented by Rivest, Shamir
and Adleman in 1978 [49]. The textbook version of the RSA encryption scheme is de-
picted in Alg. 1.

The security of RSA against a chosen-plaintext attack relies on the difficulty of com-
puting the e-th root of a ciphertext c modulo a composite integer n. This is known as the
RSA problem. The difficulty of the RSA problem depends on the difficulty of the inte-
ger factorization problem, i.e., given an odd composite integer with at least two distinct
prime factors it is hard to provide one of these prime factors. Clearly, an algorithm that
solves the integer factorization problem will solve the RSA problem since this is exactly
what happens in the RSA key setup process. However, the converse is still an open prob-
lem: can the integer factorization problem be hard if the RSA problem is not hard? For a
rigorous security analysis of the RSA scheme and further references we refer to [39].

The naive description of the RSA encryption scheme in Alg. 1 should not be used in
practice. Bellare and Rogaway [31] have proposed a provably secure way of encrypting
messages using RSA or Rabin (see below), known as the OEAP scheme.

L. Batina et al. / Public-Key Primitives78

PD
F

PR
O

O
F

Algorithm 1 The RSA Public-key encryption system

Key setup

1. Generate two large distinct random primes p and q such that |p| ≈ |q|;
2. compute n = pq and φ(n) = (p − 1)(q − 1);
3. generate a random integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1;
4. use the extended Euclidean algorithm to compute the unique integer d such that

1 < d < φ and ed = 1 (mod φ(n));
5. publish (n, e) as the public key, keep (p, q, d) or (n, d) as the private key.

Encryption

Given a public key (n, e), the ciphertext c of message m ∈ Z
∗
n is

c = E(n,e)(m) = me (mod n) .

Decryption

To decrypt the ciphertext c using the secret key (n, d) one computes

m = D(n,d)(c) = cd (mod n) .

It is clear from Alg. 1 that the efficienty of the RSA algorithm depend on the selec-
tion of the parameters p, q and e. The paramters p and q have to be sufficiently large in
order for the algorithm to be secure (i.e., |p| ≈ |q| ≥ 512 bit). The minimum version
for the public exponent e is theoretically 3, but for encryption this is not deemed secure
enough and usually e = 216 + 1 is used. The size of the resulting private exponent d
is much larger (|d| ≈ |n|). From this we can already conclude that the RSA encryption
(public operation) is much more efficient than RSA decryption (private operation).

2.2. Encryption based on EC

The security of many asymmetric cryptographic primitives (e.g., the DSA) relies on the
difficulty of computing a discrete logarithm in a finite cyclic group. In elliptic curve
cryptography, this group is provided by an elliptic curve E defined over Fq with q = pm

and p a prime number, and a definition of a method to add two points on the curve.
The elliptic curve discrete logarithm problem can be defined as follows: given the points
P ∈ E and Q = αP (with α an integer smaller than the order P), find the discrete
logarithm α of Q.

Two well known elliptic curve based encryption schemes are the ECIES [51] (also
known as the Elliptic Curve Augmented Encryption Scheme or simply the Elliptic Curve
Encryption Scheme) and PSEC [51]. The security of ECIES is based on the difficulty of
the Computational Diffie-Hellman problem for elliptic curves: Given the points P ∈ E ,
Q = αP and R = βP (with α, β integers smaller than the order P), compute αβP . The
ECIES is closely related to the Diffie-Hellman Integrated Encryption Scheme (DHIES)
construction in [28]. PSEC is a family of Diffie-Hellman based encryption schemes that
are all provably secure in the random oracle model. The security of each member of the

L. Batina et al. / Public-Key Primitives 79

PD
F

PR
O

O
F

Table 1. Elliptic curve, symmetric primitives, RSA and discrete log in F
∗
q key length comparison.

Symmetric primitive Elliptic curve discrete log (F∗
q) and RSA

key lengths key lengths key lengths

80 160 1024
112 224 (×1.4) 2048 (×2)
128 256 (×1.6) 3072 (×3)
192 384 (×2.4) 7680 (×7.5)
256 512 (×3.2) 15360 (×15)

family is based on a different variant of the Diffie-Hellman problem. Note that these en-
cryption schemes have been standardized by different standardization bodies, and unfor-
tunately the versions are not always compatible.

The advantage of elliptic curves is that they can provide the same level of security
as RSA or the DSA with substantially smaller key sizes. Note that the signature sizes
for both, the DSA and the ECDSA are exactly 2 times the field size. Table 1 lists elliptic
curve key lengths and rough estimates of key sizes of symmetric primitives, RSA and
discrete log based cryptosystems (both over F

∗
q and elliptic curves) that provide the same

level of security. These estimates were obtained from [50], and they are roughly the same
as those proposed in a very detailed paper by Lenstra and Verheul [38]. Table 1 also
shows how fast the key sizes grow (compared to the security of an 80-bit symmetric key).
This means that in the future, the key size advantage of elliptic curve based cryptosystems
will only improve.

2.3. NTRU encrypt

NTRU [19] is one of the most efficient Public-key cryptosystems known and it provides
encryption as well as signatures. The corresponding protocols are NTRUEncrypt and
NTRUSign. The security of NTRU-based schemes depends on the difficulty of certain
lattice problems. The authors of the NTRU cryptosystem recommend to use a lattice of
dimension ≥ 500, based on their own experiments [20].

The security of NTRU primitives has been an active research area for the past decade
and NTRUSign has been successfully attacked as well as its improvements. On the
other hand NTRUEncrypt appeared to be a secure scheme against all known attacks till
very recent publication of Gama and Nguyen [26]. The authors introduced new chosen-
ciphertext attacks on NTRUEncrypt that work in the presence of decryption failures.
NTRU cryptosystems are now evaluated by IEEE standardization group.

The efficiency i.e. the speed and compactness are due to the fact that both protocols
rely on inexpensive operations on polynomials with small coefficients. Here we focus on
the encryption scheme that seems to have better chances to be adopted for applications
such as smart cards, RFID tags and sensor nets due to its suitability for constrained
environments as well as stronger security than NTRUSign and the successors of it.

NTRU schemes are based on arithmetic in a polynomial ring Z(x)/((xN − 1), q)
with a parameters (N, p, q) with certain properties [19]. The key operation is multipli-
cation in the ring (here denoted as *) that can be explained as the convolution product
of two vectors a and b written as: a(x) = a0 + a1x + a2x

2 + . . . + aN−1x
N−1 and

b(x) = b0+b1x+b2x
2+. . .+bN−1x

N−1. Then the product c(x) = a(x)∗b(x) mod q, p
has coefficients ck that are computed as the sum of partial products aibj where i + j ≡

L. Batina et al. / Public-Key Primitives80

PD
F

PR
O

O
F

Algorithm 2 NTRU Public-key encryption system

Key setup

1. Choose a random polynomial F (x) from the ring R. F (x) should have small
coefficients i.e. either from the set {0, 1} (when p = 2) or from {−1, 0, 1} (when
p = 3 or p = x + 2);

2. Let f(x) = 1 + pF (x). (This construction for f(x) is not necessary but it is
recommended in order to decrease the decryption failure rate.);

3. Choose a random polynomial g(x) ∈ R in the same way as F (x) is chosen;
4. Compute the inverse of f(x), so f−1 mod q;
5. Compute h(x) = g(x) ∗ f−1(x) mod q;
6. Publish h(x) as the public key and keep f(x) as the private key.

Encryption

1. Encode the plaintext message into a polynomial m(x) with coefficients from
{0, 1} or {−1, 0, 1};

2. Choose a random polynomial φ(x) ∈ R as above;
3. Compute the ciphertext as polynomial c(x) = pφ(x) ∗ h(x) + m(x)(modq).

Decryption

To decrypt the ciphertext c(x) using the secret key f(x) one computes the message poly-
nomial m′(x) = c(x) ∗ f(x) mod p and maps the coefficient of m′ to plaintext bits.

k mod N . The moduli for reduction are p and q for decryption and encryption/key setup
respectively. For a detailed description as well as mathematical background we refer
to [19]. Algorithm 2 shows the details of the encryption algorithm.

Considering performance numbers Gaubatz et al. [2] showed that Rabin’s scheme is
not a feasible solution while NTRUEncrypt can be implemented in not more than 3000
gates with an average power consumption of less than 20 μW at a clock frequency of
500 kHz. These figures are obtained for the parameters that are guaranteeing 57 bits of
security and they are acceptable for sensor nets applications.

3. Digital Signature Schemes

3.1. ECDSA

A well known elliptic curve based digital signature scheme is the ECDSA [36]. The
ECDSA is the elliptic curve analogue of the DSA. It was added to the DSS in 2000 (FIPS
PUB 186-2). The algorithm is shown in Alg. 3.

The Digital Signature Algorithm (DSA) is well known as the service that uniquely
binds a message and a sender. This problem is based on the Discrete logarithm problem
(DLP) i.e. on the difficulty of computing logarithms in a large finite field. Another pro-
tocol which provides a digital signature, is the ECDSA protocol, which is performed as
follows [21]:
ECDSA protocol:

The ECDSA is specified by an elliptic curve E defined over Fq and a publicly known

L. Batina et al. / Public-Key Primitives 81

PD
F

PR
O

O
F

Algorithm 3 The ECDSA signature scheme

Setup of system parameters

Select an elliptic curve E defined over Fq (with q = pm, where p is a prime number),
and a publicly known point G ∈ E of large prime order n.
Key setup

1. Select a random integer d ∈R [1, n[,
2. Compute Q = dG,
3. Publish Q as the public key, and keep d as the private key.

Signature generation

1. Select a random integer k ∈R [1, n[;
2. Compute kG = (x1, y1);
3. Compute r = x1 (mod n), if r = 0 the go back to step 1;
4. Compute s = k−1(H(m)+dr) (mod n), where H is a hash algorithm that maps

{0, 1}∗ to [1, n[; if s = 0 the go back to step 1;
5. the signature of message m is (r, s).

