Leire Ruiz-Rubio

Leire Ruiz-Rubio
University of the Basque Country | UPV/EHU · Physical Chemistry

Associate Professor; PhD Chemistry

About

133
Publications
25,792
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,364
Citations
Additional affiliations
January 2020 - present
University of the Basque Country
Position
  • Professor (Associate)
April 2016 - July 2016
University of Reading
Position
  • Research Visitor
September 2015 - January 2020
University of the Basque Country
Position
  • Professor (Assistant)

Publications

Publications (133)
Article
Photopolymerizable materials are commonly used in the industry for a long time, being extended their use in adhesives, coatings, paint and printing ink industries, composite materials, or even in the food industry. Their use in biomedical industry was until recently quite limited to acrylic derivatives used for dental restauration. However, the inc...
Article
The three-dimensional (3D) printing technology is changing the modern manufacturing of many pieces due to its versatility, immediacy and reduced cost. Thus, stereolithography (SLA), as one 3D printing technology, is becoming an important method to construct small pieces and, therefore, new materials used for it are still nowadays under study. SLA h...
Article
Full-text available
This work has been focused on the one-step fabrication by electrospinning of polyamide 6 (PA6) nanofibre membranes modified with titanium dioxide nanoparticles (TiO2), where these TiO2 nanoparticles aggregates could induce a photocatalytic activity. The main potential application of these membranes could be the purification of contaminated water. T...
Article
Full-text available
Zero-valent iron has been reported as a successful remediation agent for environmental issues, being extensively used in soil and groundwater remediation. The use of zero-valent nanoparticles have been arisen as a highly effective method due to the high specific surface area of zero-valent nanoparticles. Then, the development of nanosized materials...
Article
Full-text available
Polycarbazole and its derivatives have been extensively used for the last three decades, although the interest in these materials briefly decreased. However, the increasing demand for conductive polymers for several applications such as light emitting diodes (OLEDs), capacitators or memory devices, among others, has renewed the interest in carbazol...
Article
Full-text available
Cytotoxicity is a critical parameter for materials intended for biological applications, such as food packaging. Shape-memory polyurethanes (SMPUs) have garnered significant interest due to their versatile properties and adaptability in synthesis. However, their suitability for biological applications is limited by the use of aromatic isocyanates,...
Article
Full-text available
This article provides insights into hydrogels of the most promising biodegradable natural polymers and their mechanisms of degradation, highlighting the different possibilities of controlling hydrogel degradation rates. Since biodegradable hydrogels can be designed as scaffolding materials to mimic the physical and biochemical properties of natural...
Article
Electrochemiluminescence (ECL) is typically confined to a micrometric region from the electrode surface. This study demonstrates that ECL emission can extend up to several millimeters away from the electrode employing electrogenerated chlorine bubbles. The mechanism behind this bubble-enhanced ECL was investigated using an Au microelectrode in chlo...
Article
Full-text available
Photocuring of chitosan has shown great promise in the extrusion-based 3D printing of scaffolds for advanced biomedical and tissue engineering applications. However, the poor mechanical stability of methacrylated chitosan photocuring ink restricts its applicability. The inclusion of co-networks by means of simultaneous polycomplex formation is an e...
Article
Full-text available
Surface modifications play a crucial role in enhancing the functionality of biomaterials. Different approaches can be followed in order to achieve the bioconjugation of drugs and biological compounds onto polymer surfaces. In this study, we focused on the immobilization of an amoxicillin antibiotic onto the surface of poly-L-lactic acid (PLLA) usin...
Chapter
“Objects and their manufacture are inseparable. You understand a product if you understand how it’s made.” – Jonathan Ive.
Article
Full-text available
Self-standing nanocomposite films were prepared by three-dimensional UV-induced radical copolymerization of methacrylated alginate (MALG) with acrylic acid (AA) and reinforced with graphene oxide (GO) to improve both mechanical strength and dye adsorption capacity in wastewater decontamination operations. Dynamic mechanical–thermal analysis reveale...
Article
Full-text available
Bio-based epoxy thermoset resins have been developed from epoxidized soybean oil (ESO) cured with tannic acid (TA). These two substances of vegetable origin have been gathering attention due to their accessibility, favorable economic conditions, and convenient chemical functionalization. TA’s suitable high phenolic functionalization has been used t...