Signature verification

Given a public key Q, the system parameters and a message-signature pair (m, (r, s)),
the verifier can verify the signature with the following procedure:

1. Verify that r and s are integers in the interval [1, n[;
2. Compute w = s−1 (mod n);
3. Compute u1 = H(m)w (mod n) and u2 = rw (mod n);
4. Compute u1G + u2Q = (x0, y0) and v = x0 (mod n);
5. VerifyQ(m, (r, s)) = true if v = r.

point G∈E of prime order n. A private key of Alice is a scalar x and the corresponding
public key is Q=x G∈E. The ECDSA requires a hash function which is a computationally
efficient function mapping binary strings of arbitrary length to binary strings of some
fixed length, called hash-values as defined in Chapter 1.

3.2. RSA, Rabin and DSA Signatures

3.2.1. RSA Signature Scheme

The key setup of the RSA signature scheme is the same as the key setup of the RSA
encryption scheme. The signature of message m ∈ Z

∗
n is s = md (mod n). Given

a public key (n, e) and a message-signature pair (m, s), a signature is valid if m =
se (mod n).

It is easy to see that (for the textbook version) the RSA signing procedure is the
same as the RSA decryption procedure, and signature verification is the same as en-
cryption. Without additional measures, it is straightforward to forge a signature (i.e.,
generate a valid signature without knowledge of the private key on a message that has
not been signed by the owner of the private key). Suppose an adversary has obtained

L. Batina et al. / Public-Key Primitives82

PD
F

PR
O

O
F

two valid message-signature pairs (m1, s1) and (m2, s2). By multiplying the signatures
she gets a valid signature on the product of the two messages: s1 × s2 (mod n) =
md

1 ×md
2 (mod n) = (m1 ×m2)d (mod n). Note that the adversary has no option (next

to multiplying different message pairs) to manipulate the message on which he obtains a
signature. This and other methods of forgery are known as existential forgeries.

A usual method of detecting existential forgeries is to add recognizable redundancy
to the message to be signed, which permits a verifier the correct “format” of the signed
message. The most common method for adding recognizable information to a message is
to apply a cryptographic hash function before applying the signature algorithm. Usually,
this hash computation (and other measures such as padding) are an integral part of a
digital signature scheme. Bellare and Rogaway [32] have presented a provably secure
way of creating signatures with RSA and Rabin (see below), known as the PSS. The
proof of security for PSS relies on the random oracle model, in which hash functions
are modeled as being truly random functions. In contrast, the method for creating digital
signatures with RSA that is described in PKCS #1 [45] has not been proven secure, even
if the underlying RSA primitive is secure. PSS-R is a message recovery variant of PSS
with the same provable security.

3.2.2. DSA Signature Scheme

The DSA is part of the DSS which was first announced in 1991 by NIST and published
in 1994 (FIPS PUB 186). The security of the DSA is based on the difficulty of computing
a discrete logarithm in the finite cyclic group F

∗
q with q prime. This is called the discrete

logarithm problem: Given the integers x and y = xα ∈ F
∗
q (with x a generating element

of the group, and α < q − 1), find the discrete logarithm α of y. As the best algorithms
known for the integer factorization and discrete log problems have the same expected
running times [40], the required key sizes for RSA and the DSA are the same. The DSA
algorithm is the same as the ECDSA algorithm (Alg. 3), but uses the finite cyclic group
F
∗
q instead of the group provided by an elliptic curve.

3.3. One-time signature schemes

3.3.1. Introduction

One-time signatures have been known since the late 1970s. They were introduced by
Diffie and Hellman [34], Lamport [37] and Rabin [47]; but they are usually known in
the form presented by Merkle [42,43]. These schemes are based on one-way function,
rather than on trapdoor functions that are used in traditional schemes such as RSA and
the DSA.

In its basic form, the Lamport-Diffie scheme can be used to sign a single bit of data.
The secret key consists of two random values x0 and x1, while the public key is obtained
by applying the OWF f to the secret values, resulting in the pair {f(x0), f(x1)}. The
signature for bit b is xb. The security of this scheme relies on the one-wayness of the
function f , i.e., given the public key, it is impossible to compute the private key (and
thus forge a signature) without breaking the one-way property of f . It is also clear that
a public/private key pair can only be used once since the signature is equal to part of the
private key. To sign longer messages, several instances of this scheme are used. In order
to sign an s-bit message one requires 2s public key values and 2s private key values. A
signature consists of s values.

L. Batina et al. / Public-Key Primitives 83

PD
F

PR
O

O
F

Algorithm 4 Lamport-Diffie signature scheme with Merkle improvement (LDM)

Setup of system parameters

Select a OWF f mapping {0, 1}l to {0, 1}l. Let s be the fixed length of the messages to
be signed (s = |m|).
Key setup

1. Generate t = s + log2(s)� random values x1, x2, . . . , xt with |xi| = l,
2. let sk = {x1, x2, . . . , xt},
3. compute pk = {f(x1), f(x2), . . . f(xt)},
4. publish pk as the one-time public key, keep sk as the one-time private key.

Signature generation

Let bi be the i-th bit of 〈m,w〉 with w the Hamming weight of the message m. The
signature of message m is

σ = Signsk (m) = {all xi for which bi = 1} .

Signature verification

Given a public key pk = {v1, v2, . . . , vt} and a message-signature pair (m,σ), the veri-
fier can verify the signature with the following procedure (bi is the i-th bit of 〈m,w〉):

Verifypk (m,σ) = true if f(σα) = vi for all i where bi = 1 .

(σα indicates the corresponding value in the signature, e.g., α = 3 for the 3rd ‘1’ bit in
〈m,w〉.)

3.3.2. Lamport-Diffie scheme with Merkle improvement

Merkle [41] proposed an improvement that allows to reduce the key sizes by a factor of
two and the signature size by almost a factor of two. Instead of generating two private
key values for every bit in the message, Merkle suggests to only generate one value. The
public key values are still obtained by applying the function f to the private key values.
Now, for every bit in the message that is ‘1’, include the corresponding private key value
in the signature; for every bit that is ‘0’, omit the corresponding private key value. On
average, this results in a signature that contains s/2 private key values. Obviously, the
verifier can always claim not to have received a particular private key value, and therefore
pretend that some of the ‘1’ bits in the message that was signed were actually ‘0’ bits.
This can be remedied by adding the Hamming weight of the message before signing
it. This count requires log2(s) bits. We will refer to this scheme as the Lamport-Diffie
one-time signature scheme with Merkle improvement (LDM) (Alg. 4).

3.3.3. Lamport-Diffie scheme with Winternitz improvement

In [43] Merkle proposes a different variant of the Lamport-Diffie scheme, attributed by
Merkle to Winternitz. This scheme reduces the size of the signature at the cost of ad-
ditional computations. Instead of applying the OWF f once to the private key to obtain
the public key, the function f is applied iteratively a fixed number of times. With ev-

L. Batina et al. / Public-Key Primitives84

PD
F

PR
O

O
F

ery resulting public/private key value pair it is possible to sign multiple bits. Briefly the
scheme works as follows: To sign 4 bits with a single public/private key value pair, we
apply the function f 15 times (= 24 − 1), thus the public key becomes v = f15(x). To
sign the message 1001 (9 in decimal), the signer makes σ = f15−9(x) public. Anyone
can check that f9(σ) = f9(f15−9(x)) = v, thus confirming that f15−9(x) was made
public. No one besides the signer could have generated this value. Again extra redun-
dancy has to be added to the signature in order to prevent people from changing the
signature on 1001 into a signature on, for example 1000 (8 in decimal), by computing
f(f15−9(x)) = f15−8(x).

The complete scheme is described in Alg. 5. Note that a different mechanism is used
to add the necessary redundancy to the signature. This solution reduces the signature size
even further at the cost of additional computations. The redundancy in this scheme is
encoded in the signature value σ0 and requires one additional public/private key value
pair {x0, v0}. Again we assume that the message m is hashed before it is fed to the
signing algorithm.

3.3.4. The HORS one-time signature scheme

Reyzin and Reyzin propose a very efficient one-time signature scheme based on subset
selection [48]. Their scheme builds on a construction proposed by Bos and Chaum in
[33] that allows to sign r ≥ 1 messages with a single public/private key pair.

In short, the signature scheme proposed by Bos and Chaum works as follows: the
public/private key pair is generated as in the basic Lamport-Diffie scheme, i.e., the public
key is obtained by applying a OWF f to each of the t values of the private key. The
signing algorithm uses a bijective function S that, on input m (0 ≤ m <

(
t
k

)
), outputs the

m-th k-element subset of the set T = {1, 2, . . . , t}. Let this subset be {i1, i2, . . . , ik}.
The signature for message m is {xi1 , xi2 , . . . , xik

}. Because each message results in
a different k-element subset (due to the bijective property of S), in order to forge a
signature after obtaining a single message-signature pair, the forger will have to invert
the OWF f at least once (i.e., for all elements in the forged signature that are not part of
the obtained signature). This makes it possible to reduce the security of this scheme to
the one-wayness of the function f .

Reyzin and Reyzin propose to replace the subset selection function S by a crypto-
graphic hash function H . The hash value h = H(m) is split into k parts of equal length.
Every part is interpreted as an integer and the collection of all these integers is the subset
that will be used to select the private key values to be included in the signature. Reyzin
and Reyzin have called this scheme HORS for “Hash to Obtain Random Subset”; this
algorithm is described in Alg. 6.

If we assume that the hash function H behaves like a random oracle [30], and that
the adversary obtained signatures on r random messages using the same private key.
The probability that an adversary is able to forge a signature on a new message (without
inverting the OWF f) is at most (rk/t)k. This is the probability that after rk elements of
sk have been made public, k elements are chosen (at random) that are a subset of them.

Security level of HORS The security level of the HORS signature scheme in combina-
tion with the hash function H , is defined as Σ = − log2(P). Here, P is the probability
of breaking the (r + 1, k) subset resilience of the hash function H , assuming that H
behaves like a random oracle. This probability P is at most (rk/t)k .

L. Batina et al. / Public-Key Primitives 85

PD
F

PR
O

O
F

Algorithm 5 Lamport-Diffie one-time signature scheme with Winternitz improvement
(LDW)

Setup of system parameters

Select a OWF f mapping {0, 1}l to {0, 1}l. Let s be the fixed length of the messages to
be signed (s = |m|). Select the system parameter g such that g|s.
Key setup

1. Generate s/g + 1 random values x0, x1, . . . , xs/g with |xi| = l,
2. let sk = {x0, x1, . . . , xs/g},
3. compute pk = {f (2g−1)s/g(x0), f2g−1(x1), . . . f2g−1(xs/g)},
4. publish pk as the one-time public key, keep sk as the one-time private key.

Signature generation

1. Split the message m into s/g parts, let these parts be m1,m2, . . . , ms/g ,
2. interpret each mj as an integer Ij ,

The signature of message m is

σ = Signsk (m) = {σ0, . . . , σs/g}

with
{

σi = F 2g−1−Ii(xi) for 1 ≥ i ≥ s/g
σ0 = F δ(x0) with δ =

∑
i>0 Ii .

Signature verification

Given a public key pk = {v0, v1, . . . , vs/g} and a message-signature pair (m,σ), the
verifier can verify the signature with the following procedure:

1. Split the message m into s/g parts, let these parts be m1,m2, . . . , ms/g ,
2. interpret each mj as an integer Ij ,
3. verify the validity of the signature using

Verifypk (m,σ) = true if
{

vi = F Ii(σi) for 1 ≥ i ≥ s/g
v0 = F 2g−1−δ(σ0)with δ =

∑
i>0 Ii

The parameters k, t and s cannot be chosen independently, but have to satisfy s =
k log2(t). Using this, the probability can be rewritten as 2−Σ with

Σ = k
(
s/k − log2(k) − log2(r)

)
. (1)

As an example, for s = 160, k = 16 and r = 1 (and t = 1024), the security level is 96;
for r = 4 the security level drops to 64. Using Eq. 1 we can compute the number r of
signatures we can generate per public key, while maintaining a security level Σ̄:

L. Batina et al. / Public-Key Primitives86

PD
F

PR
O

O
F

Algorithm 6 The HORS one-time signature scheme

Setup of system parameters

Select a cryptographic hash function H with output length |H| = s and a OWF f map-
ping {0, 1}l to {0, 1}l. Select the system parameters k and t such that k log2(t) = s.
Key setup

1. Generate t random values x1, x2, . . . , xt with |xi| = l,
2. let sk = {x1, x2, . . . , xt},
3. compute pk = {f(x1), f(x2), . . . , f(xt)},
4. publish pk as the one-time public key, keep sk as the one-time private key.

Signature generation

1. Let h = H(m),
2. split h into k substrings h1, h2, . . . , hk of length |hi| = log2(t),
3. interpret each hj as an integer Ij .

The signature of message m is

σ = Signsk (m) = {xI1 , xI2 , . . . , xIk
} .

Signature verification

Given a public key pk and a message-signature pair (m,σ), the verifier can verify the
signature with the following procedure:

1. Let h = H(m), σ = {σ1, σ2, . . . , σk}, and pk = {v1, v2, . . . , vt},
2. split h into k substrings h1, h2, . . . , hk of length |hi| = log2(t),
3. interpret each hj as an integer Ij ,
4. verify the validity of the signature using

Verifypk (m,σ) = true if f(σj) = vIj for 1 ≤ j ≤ k .

r = (1/k)2(s−Σ̄)/k . (2)

Finally, from Eq. (2) we can compute how many public keys we need to sign S messages:

#pk = S/r = Sk2(Σ̄−s)/k . (3)

As a practical example we will use two different parameter sets with roughly the same
security level: HORS-20 with (s, k, t, r) = (160, 20, 256, 1), providing Σ = 73.5, and
HORS-18 with (s, k, t, r) = (162, 18, 512, 2), providing Σ = 68.9.

L. Batina et al. / Public-Key Primitives 87

PD
F

PR
O

O
F

3.4. One-time Public-key authentication

Two obvious disadvantages of one-time signature schemes are the size of the public key
and the fact that it can only be used a limited number of times. All possible verifiers need
authenticated copies of these public keys, i.e., they need evidence that a particular public
key is related to a particular user . For example, when using LDM with s = 160 and
l = 80, the total size of 1000 public keys is about 1.63 MBytes. One obvious mechanism
to provide authenticated copies of this public key set is to transfer the complete set to
every verifier over some authenticated channel (e.g., using a traditional digital signature
such as ECDSA). The disadvantage is that every verifier has to store 1.63 Mbytes of data
for every potential signer. Fortunately, there are more efficient solutions.

3.4.1. Merkle trees

Merkle proposed the use of binary trees to reduce the authentication of a large number
of public keys to the authentication of a single value, i.e., the root of the tree [43].

Due to space limitations, we will limit the description of Merkle trees to a few key
concepts, for more details we refer to [43].

A Merkle tree is a complete binary tree with an l-bit value associated with each node
such that each interior node value is a OWF of the node values of its children. The N
values that need to be authenticated are placed at the leaves of the tree. Usually these
values need to be kept secret. In that case, the hash values of these secret values are
placed at the leaves of the tree. The hash values leaf i = H(value) are called the leaves
and the secret values are usually called the leaf pre-images. Every parent’s node value
is calculated as a OWF f of the concatenation of the two child values. Because of this
construction the root of the tree can be used to authenticate the leaves. A particular leaf
can be authenticated with respect to the root value and the authentication path of the leaf.

Authentication paths. Let sibi be the value of the sibling of the node on height i on the
path from the leaf to the root. A leaf has height 0, the OWF of two leaves has height 1,
etc., and the root has height H if the tree has 2H leaves. The authentication path is then
the set {sibi | 0 ≤ i ≤ H}.

The goal of Merkle tree traversal is the sequential output of the leaf values
and their authentication paths. In [35], Jakobsson et al. present an algorithm which
allows a time-space trade-off. When storage is minimized, the algorithm requires
about 2 log2(N)/ log2(log2(N)) invocations of f , and a maximum storage space of
1.5 log2

2(N)/ log2(log2(N)) outputs of f . The Merkle tree traversal algorithm by Jakob-
sson starts with the calculation of the tree root. During this root calculation, the initial
internal state of the algorithm is also calculated and stored in memory. This initialization
requires N − 1 invocations of f .

3.4.2. One-way chains

In the three one-time signature schemes we have described, the public key is computed
by applying the OWF f one or more times to the private key, which in turn is nothing
more than a set of random values. Another way of authenticating these public keys is
using one-way chains. Perrig suggests in [44] the use of these one-way chains to au-
thenticate the public keys that are used in the BiBa (Bins and Balls) one-time signa-
ture scheme, but this idea applies equally to other signature schemes. This authentica-

L. Batina et al. / Public-Key Primitives88

PD
F

PR
O

O
F

tion mechanism is especially useful in the setting of a single verifier, or a set of “syn-
chronized” verifiers (i.e., verifiers who all receive the same message-signature pairs at
the same time). A typical example of the latter is broadcast authentication in wireless
networks. All nodes within range of a sending node A have an authenticated copy of the
root of the one-way chain used by A. Node A signs every message it broadcasts with a
one-time signature scheme; this signature is verified by all receiving nodes at the same
time. For the LDM and the LDW a new public key becomes active after every signature,
for the HORS scheme this happens after r signatures. Note that the private key that was
used for signature i becomes the public key for signature i + 1.

The private key of the three one-time signature schemes we have described is always
a set of random values. When using one-time chains for public key authentication, the
signer first generates the root private key (i.e., a single set of random values). He then
applies the OWF f as many times as required (e.g., for LDM and HORS, the public key
is obtained by applying f a single time to the private key; this means that we obtain n

public/private key pairs by applying the function OWF n successive times).
The last set of values we obtain is the first public key that will be used. This public

key is transferred in an authenticated way to all the potential verifiers. The second to last
set of values we obtain is the first private key that will be used. Once this private key has
been used, it becomes the public key to be used for the next message, etc., until the initial
private key is used. At that time, a fresh chain has to be generated and the first public key
of this chain has to be transferred to the verifiers.

Note that longer chains are only disadvantageous for the signer, and not for the
verifiers. The computational effort for signature generation grows for longer chains since
the signer always has to start from the start of the chains. The signer could improve
this by storing multiple intermediate private keys in memory. This technique provides a
means to exchange storage requirements for computation time. For verifiers the length
of the chains has no influence on the performance.

4. Authenticated Key Establishment

4.1. Diffie-Hellman

As already known, key management and exchange do not scale well in the case of large
number of users as the case is for sensor networks. Also the protection of keys is easily
solved by use of PKC. The cost for key exchange in the case of EC operations is one
point multiplication (on each side).

We stress here that all mentioned protocols include other cryptographic primitives
as well, such as hash functions, MACs etc. but for the total cost of a protocol in the case
of ECC point multiplication operation is the most substantial. Therefore, for the results
we take only number of point multiplications into account.

The Diffie-Hellman key agreement protocol gives the first practical solution to
the key exchange problem for two parties. The basic version of this protocol is as fol-
lows [22]:

L. Batina et al. / Public-Key Primitives 89

PD
F

PR
O

O
F

Algorithm 7 Diffie-Hellman key agreement

One time setup

1. A prime p such that (p − 1)/2 = p′, where p′ is also a prime and a generator α
of Z

∗
p, 2 ≤ α ≤ p − 2 are selected and published;

Protocol messages

A → B : αx mod p (1)
B → A : αy mod p (2)

Protocol actions

1. A chooses a random secret x, 1 ≤ x ≤ p − 2 and sends B message (1).
2. B chooses a random secret y, 1 ≤ y ≤ p − 2 and sends A message (2).
3. B receives αx and computes the shared key as K = (αx)y mod p.
4. A receives αy and computes the shared key as K = (αy)x mod p.