Article
Full-text available
In recent decades, the use of thermoset epoxy resins (ER) has spread to countless applications due to their mechanical properties, heat resistance and stability. However, these ERs are neither biodegradable nor recyclable due to their permanent crosslinked networks and usually, they are synthesized from fossil and toxic precursors. Therefore, reduc...
Article
Full-text available
This study was aimed at developing a sustainable versatile bio-based epoxy-silica material to be potentially employed as hydrophobic and biocidal consolidating product in the field of stone conservation. For this purpose, two hybrid formulations containing 2,2,4,4-tetramethyl-1,3-cyclobutanediol diglycidylether (CBDO-DGE), a cycloaliphatic epoxy pr...
Article
Full-text available
The substitution of fossil resources by alternatives derived from biomass is a reality that is taking on a growing relevance in the chemical and energy industries. In this sense, fats, oils, and their derived products have become indispensable inputs due to their broad functional attributes, stable price and sustainable character. Acrylated vegetab...
Article
Full-text available
Green chemistry faces a major challenge imposed by the Sustainable Development Goals (6, 14 and 15) defined in the 2030 Agenda. In the case of cleaning products (detergents), the challenges often become a paradox: even if it is biodegradable, no surfactant is harmless to aquatic life. Compared to other studies in the field, this paper covers ultras...
Chapter
Current environmental and energy concerns have led to lignin gaining increased attention in the last decade as a renewable biomass. Due to its structural and functional properties, such as antimicrobial behaviour, biodegradability, biocompatibility and ease of surface modifications, lignin-based materials have gained popularity in the biomedical fi...
Article
Among biomedical community, great efforts have been realized to develop antibacterial coatings that avoid implant-associated infections. To date, conventional mono-functional antibacterial strategies have not been effective enough for successful long-term implantations. Consequently, researchers have recently focused their attention on novel bifunc...
Article
Full-text available
Due to the environmental problems generated by petroleum derivative polymers as mentioned in Agenda 2030, the use of natural polymers is increasing. Among them, cellulose and chitin are the most widespread biopolymers available in nature. Chitosan, obtained from chitin, is a really good candidate to develop nanocarriers due to its polyelectrolyte n...
Article
Full-text available
The aim of this work is the design and 3D printing of a new electrochemical sensor for the detection of Listeria monocytogenes based on loop mediated isothermal amplification (LAMP). The food related diseases involve a serious health issue all over the world. Listeria monocytogenes is one of the major problems of contaminated food, this pathogen ca...
Article
Full-text available
LABURPENA: Azken urteotan, gizartearen ingurumenaren kalte kezkak bultzaturik, zientzia komunitatean baliabide berriztagarrien interesa handitu egin da. Izan ere, karbono emisioek eta hauek sortzen dituzten hondakinak lehengai jasangarriagoak bilatzera eraman dute. Hortaz, erregai fosilak lehengai naturaletatik ordezkatzea premiazkoa bihurtu da. Ta...
Article
In recent decades, the technology of polymeric materials used in biomedical applications has been greatly improved, replacing the metals that had been used until now. This change has not only meant an improvement in the cost of the raw material and in its processing, but it is also due to the fact that there are applications, such as stents, where...
Article
Cyclic Olefin Copolymer (COC) based on norbornene and ethylene is known to be one of the most promising materials for the fabrication of low-cost miniaturized Point-of-care (PoC) devices. Although semicrystalline materials are chemically more resistant and less brittle than amorphous ones, little literature has been reported on the unique semicryst...
Article
Screen printed graphite electrodes are widely used in electroanalysis, and increasingly in electrochemiluminescence (ECL) applications. However, their response is very dependent on graphite paste composition and electrode fabrication processes. This work studies the ECL of the tris(2,2’-bipyridyl)ruthenium (II) / tripropylamine (Ru(bpy)3²⁺/TPrA) sy...
Article
Full-text available
Spontaneously formed hydrogels are attracting increasing interest as injectable or wound dressing materials because they do not require additional reactions or toxic crosslinking reagents. Highly valuable properties such as low viscosity before external application, adequate filmogenic capacity, rapid gelation and tissue adhesion are required in or...
Chapter
Limited water resources are one of the most important global issues. Among the possible techniques devoted to water purification, polymeric membranes are of particular interest to the industry due to their versatility and cost-effectiveness. Among them, nanocomposite-based membranes have been successfully developed for many applications, such as se...