4.2. Protocols for Authentication

Sensor node identification requires authentication as a cryptographic service. This prop-
erty can be achieved by symmetric as well as asymmetric primitives. Previously known
work considered mainly symmetric-key algorithms e.g. AES [25].

Here we discuss two authentication protocols. They are both written for the case of
ECC because we look into performance of ECC in more detail in the last section. The
anti-counterfeiting problem can also be rephrased as an authentication problem. This was
explored in [18] for RFIDs.

Other protocols found in the literature include Beth’s identification protocol [23] and
the XDL-IBI scheme in [24]. Beth’s protocol only requires one point multiplication but
it remains an open problem to prove its security against active adversaries. The XDL-
IBI scheme also requires only one point multiplication but is only secure against passive
adversaries and concurrent attacks (under a modified assumption). Thus, it seems that
by analyzing both Schnorr’s and Okamoto’s we cover the efficiency of all available ID
protocols based on the hardness of the DL problem.

4.2.1. Schnorr Identification Protocol based on ECDLP

This protocol is only secure against passive attacks but it is very efficient as it requires
just one ECC point multiplication (for a node).

Here we specify the Schnorr identification protocol [22] based on ECDLP. In this
case a node proves its identity to a station in a 3-pass protocol.

1. Common Input: The set of system parameters in this case consists of: (q, a, b,
P, n, h). Here, q specifies the finite field, a, b, define an elliptic curve, P is a point
on the curve of order n and h is the cofactor. In this case of tag authentication,
most of these parameters are assumed to be fixed.

2. Prover-Tag Input: The prover’s secret a such that Z = −aP .
3. Protocol: The protocol involves exchange of the following messages:

L. Batina et al. / Public-Key Primitives90

PD
F

PR
O

O
F

Prover P Verifier V
r ∈R Zn

X ← rP X �
e� e ∈R Z2t

y = ae + r y �
If yP + eZ = X
then accept, else reject

More precisely, the steps of the protocol are:

• Commitment by a Prover-Tag: The tag picks r ∈R {0, . . . , n − 1}, and sends
X = rP to the reader.

• Challenge from a Verifier-Reader: The reader picks a number e ∈ [1, 2t] and
sends it to the tag.

• Response from a Tag: The tag computes y = ae + r and sends it to the reader.
• The verifier checks that yP +eZ equals X . Check: yP +eZ = (ae+r)P +eZ =

aeP + rP + (−eaP) = rP = X

4.2.2. The Okamoto Identification Protocol based on ECDLP

Another option for secure identification is Okamoto’s identification protocol. We are
considering Okamoto’s identification protocol as it provides security against active ad-
versaries and it is based on the hardness of the DL problem.

1. Common Input: Common input is the set of system parameters consisting of (q,
a, b, P1, P2, n, h) as before.

2. Prover-Tag Input: The prover’s secret (s1, s2) such that Z = −s1P1 − s2P2.
3. Protocol: The protocol involves the exchange of the following messages:

Prover P Verifier V
r1, r2 ∈R Zn

X ← r1P1 + r2P2
X �
e� e ∈R Z2t

yi = ri + esi,

i = 1, 2 y1, y2 �
If y1P1 + y2P2 + eZ = X
then accept, else reject

More precisely, the steps of the protocol are:

• Commitment by a Prover-Tag: The tag picks ri ∈R {0, . . . , n − 1}, i = 1, 2 and
sends X = r1P1 + r2P2 to the reader.

• Challenge from a Verifier-Reader: The reader picks a number e ∈ [1, 2t] and
sends it to the tag.

• Response from a Tag: The tag computes yi = ri + esi, i = 1, 2 and sends those
values to the reader.

• The verifier checks that y1P1 + y2P2 + eZ equals X .
Check: y1P1+y2P2+eZ = (r1+es1)P1+(r2+es2)P +e(−s1P1−s2P2)Z =
r1P1 + r2P2 = X

L. Batina et al. / Public-Key Primitives 91

PD
F

PR
O

O
F

Algorithm 8 Simultaneous point multiplication
Require: k = (kt−1, . . . , k0)2, l = (lt−1, . . . , l0)2, P,Q points on the curve
Ensure: R = kP + lQ

1: Compute P + Q
2: R ← ∞
3: for i from t − 1 downto 0 do

4: R ← 2R
5: R ← R + (kiP + liQ)
6: end for

7: Return(R)

In [18], the feasibility of the ECC version of Schnorr’s identification protocol in an
RFID system was investigated and area and latency estimates were provided.

As can be seen from Okamoto’s scheme, the required computation for a node is of a
form kP + lQ i.e. so-called multiple-point multiplication. For the purpose of speeding-
up this computation one uses Shamir’s trick [9]. The scalars k and l are stored in a 2-
row matrix in which each row contains binary representation of one of the scalars. All
values of the form iP + jQ, 0 ≤ i, j < 2w are precalculated and stored where w is
given width of the window. The algorithm to perform this so-called simultaneous point
multiplication is computing at each of t

w � steps w doublings and 1 addition from the list
of the precalculated values of the form iP +jQ. As a width of the window w is a variable
that allows some trade-off, we chose the smallest window i.e. w = 1. In this way, the
memory requirements are minimized as only 3 points have to be stored: P, Q, P + Q.
The exact computation is given in Algorithm 8 [9]. The expected running time of the
algorithm for w = 1 is 3

4 t point additions and (t − 1) point doublings.

5. Performance Evaluation

5.1. Performance of RSA, DSA and ECDSA

Table 2 shows power consumption measurements on a 32-bit Intel StrongARM micro-
processors by Potlapally et al. [46]. Next to the performance of the AES, the perfor-
mance of SHA-1, the DSA, and the public key algorithms RSA, DSA and ECDSA is
presented. These measurements clearly show the performance gap between symmetric
and asymmetric techniques.

5.2. Efficiency of one-time signature schemes

All the one-time signature and Public-key authentication schemes evaluated in this chap-
ter are based on a general OWF f . In order to be able to provide algebraic expressions
for the cost (= power requirement) of these schemes we assume that:

• the input size of f is a multiple of l bits; we will refer to a group of l bits as one
“block”;

• the output size of f is 1 block;
• the cost of f for an input size of t blocks is t BF (for Block Function), i.e., the

cost of f grows linearly with respect to the input size.

L. Batina et al. / Public-Key Primitives92

PD
F

PR
O

O
F

Table 2. Power consumptions of SHA-1, AES, RSA, DSA and ECDSA on a 32-bit Intel StrongARM SA1100
@ 206MHz [46].

Operation |key| Power consumption
|hash|

SHA-1 160 0.76 μJ/Byte
AES key scheduling 128 7.83 μJ
AES encryption 128 1.21 μJ/Byte

Verification Signing

RSA 1024 15.97 mJ 546.5 mJ
DSA 1024 338.02 mJ 313.6 mJ
ECDSA-F2131 163 196.2 mJ 134.2 mJ

Efficient instances of the OWF f can be built from fast block ciphers or crypto-
graphic hash functions. We assume that f maps n× 80 bits to 80 bits, i.e., l = 80. Since
collision resistance is not required from f we believe that this parameter is sufficient.

We further assume that a cryptographic hash function H is applied to all messages
before they are fed to the LDM or LDW signature scheme. The output size of this hash
is |H| = s = 160 bits. We assume that this is the same hash function that is used in the
HORS scheme. As this hash function has to be applied for all three schemes, the cost of
this operation is not taken into account for the efficiency evaluation.

In order to compare the efficiency of the one-time signature schemes with elliptic
curve based signature schemes, we use the measurements from [46] that are presented in
Table 2 on p. 17. Assuming one invocation of the function f requires one invocation of
the AES block encryption algorithm, then the cost of an ECDSA verification (signature)
is equal to the cost of 104 (7 · 103) invocations of f .

Another important cost factor (certainly for one-time signature schemes) is the com-
munication cost. A rigorous performance analysis of the popular Mica2 and Mica2dot
motes is presented in [29]. The authors show that the effective throughput available to
applications on a Mica2 mote is only 4.6 kbits/s (a fraction of the nominal bandwidth of
19.2 kbits/s). In order to achieve this, the radio module of the mote requires 48 mW in
receive mode and 54 mW in transmit mode. Thus, the mote uses 10.4 μJ/bit in receive
mode and 11.7 μJ/bit in transmit mode. This results in the following assumptions we
will use for the numeric evaluation:

• The size of the output of the hash function H is 160 bits (|H| = s = 160),
• 1 block = 80 bits,
• 1 BF = 16 × 1.21 μJ = 19.36 μJ,
• the transmission cost of 1 block = 936 μJ,
• the receiving cost of 1 block = 832 μJ.

5.2.1. Efficiency of the LDM

Looking at Alg. 4, we see that the key setup requires s + log2(s)� BF. The public
and private key size is s + log2(s)� blocks. Signature generation is “free”. Assuming
a uniform distribution of the possible messages in the message space, on average the
message and padded redundancy 〈m,w〉 will contain 50% zeros and 50% ones. This
means that the average signature size is 1

2 (s + log2(s)�) blocks and that verification
requires 1

2 (s + log2(s)�) BF on average.

L. Batina et al. / Public-Key Primitives 93

PD
F

PR
O

O
F

Note that the secret key sk = {x0, . . . , xm/t} can be generated with a good pseudo-
random generator using a single seed sk . The entropy of the output of the pseudo-random
generator is at most |sk |, therefore we propose to use a seed with size 2|xi|, i.e., 2 blocks.
This means that storing the secret key only requires a fraction of the total size of the
private key. Obviously this is not true for the public key.

As a practical example, the total cost of signing a message, transmitting this message
to the verifier and verifying the message is 148 mJ for the communications and 1.6 mJ
for the computations, totalling about 150 mJ.

5.2.2. Efficiency of the LDW

Looking at Alg. 5, we see that the key setup requires 2(s/g)(2g − 1) BF. The public and
private key size is s/g + 1 blocks. The costs of signature generation and verification are
both (s/g)(2g−1) BF, independent of the message. The signature size is s/g+1 blocks.

Notice that the computational cost grows exponentially with the group size g, while
the communication cost only drops linearly with g. This indicates that performance gain,
if any, will only be possible for small values of g. Table 3 shows the total cost of a
signature for different values of g. This cost includes signature generation, one signature
verification and one transmission from sender to receiver. The minimum cost occurs for
g = 4, i.e., signing 4 bits with a single public/private key value pair. Using the LDW
with g = 4 offers a 37% performance gain compared to the LDM.

Table 3. Cost of the LDW for different group sizes g (mJ).

group size g 1 2 3 4 5 6

communications 285 143 96 72 58 49
computations 6.20 9.29 14.46 23.23 38.41 65.05

total 291 153 111 96 97 114

5.2.3. Efficiency of the HORS scheme

We assume that the system-wide parameter k is fixed, and is not included in the pub-
lic/secret key. The cost of HORS can be summarized as follows:

• The key setup requires t evaluations of f , resulting in a total computational cost
of t BF. The public and private key size is t blocks.

• Signing requires no additional operations besides applying the hash function to
the message. The signature size is k blocks.

• Verifying requires a maximum of k BF if the signature is valid (if the signature is
invalid the verification process can be stopped earlier and the cost will be less).

For HORS-20 the total cost for signing a message, transmitting the signature to the
verifier and verifying the message is 452.6 mJ for the communications and 387 μJ for
the computations, totalling about 453 mJ. For HORS-18, this becomes 905.2 mJ for the
communications and 348 μJ for the computations, totalling about 906 mJ. Note that the
total cost is dominated by the transmission cost which is 3 orders of magnitude larger
than the computation cost.

L. Batina et al. / Public-Key Primitives94

PD
F

PR
O

O
F

5.3. Efficiency of one-time signature schemes with Public-key authentication

5.3.1. Efficiency of Merkle tree authentication

In order to evaluate the cost of Merkle trees we first describe the different processes
involved.

• The algorithm precalc generates the leaf pre-images and requires precost BF.
• The algorithm leafcalc generates the leaves and requires leafcost BF. Note that

this includes generation of the leaf pre-images.
• Root generation is the process of computing the root node of the tree. This root

node will serve as the public key of the signature scheme.
• Authentication path generation or Merkle tree traversal is the task of generating

the authentication paths for successive leaves.

Next to these steps we also consider the signing and verifying processes:

• Signing a message consists of (1) regenerating the private key, (2) computing the
signature, and (3) generating the authentication path.

• Verifying a signature consists of (1) verifying the authenticity of the received pub-
lic key (i.e., a leaf pre-image), and (2) verifying the signature.

Authentication path generation and verification cost The fractal Merkle tree traversal
algorithm presented in [35] by Jakobsson et al. allows a time-space trade-off. Briefly
explained, the algorithm splits the original tree into subtrees of height h ≤ H . These
subtrees are constructed in such a way that the root of one tree is at the same time a
leaf of a tree above it, i.e., they are stacked on top of each other. Assuming h|H , let
L = H/h be the number of subtree levels. Exactly one such subtree for each level is
kept in memory and all these stacked subtrees together contain the authentication path
for the leaf that is being authenticated at the moment. For each output of an authenti-
cation path a second new subtree for each level is being constructed. The construction
is programmed in such a way that the new subtree will be finished just in time to be
used to create the authentication path; at this moment the old subtree is discarded and the
construction of a fresh subtree is initiated. Fractal tree traversal requires a maximum of
2(L−1) evaluations of f per round, and a maximum space of 2L2h+1 +HL/2 memory
units (each unit being the size of the output of f , i.e., 1 block). Note that according to
our definition of f , one evaluation here requires 2 BF. Taking into account the cost of
generating the leaves (leafcost BF per leaf), the computational cost of fractal tree traver-
sal becomes (L−1)(2+ leafcost) BF per round. The required space is minimized using
h = log2(H) = log2(log2(N)). The authentication path generation cost then becomes

log2(N)
log2(log2(N))

(2 + leafcost) BF per path. (4)

The root of the tree is computed at the initialisation phase of the fractal Merkle
tree traversal algorithm. This root generation process requires the computation of the N
leaves and all nodes in the tree. By cleverly scheduling the order in which these nodes
are computed, the memory requirements can be limited to log2(N)+1 blocks. The total
root generation cost is

L. Batina et al. / Public-Key Primitives 95

PD
F

PR
O

O
F

N(2 + leafcost) − 2 BF. (5)

Upon receipt of a leaf pre-image and the corresponding authentication path, the
recipients have to compute nodes of the tree until they arrive at the root. The total cost of
this verification process is

2 log2(N) + (leafcost − precost) BF per path. (6)

5.3.2. Energy cost factors when using Merkle tree authentication

We consider the following energy consumption cost factors:

1. Key setup cost. The signer generates the necessary private keys and computes the
root of the Merkle tree. The cost of this process is given by Eq. (5). A copy of the
resulting root value is transferred to the verifiers over an authenticated channel.

2. Cost of signing a message. The signer has to regenerate the private/public key
pair, compute the signature, and generate the authentication path for this particu-
lar public key.

3. Cost of verifying a signature. The verifier has to check the validity of the signature
and of the public key (i.e., verifying the authentication path).

4. Signature size. A signature consists of the public key that was used, the signature
itself, and the authentication path to authenticate the public key.

Due to space limitations, we refer to [27] for a detailed analysis and algebraic ex-
pressions of these four cost factors for every one-time signature scheme we mentioned.
We refer to Sect. 5.5 for a numeric evaluation and comparison of the different energy
costs of the different schemes.

5.4. Efficiency of one-way chain authentication

One-way chains may seem more efficient than Merkle trees, as no authentication paths
need to be computed, exchanged and verified. On the other hand, the use of one-way
chains requires rather strict synchronization between the signer and the verifiers, limiting
the applications of this authentication mechanism.

The different processes involved are:

• One-way chain generation (key setup) is the process of generating all the hash
chains. The output of this process is the root secret key skN and the first public
key pk1 to be used by the verifiers.

• Active private key regeneration is the process of computing the currently active
private key.

• Signing a message consists of (1) regenerating the active private key and (2) gen-
erating the signature.

• Verifying a signature consists of verifying the received signature values by walk-
ing down the chains until known values are reached (see Sect. 3.4.2).

5.4.1. One-way chain generation and verification

A private key consists of t+γ random values. For the LDM and HORS scheme γ = 0 and
for the LDW γ = 1. These values are generated using a single seed value sk , requiring

L. Batina et al. / Public-Key Primitives96

PD
F

PR
O

O
F

t + γ BF. From this root private key, the signer computes the chains. Assuming we wish
to sign S messages with a single set of one-way chains and assuming that a single private
key can be used r times, the required length N of the chains is S/r. The total cost of the
one-way chain generation process is

(t + γ) + N(tα + γβ) BF. (7)

When using one-way chains, the cost of regenerating the first private key is much
higher than the cost of regenerating the last private key. This is because the signer always
starts from the root private key and works his way down the chains until he reaches the
active private key. Therefore, we compute the average cost of the private key regeneration
process. In total, N private keys can be verified with a single set of one-way chains. The
cost of computing these N private keys consists of computing the root private key and
walking down the chains until the active key is reached. The total cost of this process is

N(t + γ) +
N(N − 1)

2
(tα + γβ) BF.

Assuming the signer keeps the active private key in memory until the r signatures are
generated, the average cost of private key regeneration per signature is

t + γ

r
+

N − 1
2r

(tα + γβ) BF. (8)

The cost of signing a message is the cost of generating the active private key and
using this key to generate the signature. This last cost depends on the signature scheme
that is used.

Assume that the verifiers obtained an authenticated copy of the first public key pk1.
Upon reception of a signature, the verifier has to walk down the chains until he reaches a
known authenticated value. Once the verifier has checked the authenticity of the received
signature, he only keeps the most recently used values for each chain (see Sect. 3.4.2).
This way he will have to compute every value in each chain exactly once, except for the
root private key and possibly some other values close to this root private key. The total
signature verification cost is at most N(tα + γβ) BF or

(tα + γβ)/r BF (9)

per signature.

5.4.2. Energy cost factors when using one-way chains

We consider the following energy consumption cost factors:

1. Key setup cost. The signer generates the root private key and the first public key.
A copy of this public key is transferred to the verifiers over an authenticated
channel.

2. Cost of signing a message. The signer regenerates the active private key and
computes the signature.

L. Batina et al. / Public-Key Primitives 97

PD
F

PR
O

O
F

3. Cost of verifying a signature. The verifier verifies the signature against the public
key values he has in memory. Once the the signature has been verified, he updates
the public key values.

4. Signature size. Only the signature itself has be transferred (public keys nor au-
thentications paths have to be transmitted).

Again we refer to [27] for a detailed analysis and algebraic expressions, and to
Sect. 5.5 for a numeric evaluation and comparison of the different energy costs of the
different schemes.

5.5. Comparison

In order to compare the efficiency of the different one-time signature schemes, including
the cost of communications, we will use assumptions presented in Sect. 5.2 which are
based on the measurements shown in Table 2. This table also allows us to compare the
one-time signature schemes with ECDSA. We have evaluated the energy cost per sig-
nature when we sign S messages with a single set of one-way chains or Merkle tree.
The results in Fig. 1 up to Fig. 5 do not include the cost of bootstrapping the system.
We assume that the verifiers have already obtained an authenticated copy of the public
key material that they need. Figure 6 shows an example scenario with 10 verifiers, and
includes the cost of bootstrapping the system.