Article
This review highlights the most important advances in the development and manufacture of advanced hybrid polymer-inorganic layered anticorrosion coatings for marine applications. These newly hybrid anticorrosion systems are gaining importance with the premise to improve the efficiency of the widely employed pure organic coatings, while widening the...
Article
Chitosan (CHI) based hydrogels promote wound healing and relieve inflammations and chronic infections. However, in hardly healable ulcers with excessively painful inflammations, anti-inflammatory activity of hydrogels can be enhanced by the sustained release of non-steroidal anti-inflammatory drugs or combining them with antibiotics. Thus, CHI was...
Article
Full-text available
Mismanagement, pollution and excessive use have depleted the world’s water resources, producing a shortage that in some territories is extreme. In this context, the need for potable water prompts the development of new and more efficient wastewater treatment systems to overcome shortages by recovering and reusing contaminated water. Among the water...
Chapter
Soil pollution is one of the main environmental issues worldwide. The intensive use of the soil for industrial and agricultural purposes increases the necessity of recovering brownfields and other polluted emplacements. There are many remediation technologies used until now for this aim, with nanoremediation and bioremediation being the most succes...
Article
Commercial screen-printed carbon electrodes have been treated with a CO2 laser energy of 12.8 mJ cm⁻² in air. This thermal treatment resulted in an increase in the crystallinity of the graphite and an enhancement in electron transfer rates, determined by Raman spectroscopy and cyclic voltammetry, respectively. Laser treatment also facilitated the i...
Article
Full-text available
Konpositeak propietate desberdinak dituzten bi konposatuz (edo gehiagoz) osatutako materialak dira, gaur egun oso erabiliak. Normalean, konposatu ugarienari matrizea deritzo eta bertan barreiatzen den konposatuari gehigarria edo karga deitzen zaio. Material hauen erabilpena hainbat esparrutara zabaltzen da, esaterako eraikuntzetako hormigoi armatue...
Article
Full-text available
Many industrial and biological interfacial processes, such as welding and breathing depend directly on wettability and surface tension phenomena. The most common methods to control the wettability are based on modifying the properties of the fluid or the substrate. The present work focuses on the use of high-frequency acoustic waves (ultrasound) fo...
Article
Full-text available
Screen-printed carbon electrodes (SPCEs) are enjoying increasing popularity in different electrochemistry areas, from electroanalysis to energy storage and power generation. Highly oriented pyrolytic graphite (HOPG), an ordered form of graphite, displays excellent electrochemical properties. However, its application in screen-printed electrodes has...
Article
Full-text available
Poly(N‐vinylcarbazole), two dihalogenated derivatives, and nanocellulose/poly(N‐vinylcarbazole) nanocomposite thin films have been fabricated with micrometric pore topography. This patterned structure has been developed by using breath figure method, which is an easy and cost‐effective method to obtain honeycomb‐like arrays. In addition, the effect...
Article
Bacterial contamination in implanted biomedical devices is a critical daily concern. The most used material for permanent implant in biomedical field is Ti6Al4V alloy due to its beneficial mechanical properties and high biocompatibility. Accordingly, in this work different polymeric antibacterial coatings poly(N-vinyl pyrrolidone) (PVP), hyaluronic...
Article
Hyaluronic acid (HA) solutions were crosslinked with divinyl sulfone (DVS) and subsequently loaded with antibiotic molecules to obtain biocompatible and antibacterial injectable hydrogels. The crosslinking degree of the hydrogels was modulated by varying the reaction time and the HA:DVS weight ratio. Synthesized HA-DVS hydrogels were characterized...
Article
Full-text available
Ultrasonic cleaning is a developed and widespread technology used in the cleaning industry. The key to its success over other cleaning methods lies in its capacity to penetrate seemingly inaccessible, hard-to-reach corners, cleaning them successfully. However, its major drawback is the need to immerse the product into a tank, making it impossible t...
Article
Full-text available
Hydrogels present a great number of advantages, such as their swelling capacity or their capability to mimic tissues, which make them very interesting biomaterials. However, one of their main disadvantages is their lack of good mechanical properties, which could limit some of their applications. Several strategies have been carried out to develop h...
Article
Full-text available
A new approach of Fiber Enhanced Raman Spectroscopy (FERS) is described within this article based on the use of Hydrogel-Core microstructured Polymer Optical Fibers (HyC-mPOF). The incorporation of the hydrogel only on the core of the Hollow-Core microstructured Polymer Optical Fiber (HC-mPOF) enables to perform FERS measurements in a functionalize...