Figure 1 shows how the energy cost per signature generation varies with the number
of signatures. For Merkle based schemes, this cost includes the root generation process
(Eq. (5)) next to the cost of generating a signature and the authentication path. The cost
of the root generation process is divided over all S signatures. Because of the efficient
authentication path generation algorithm, the cost per signature only grows very slowly
with the number of signatures (∼ log2(S)/ log2(log2(S))). For schemes based on one-
way chains, the signing cost includes the overhead of computing the first public key (i.e.,
the last values of the chains, Eq. (7)) next to the cost of generating the signature. In
contrast to Merkle based schemes, the cost per signature grows linearly with respect to
S. This is because of the inefficient private key generation process (Eq. (8)). The ECDSA
does not suffer from any overhead and therefore the energy cost per signature is constant.
The first column in Table 4 shows the signing cost of the different schemes after the
distances between the cost curves have stabilized (at S = 250). Note that the one-time
cost curves continue rising, thus at some point the ECDSA will be the most efficient
option. Obviously this operation point should never be used. For one-way chain based
schemes the relative distance never stabilizes.

Figure 2 shows the cost per signature verification as a function of the number of sig-
natures S. The verification cost for Merkle based schemes grows with log2(S) because
of the leaf verification process (Eq. (6)). However, this cost is negligible compared to
the constant cost of verifying a signature, resulting in a near-constant verification cost.
One-way chain based schemes have a constant verification cost. The ECDSA verification
cost is also constant. The second column in Table 4 shows the verification cost of the
different schemes at S = 250.

Comparing Fig 1 with Fig. 2 we see that the verification cost is lower than the signa-
ture generation cost for all one-time signature schemes. For one-way chain base schemes
this difference grows rapidly (∼ S), while for Merkle based schemes the difference re-
mains near-constant.

L. Batina et al. / Public-Key Primitives98

PD
F

PR
O

O
F

With respect to communications or signature size (Fig. 3) we see that ECDSA is
most efficient as the signature size is only 320 bits and there is no overhead. The fact
that we need to include the public key and the authentication path in a signature, makes
Merkle based schemes less efficient than one-way chain based schemes. The HORS
schemes have small signature sizes but relatively large public key sizes. Therefore, they
are more efficient than both the LDM and the LDW when using one-way chains, but less
efficient than the LDM when using Merkle trees. The third column in Table 4 shows the
communications cost in bits/signature of the different schemes at S = 250.

Figures 4 and 5 show the total cost, computations and communications, for the
signer and the verifier. For the signer, i.e., the transmitter, the communication cost is
11.7 mJ/kbit, while for the verifier it is 10.4 mJ/kbit. As the communication cost is
near constant, we obtain shifted versions (with a different shift for every scheme) of Fig 1
and Fig. 2 respectively. For the signer, we see that the communications cost dominates
for the Merkle based schemes. For the one-way chain based schemes the computational
cost rapidly grows and starts dominating. For the verifier, the communications cost al-
ways dominates. For the ECDSA, the computational cost is much larger than the cost of
communications.

Figure 6 shows the total cost per signature for an example scenario. In this scenario
a single signer transmits signatures to 10 verifiers using a single broadcast message. The
one-time schemes are bootstrapped using an ECDSA signature on the root of the Merkle
tree or on the first public key of the one-way chains. The cost of this bootstrapping
process is divided over the S signatures. Because of the initialization and bootstrapping
costs, the cost of the different schemes first decreases with the number of signatures.
Depending on the scheme, this decrease levels out at around 50–75 signatures. Beyond
this threshold the cost per signature keeps increasing. The rate of increase depends on
the signing cost of the particular scheme. The most efficient solution for this particular
setting is HORS-18 using one-way chains with about 75 signatures per one-way chain.
The last column in Table 4 shows the cost of the different schemes for S = 75 signatures
per Merkle tree or one-way chain. Using multiple instances of HORS-18 (including the
bootstrapping cost) will yield a five-fold increase in efficiency compared to using plain
ECDSA. Figure 5 shows that ECDSA is less efficient than HORS-18 for the verifier. This
means that the efficiency difference between ECDSA and HORS-18 will grow further in
the case of more verifiers.

Summarizing we see that (1) one-way chains are most efficient for signature verifi-
cation, (2) ECDSA and Merkle trees are most efficient for signature generation, and (3)
ECDSA is the best candidate with respect to communications costs. If we take the av-
erage costs of all one-time signature schemes in Table 4, we obtain 92.8 mJ/signature
for signature generation, 10.4 mJ/signature for verification and 8.9 mJ/signature for
communications.2 This shows that signature generation is about ten times more demand-
ing than verification or communications.

5.6. An example for a hardware assisted approach for PKC: low-cost and low-power
ECC processor

In this section we also roughly estimate PKC performance for the case of ECC processor
that performs the point multiplication. This operation is the foundation of all required

2At a rounded 10 mJ/kbit.

L. Batina et al. / Public-Key Primitives 99

PD
F

PR
O

O
F

50 100 150 200 250
0

50

100

150

200

250

signatures

m
J/

si
gn

at
ur

e

ECDSA

LDW with OWC

HORS−20 with OWC
LDM with
OWC HORS−18 with OWC

HORS−20 with Merkle

HORS−18 with Merkle

LDW with Merkle

LDM with Merkle

Figure 1. Signing efficiency of one-time signature schemes.

50 100 150 200 250
0

50

100

150

200

250

signatures

m
J/

si
gn

at
ur

e

LDW with Merkle
LDW with OWC
HORS−18 with Merkle
HORS−20 with Merkle
HORS−18/20 with OWC
LDM with OWC
LDM with Merkle

ECDSA

Figure 2. Verification efficiency of one-time signature schemes.

protocols as shown above. We discuss design criteria that should lead to a feasible ECC
solution for sensor network applications. We do not give details about architectures as
hardware implementations are discussed in another chapter.

The main operation in any elliptic curve-based primitive is the scalar multiplication.
The hierarchical structure for operations required for implementations of ECC is as fol-
lows. Point multiplication is at the top level. At the next (lower) level are the point group
operations (addition and doubling). The lowest level consists of finite field operations
such as addition, subtraction, multiplication and inversion required to perform the group
operations. The levels of ECC hierarchy usually map to typical architectures for low-

L. Batina et al. / Public-Key Primitives100

PD
F

PR
O

O
F50 100 150 200 250

0 (0)

10 (100)

20 (200)

30 (300)

40 (400)

signatures

kb
it

(m
J)

 /
si

gn
at

ur
e

HORS−20 with OWC
HORS−18 with OWC
ECDSA

LDW with Merkle
LDM with OWC

LDM with Merkle

HORS−20 with Merkle

LDW with OWC

HORS−18 with Merkle

Figure 3. Communication efficiency of one-time signature schemes. The energy cost (mJ/signature) is a rough
approximation at 10 mJ/kbit.

50 100 150 200 250
0

100

200

300

400

500

600

signatures

m
J/

si
gn

at
ur

e

HORS−18 with OWC

LDM with OWC

LDM with Merkle

LDW with OWC

ECDSA

HORS−18 with Merkle

LDW with Merkle

HORS−20 with Merkle

HORS−20 with OWC

Figure 4. Energy consumption of signer (communications and computations).

cost applications in the following way: point multiplication is the building block for all
ECC-based protocols and it is realized as a control unit, memory (RAM and ROM) and
an arithmetic unit. In ROM the ECC parameters and the constants can be stored. On the
other hand, RAM contains all input/output and intermediate variables [18]. Mainly all
proposals for hardware implementations of ECC for light weight cryptography deal with
ECC over binary fields.

We address each of those levels separately and for on all levels we discuss some

L. Batina et al. / Public-Key Primitives 101

PD
F

PR
O

O
F50 100 150 200 250

0

100

200

300

400

500

600

signatures

m
J/

si
gn

at
ur

e

HORS−20 with OWC
HORS−18 with OWC

HORS−20 with Merkle
LDM with Merkle
ECDSA LDW with Merkle

LDW with OWC
LDM with OWC

HORS−18 with Merkle

Figure 5. Energy consumption of verifier (communications and computations).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

signatures

m
J/

si
gn

at
ur

e

HORS−18 with Merkle

LDW with OWC

ECDSA

LDM with Merkle

HORS−18 with OWC

LDM with
OWC

HORS−20 with Merkle

HORS−20 with OWC

LDW with Merkle

Figure 6. Overall energy consumption of one-time signature schemes. This setting assumes one signer and ten
verifiers.

algorithmic and architectural choices leading to a feasible solution. One important issue
is flexibility. Namely, ECC allows a great choice of fields, curves and other parameters
and algorithms. However, it is necessary to limit the flexibility in order to minimize the
area and maximize the performance. In this way for binary fields one choice for the field
and irreducible polynomial results in the smallest possible arithmetic unit for the given
security level. This is, of course dictated by the field size. Another examples leading to
optimization in the area and performance are use of special curves (e.g. Koblitz curves),
specific algorithms for point multiplication (such as windowing methods), special pro-

L. Batina et al. / Public-Key Primitives102

PD
F

PR
O

O
F

Table 4. Efficiency of one-time signature schemes.

Signing Verification Comms Total
signatures 250 250 250 75

[mJ] [mJ] [bit] [mJ]

LDM with Merkle 42.3 5.19 20,797 2,509.2
LDW with Merkle 138.9 25.09 7,197 1,226.7
HORS-20 with Merkle 64.5 5.65 22,717 2,756.6
HORS-18 with Merkle 123.7 10.53 42,957 5,202.0
LDM with OWC ↑ 3.25 6,720 986.1
LDW with OWC ↑ 23.23 3,280 1,540.6
HORS-20 with OWC ↑ 4.96 1,600 488.1
HORS-18 with OWC ↑ 5.61 1,440 408.3

ECDSA 134.2 196.20 320 2,133.2

The entries are cost per signature.

Algorithm 9 Algorithm for point multiplication

Require: an integer k > 0 and a point P (x, y)
Ensure: Q = kP

k ← kl−1, ..., k1, k0

X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2.
for i from l − 2 downto 0 do

If ki = 1 then
x(P1) ← x(P1 + P2), x(P2) ← x(2P2)
Else
x(P2) ← x(P2 + P1), x(P1) ← x(2P1)

end for

Return x(P1)

jective coordinates, irreducible polynomial (e.g. trinomial or pentanomial). Here we dis-
cuss some special choices such as Montgomery ladder for scalar multiplication, projec-
tive coordinates of Lopez and Dahab etc. We also deal here only with the field F2163 ,
which is recommended by many standards and it provides the same level of security as
RSA of 1024 bits (or higher [15,16]). We stress again, that fixing arithmetic as well as
parameters results in a compact PKC solution for pervasive security.

5.6.1. Minimizing memory requirements

For the point multiplication a good choice is the method of Montgomery (Algorithm 9)
[11] that maintains the relationship P2 − P1 as invariant. It uses a representation where
computations are performed on the x-coordinate only in affine coordinates (or on the X
and Z coordinates in projective representation). That fact allows one to save registers
which is one of the main criteria for obtaining a compact solution.

The formulas for point addition/doubling that are suitable for Algorithm 9 are given
in the work of Lopez and Dahab [12]. The original formulas in [12] require 2 intermediate
variables but it is possible to eliminate one more intermediate register [14]. The formulae
for point operations in that case are shown in Algorithm 10. The performance remains
intact as one variable can be eliminated by simply reordering the field operations.

L. Batina et al. / Public-Key Primitives 103

PD
F

PR
O

O
F

Algorithm 10 EC point operations that minimize the number of registers

Require: Xi, Zi, for i = 1, 2,
x4 = x(P2 − P1)

Ensure: X(P1 + P2) = X2,
Z(P1 + P2) = Z2

1: X2 ← X2 · Z1

2: Z2 ← X1 · Z2

3: T ← X2 · Z2

4: Z2 ← Z2 + X2

5: Z2 ← Z2
2

6: X2 ← x4 · Z2

7: X2 ← X2 + T

Require: c ∈ F2n , b = c2, X1, Z1

Ensure: X(2P1) = X1,
Z(2P1) = Z1,

1: T ← c
2: X1 ← X2

1

3: Z1 ← Z2
1

4: T ← T · Z1

5: Z1 ← X1 · Z1

6: T ← T 2

7: X1 ← X2
1

8: X1 ← X1 + T

Algorithm 10 requires only one intermediate variable T , which results in 5 regis-
ters in total. Namely, the required registers are for the storage of the following vari-
ables: X1, X2, Z1, Z2 and T . Also, the algorithm shows the operations and registers
required if the key-bit ki = 0. Another case is completely symmetric and it can be per-
formed accordingly. More precisely, if the addition operation is viewed as a function
f(X2, Z2, X1, Z1) = (X2, Z2) for ki = 0 due to the symmetry for the case ki = 1
we get f(X1, Z1, X2, Z2) = (X1, Z1) and the correct result is always stored in the first
two input variables. This is possible due to the property of scalar multiplication based on
Algorithm 9. When Algorithm 9 deploys Algorithm 10 we get the following number of
operations in F2n :

#registers = 5
#multiplications = 11�log2k� + 2
#additions = 6�log2k� + 1

5.6.2. Reduction of control logic

The point multiplication and point addition/doubling can be implemented as Finite State
Machines (FSMs). The optimization in the number of register requires frequent checking
of the value of a key-bit ki. Namely, due to necessary savings in memory the same
registers can be used for both point operations and since ki ∈ {0, 1} in the both cases
one has to choose which variable to write/read in available memory locations. This fact
enlarges the size of the control logic block but memory requirements are minimized as
discussed above.

5.6.3. Simplifying arithmetic unit

From the formulae for point operations as given in Algorithm 10 it is evident that one
needs to implement only multiplications and additions. Squaring can be considered as
a special case of multiplication in order to minimize the area and inversion is avoided
by use of projective coordinates. We assume that one inversion that is necessary for
conversion of projective to affine coordinates can be computed at the base station’s side.
Note also that, if necessary, the one inversion that is required can be calculated by use of
multiplications i.e. by means of Fermat’s theorem [10].

L. Batina et al. / Public-Key Primitives104

PD
F

PR
O

O
F

Here we consider polynomial bases, where the elements of F2n are polynomials
of degree at most n − 1 over F2, and arithmetic is carried out modulo an irreducible
polynomial f(x) of degree n over F2. In this case the basis elements have the form
1, ω, ω2, . . . , ωn−1 where ω is a root in F2n of the irreducible polynomial f(x) of degree
n over F2. According to this representation an element of F2n is a polynomial of length
n and can be written as: a(x) =

∑n−1
i=0 aix

i = an−1x
n−1 +an−2x

n−2 + . . .+a1x+a0,
where ai ∈ F2.

So-called classical modular multiplication is typically based on the following equa-
tion:

a(x) · b(x) = (an−1x
n−1 + · · · + a1x + a0) · b(x) mod f(x)

= (· · · (an−1b(x)x + an−2b(x))x + · · ·
+a1b(x))x + a0b(x) mod f(x)

(10)

which illustrates the Horner scheme for multiplication. This scheme is the basis of the
Most Significant Bit-First (MSB) multiplier [13].

The modular addition operation in binary fields is simply the XOR operation which
can be performed in one clock cycle. By reusing the logic for multiplication, it is possible
to implement modular addition by adding only some more control logic to the existing
multiplier [17].

More details about the architecture following the principles above are given in [14].

5.6.4. Performance Estimates and Discussion

In this section we list some numbers for the latency and power consumption for ECC
algorithms with the choices for arithmetic as described above [14]. The architecture we
refer to has a possibility to deploy the multiplier with various digit-sizes d [17]. For
the point multiplication we used Algorithm 1 and for point operations Algorithm 2. The
numbers for power assume the operating frequency of 500 kHz for the field F2163 . With
this frequency the power stays below 30 μW which is assumed to be acceptable for
sensor networks applications.

The results for the total number of cycles of one point multiplication for fields F2131

and F2163 are given in Table 5. To calculate the time for one point multiplication we need

Table 5. The number of cycles required for one point multiplication for ECC [14].

Field size d=1 d=2 d=3 d=4

131 191 750 98 800 68 770 53 040

139 215 694 112 470 76 038 59 340

151 254 250 109 200 74 880 57 720

163 295 974 151 632 103 518 80 352

an operating frequency. However, the frequency that can be used is strictly influenced by
the total power. We assumed an operating frequency of 500 kHz as suggested in [2] in
order to estimate the actual timing. We get 106 ms for the best case of ECC over F2131

(d = 4) and 160.70 ms for the best case of ECC over F2163 (d = 4).
The current generation of sensor networks is powered by batteries, so ultra-low

power circuitry is a must for these applications. For low-power consumption it is neces-

L. Batina et al. / Public-Key Primitives 105

PD
F

PR
O

O
F

sary to minimize the switching or dynamic power, the circuit size (for the current CMOS
technology) and the operating frequency. This can be achieved by architectural decisions,
which we discussed above. However, besides switching power, energy efficiency is even
more crucial as sensor nodes are still battery operated. More precisely, the metric that is
typically used and that should be minimized accordingly is energy per processed bit E.
This value can be calculated as:

E =
P

throughput

[
J

bit

]
.

The results for the total power consumption and for energy per bit are given in Fig-
ure 7 and Figure 8 respectively for the field F2163 . We can observe that both contribu-
tions to the total power i.e. static and dynamic are close to each other. We also notice
that the energy per bit improves as d increases. This can be explained due to a decrease
in number of cycles, which is more dominant than an increase in power consumption for
higher d.

0

5

10

15

20

25

30

1 2 3 4

Digit Size

P
ow

er
 [u

W
]

Dynamic Power

Leakage Power

Figure 7. The power consumed for various digit sizes
for ECC over F2163 .

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Digit Size

E
ne

rg
y

pe
r

P
ro

ce
ss

ed
 b

it
[n

J/
bi

t]

Figure 8. Results for energy per encrypted bit for all
digit sizes.

The point multiplication is the most consuming operation in ECC-based protocols
so we do not need to take other operations into account. Since each protocol consists
of a certain number of point multiplication (usually one or two) we can estimate costs
per ECC-protocol. As an example we estimate the energy per message for ECDSA (see
Table 6). In this way we can also roughly estimate the energy costs per protocol.

L. Batina et al. / Public-Key Primitives106

PD
F

PR
O

O
F

Table 6. Energy per message for ECDSA for the field F2163 .

Protocol d=1 d=2 d=3 d=4

ECDSA-sign 14.822 μJ 7.837 μJ 5.509 μJ 4.393 μJ

ECDSA-verify 26.643 μJ 15.674 μJ 11.018 μJ 8.785 μJ

Published results for area, power and latency for PKC are compared in Table 7. The
performances given for ECC are for one point multiplication.

Table 7. Comparison with other related work.

Ref. PKC Area [gates] Techn. [μm] f [kHz] Perf. [ms] P [μW]

[7] ECC over F2131 11 969.93 0.35 13 560 18 -
[1] ECC over Fp100 18 720 0.13 500 410.45 < 400

[2] NTRU 2 850 0.13 500 58.45 < 21

[6] ECC over F2191 , Fp192 23 000 0.35 68 500 9.89 n.a.
[14] F2131 8104 0.13 500 106 < 30

Acknowledgements

The work described in this document has been partly financially supported by the Euro-
pean Commission through the IST Program under Contract IST-2002-507932 ECRYPT.

It was also supported in part by the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy), by FWO projects EMA G.0475.05 and BBC G.0300.07,
by the IBBT-QoE project of the IBBT and by the K.U.Leuven-BOF (OT/06/40).

The information in this document reflects only the author’s views, is provided as
is and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

References

[1] G. Gaubatz, J.-P. Kaps, E. Öztürk and B. Sunar, “State of the Art in Ultra-Low Power Public Key
Cryptography for Wireless Sensor Networks”, 2nd IEEE International Workshop on Pervasive Computing
and Communication Security (PerSec 2005).