Article
Photocurable thermochromic and humidity responsive materials based on polyurethane acrylated (PUA) and bis(1-butyl-3-methylimidazolium) tetrachloronickelate ([Bmim]2[NiCl4]) ionic liquid (IL) have been prepared with varying IL content up to 40 wt.% within the polymer matrix. The influence of IL content on the photopolymerization process, morphology...
Chapter
Stimulus-sensitive hydrogels have become suitable soft and multifunctional materials for biomedical applications such as, tissue engineering, soft robotic actuators or controlled release of bioactive substances, such as drugs, growth factors, or cells. In addition, these materials are promising candidates for the manufacture of customized scaffolds...
Article
Full-text available
In the last few decades, surgical implants have been widely used to restore the function of damaged bones or joints. However, it is essential to receive antibiotic or anti-inflammatory treatment to circumvent significant problems associated, such as the colonization of the implanted surface by bacteria or other microorganisms and strong host inflam...
Article
This work is focused on the development of sustainable stone conservation materials, based on BPA-free epoxy-silica hybrid resins, with consolidating and hydrophobic properties, for long-term treatments. For this purpose, a cycloaliphatic diol, with minor health and environmental associated issues with respect to classic phenolic derivatives, was s...
Article
Full-text available
In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a no...
Book
The last years have seen a general rise in individual awareness on the environmental issues that our society is about to face. The almost total scientific agreement over Global Warming and the day-by-day growing evidences of plastic pollution have fed requests worldwide to public institutions to take actively part in a radical change in today conce...
Article
Thermosensitive hydrogels based on polysaccharides are suitable candidates for the design of biodegradable and biocompatible injectable drug delivery systems. Thus, the combination of chitosan (CHI) and β-glycerol phosphate disodium salt (β-GP) has been intensively investigated to develop thermo-induced physical gels. With the aim of exploring the...
Article
Biodegradable, non-toxic and transparent poly (l-lactic acid) (PLLA) biopolymer is modified in order to obtain an improved material with antibacterial properties for its use as active packaging of food. For this, PLLA films were endowed with the bactericidal effect of ZnO nanoparticles by internal blending and the bacteria contact-killing propertie...
Article
Full-text available
Biomedical devices have become essential in the health care. Every day, an enormous number of these devices are used or implanted in humans. In this context, the bacterial contamination that could be developed in implanted devices is critical since it is estimated that infections kill more people than other medical causes. Commonly, these infection...
Article
Full-text available
Azken urteetan, inplante kirurgikoak oso erabiliak bilakatu dira kaltetutako hezurrak, lotailuak edota giharrak ordezkatzeko. Hala ere, hauen erabilera dela eta ezinbestekoa da antibiotikoen tratamendua jasotzea, inplanteetan aurki daitezkeen bakteria eta beste mikroorganismoei aurre egiteko. Orokorrean, bakterioak inplanteen gainazaletan adsorbatz...
Article
Full-text available
Polymers obtained from biomass are an interesting alternative to petro-based polymers due to their low cost of production, biocompatibility, and biodegradability. This is the case of lignin, which is the second most abundant biopolymer in plants. As a consequence, the exploitation of lignin for the production of new materials with improved properti...
Chapter
Biodegradable shape-memory polymers (BSMP) have arisen as highly promising materials for biomedical applications due to their valuable properties. Their chemical and structural diversities, low toxicity, biodegradation, and resorption added to their capability to adapt their shape due to their shape-memory property make them excellent materials for...
Article
Full-text available
There is currently an increasing interest in the development of polyacrylonitrile (PAN)-based membranes with new and enhanced properties which are of special importance in the processes of pervaporation, purification, and water treatment. Thus, the optimization of the functionalization of PAN membranes and its effect on their morphology, hydrophili...
Article
Full-text available
Ehun ingeniaritzak kaltetuta dauden ehunen ordezko funtzionalak sintetizatzeko helburua dauka. Horretarako, zelulaz, molekula bioaktiboz eta euskarri porotsuz osatutako matrizeak beharrezkoak dira, hazkuntza eta zelulen diferentziazio prozesuak gerta daitezen. Matrize hauek solidifikatzeko gai den aitzindari baten injekzioz eratu daitezke kaltetuta...