[2] G. Gaubatz, J.-P. Kaps and B. Sunar, “Public Key Cryptography in Sensor Networks - Revisited”, 1st
European Workshop on Security in Ad-Hoc and Sensor Networks (ESAS 2004).

[3] L. Uhsadel, A. Poschmann, and C. Paar, “Enabling Full-Size Public-Key Algorithms on 8-bit Sensor
Nodes”, In 4th European Workshop on Security and Privacy in Ad hoc and Sensor Networks, Lecture
Notes in Computer Science 4572, S. Capkun, C. Meadows, and F. Stajano (eds.), Springer-Verlag, pp.
73-86, 2007, Springer-Verlag.

[4] L. Batina, D and Hwang, A. Hodjat, B. Preneel and I. Verbauwhede, “Hardware/Software Co-design for
Hyperelliptic Curve Cryptography (HECC) on the 8051 μP ”, Proceedings of 7th International Workshop
on Cryptographic Hardware and Embedded Systems CHES 2005, eds. J. R. Rao and B. Sunar, LNCS 3659
pp. 106-118, Springer-Verlag.

[5] A. Hodjat, L. Batina, D. Hwang and I. Verbauwhede, “HW/SW Co-design of a Hyperelliptic Curve
Cryptosystem using a μCode Instruction Set Coprocessor”, Elsevier Science Integration the VLSI Journal,
vol. 1, nr. 40, pp.45-51, 2006.

L. Batina et al. / Public-Key Primitives 107

PD
F

PR
O

O
F

[6] J. Wolkerstorfer, “Scaling ECC Hardware to a Minimum”, In ECRYPT workshop - Cryptographic
Advances in Secure Hardware - CRASH 2005, Leuven, Belgium, Invited talk.

[7] S. Kumar and C. Paar, “Are standards compliant Elliptic Curve Cryptosystems feasible on RFID?”,
Proceedings of Workshop on RFID Security, 2006, Graz, Austria.

[8] I. Blake, G. Seroussi and N.P. Smart, “Elliptic Curves in Cryptography”, Cambridge University Press,
1999, London Mathematical Society Lecture Note Series.

[9] D. Hankerson, A. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography”, Springer-Verlag,
2004

[10] N. Koblitz, “A Course in Number Theory and Cryptography”,Springer-Verlag, 1994
[11] P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization”, Mathematics of

Computation, 1987, Vol. 48, nr. 177, pp. 243-264.
[12] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves over GF(2m)”, Proceedings of 1st

International Workshop on Cryptographic Hardware and Embedded Systems CHES 1999, eds. Ç.K. Koç
and C. Paar, LNCS 1717 pp. 316-327. Springer-Verlag.

[13] T. Beth and D. Gollmann, “Algorithm Engineering for Public Key Algorithm”, IEEE Journal on Selected
Areas in Communications, Vol. 7, nr. 4, pages 458-465, 1989.

[14] L. Batina, N. Mentens, K. Sakiyama, B. Preneel and I. Verbauwhede, “Low-cost Elliptic Curve Cryp-
tography for wireless sensor networks”, Proceedings of Third European Workshop on Security and Pri-
vacy in Ad hoc and Sensor Networks, eds. L. Buttyan, V. Gligor and D. Westhoff, LNCS 4357 pp. 6-17,
Springer-Verlag, 2006.

[15] A. Lenstra and E. Verheul, “Selecting cryptographic key sizes”, Proceedings of Third International
Workshop on Practice and Theory in Public Key Cryptography (PKC 2000), eds. H. Imai and Y. Zheng,
LNCS 1752, pp. 446-465, Springer-Verlag.

[16] ECRYPT, “ECRYPT Yearly Report on Algorithms and Keysizes (2006)”.
[17] K. Sakiyama, L. Batina, N. Mentens, B. Preneel and I. Verbauwhede, “Small-footprint ALU for public-

key processors for pervasive security”,Proceedings of Workshop on RFID Security 2006, Graz, Austria.
[18] P. Tuyls and L. Batina, “RFID-tags for Anti-Counterfeiting”, Topics in Cryptology - CT-RSA 2006, ed.

D. Pointcheval, LNCS 3860, pp. 115-131, Springer Verlag.
[19] J. Hoffstein, J. Pipher and J.H. Silverman, “NTRU: a ring based public key cryptosystem”, In Proceed-

ings of ANTS III, 1998, LNCS 1423, pp. 267Ű288. Springer-Verlag.
[20] ECRYPT, “Hardness of the Main Computational Problems Used in Cryptography”, Deliverable 1.2,

2007.
[21] D. Johnson and A. Menezes, The Elliptic Curve Digital Signature Algorithm (ECDSA), Department of

Combinatorics & Optimization, 2000, http://www.cacr.math.uwaterloo.ca.
[22] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1997.
[23] T. Beth, Efficient Zero-Knowledge Identification Scheme for Smart Cards, Advances in Cryptology —

EUROCRYPT’88, ed. C. G. Günther, 1988, pp. 77-84.
[24] M. Bellare, C. Namprempre and G. Neven, Security proofs for identity-based identification and signature

schemes, Advances in Cryptology — Eurocrypt 2004, eds. C. Cachin and J. Camenisch, LNCS 3027,
2004, pp. 268-286, Springer-Verlag.

[25] M. Feldhofer, S. Dominikus and J. Wolkerstorfer, Strong Authentication for RFID Systems using the
AES Algorithm, Proceedings of 6th International Workshop on Cryptographic Hardware in Embedded
Systems (CHES), eds. M. Joye and J. -J. Quisquater, LNCS 3156, pp. 357-370, 2004, Springer-Verlag.

[26] P. Nguyen and N. Gama, New Chosen-Ciphertext Attacks on NTRU. In Proceedings of PKC 2007, eds.
T. Okamoto and X. Wang, LNCS 4450, 2007, pp. ?, Springer-Verlag.

[27] S. Seys Cryptographic algorithms and protocols for security and privacy in wireless ad hoc networks.
PhD thesis, Katholieke Universiteit Leuven, B. Preneel (promotor), 172+37 pages, 2006.

[28] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an analysis of
DHIES. In Topics in Cryptology – RSA Conference Cryptographers’ Track (RSA-CT 2001), volume 2020
of Lecture Notes in Computer Science, pages 143–158. Springer-Verlag, 2001.

[29] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori. Performance measurements of motes
sensor networks. In Proceedings of the 7th International Symposium on Modeling Analysis and Simulation
of Wireless and Mobile Systems (MSWiM 2004), pages 174–181. ACM Press, 2004.

[30] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Proceedings of the 1th ACM Conference on Computer and Communications Security (CCS 1993), pages
62–73. ACM Press, 1993.

L. Batina et al. / Public-Key Primitives108

PD
F

PR
O

O
F

[31] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology - EURO-
CRYPT 1994, volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer-Verlag, 1995.

[32] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin.
In Advances in Cryptology - EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Science,
pages 399–414. Springer-Verlag, 1996.

[33] J. N. E. Bos and D. Chaum. Provably unforgeable signatures. In Advances in Cryptology -
CRYPTO 1992, volume 740 of Lecture Notes in Computer Science, pages 1–14. Springer-Verlag, 1993.

[34] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory,
vol. 22, no. 6, pp. 644–654, 1976.

[35] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Fractal Merkle tree representation and traversal.
In Topics in Cryptology – RSA Conference Cryptographers’ Track (RSA-CT 2003), volume 2612 of Lecture
Notes in Computer Science, pages 314–326. Springer-Verlag, 2003.

[36] D. Johnson and A. Menezes. The elliptic curve digital signature algorithm (ECDSA). Technical report
CORR 99-34, Departement of Combinatorics & Optimizations, University of Waterloo, Canada, 1999.
Updated: 2000/02/24.

[37] L. Lamport, “Constructing digital signatures from a one-way function,” Technical Report CSL-98, SRI
International, 1979.

[38] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology, 14(4):255–
293, 2001.

[39] W. Mao. Modern Cryptography – Theory & Practice. Prentice Hall PTR, 2004.
[40] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press,

1997.
[41] R. C. Merkle. Secrecy, Authentication and Public Key Systems. UMI Research Press, 1982.
[42] R. C. Merkle, “A digital signature based on a conventional encryption function,” in Advances in Cryp-

tology - CRYPTO 1987, vol. 293 of Lecture Notes in Computer Science, pp. 369–378, Springer-Verlag,
1987.

[43] R. C. Merkle. A certified digital signature. In Advances in Cryptology - CRYPTO 1989, volume 435 of
Lecture Notes in Computer Science, pages 218–238. Springer-Verlag, 1990.

[44] Adrian Perrig. The BiBa one-time signature and broadcast authentication protocol. In Proceedings of
the 8th ACM Conference on Computer and Communications Security (CCS 2001). ACM Press, 2001.

[45] PKCS #1 version 2.1: RSA cryptography standard. Public-Key Cryptography Standard 1, RSA Labora-
tories, 2002.

[46] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. Analyzing the energy consumption of security
protocols. In Proceedings of the 2003 International Symposium on Low Power Electronics and Design
(ISLPED 2003), pages 30–35, 2003.

[47] M. O. Rabin, “Digitalized signatures,” Foundations of Secure Computation, pp. 155–168, 1978.
[48] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast signing and verifying.

In Proceedings of the 7th Australian Conference on Information Security and Privacy, volume 2384 of
Lecture Notes in Computer Science, pages 144–153. Springer-Verlag, 2002.

[49] Ronald L. Rivest, Adi Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[50] SEC 2: Recommended elliptic curve domain parameters. Version 1.0, Standards for Efficient Cryptog-
raphy Group, 2000.

[51] V. Shoup. A proposal for an ISO standard for public key encryption. Version 2.1, IBM Zurich research
lab, 2001.

L. Batina et al. / Public-Key Primitives 109

