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Adjuvant immunotherapies as a novel approach to 
bacterial infections

In light of the sweeping success of antibiotics 
and vaccines in the mid-20th century, there was 
the widespread fallacious notion in the 1960s 
and 1970s that infectious diseases had been 
defeated once and for all. One of the world’s 
leaders in infectious diseases at that time, 
Petersdorf, predicted a millennium in which 
clinical infectious disease fellows would have 
to “culture themselves” [1,2]. Unfortunately, 
these and other anecdotal prophecies were false. 
Today, infectious diseases continue to represent 
one of the largest medical problems and socio-
economic challenges worldwide [3]. In low-
income countries, infectious diseases represent 
the leading cause of death. While in middle- 
and high-income countries most people die 
from chronic conditions such as cardiovascular 
diseases and cancer, mortality rates of infectious 
diseases such as pneumonia remain stubbornly 
high despite easy access to healthcare and 
antimicrobials [201]. Why did the optimistic 
prophecies of the mid-last century fail? The 
reasons are probably simple: as environments 
and hosts change, so do the microorganisms 
and their vectors, creating new host–microbe 
interactions and new diseases. Simply speaking, 
modern medicine was unable to outrun microbial 
evolution. In the past century alone, several 
hundred documented infectious diseases have 
emerged or re-emerged [4]. The most prominent 
examples are viral diseases such as HIV/AIDS, 
SARS or Ebola; however, strikingly, bacterial 
infections represent the majority of all emerging 
infectious diseases [4].

Introduction of antibiotic therapy in the 1930s 
was undoubtedly one of the greatest medical 
breakthroughs of all time, which saved millions of 
lives because infectious disease (e.g., pneumonia)-
related mortality was dramatically reduced [5]. 
Today, many standard procedures such as 
abdominal surgery are hard to imagine without 
the ability to prevent and treat bacterial infections 
with broad-spectrum antibiotics. However, the 
easy availability and widespread (mis-)use of 
antibiotics has come at the price of a sharply 
increasing bacterial drug resistance due to 
Darwinian selection. Unfortunately, at the same 
time, the antibiotic pipeline has successively dried 
up in the past few decades [6].

Antibiotic resistance is a rapidly growing 
global problem; however, with specific geographic 
distribution patterns [202]. For instance, eastern 
Europe and Asia are experiencing alarmingly 
high rates of multidrug-resistant and extensively 
drug-resistant Mycobacterium tuberculosis 
infections [7,8], which, in combination with an 
increased population mobility, is likely to lead to 
a renaissance of tuberculosis in western countries. 
Antibiotic-resistant Gram-positive bacteria such 
as methicillin-resistant Staphylococcus aureus or 
vancomycin-resistant Enterococci have drawn 
significant public attention [9]. Fortunately, 
infection rates are slowly decreasing in recent 
years [10] and most isolates are still sensitive 
to second- and third-line antibiotics such as 
linezolid. By contrast, the drastic increase of 
multidrug resistance among Gram-negative 
bacteria, especially Enterobacteriaceae such as 
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Escherichia coli, Klebsiella spp. and nonfermenters 
such as Pseudomonas and Acinetobacter spp., is 
a cause for major concern [11–13]. As extended-
spectrum b-lactamase (ESBL) rates are soaring 
in parts of Asia, Latin America and southern 
Europe, with frequencies of ESBL for E.  coli 
and Klebsiella spp. reaching >80% of clinical 
isolates in India [11], classical antibiotics such 
as third-generation cephalosporins are falling 
by the wayside. Rising cephalosporin resistance 
has in turn greatly increased carbapenem 
consumption. Until recently, carbapenems 
were typical reserve antibiotics with near-
universal activity against all Enterobacteriaceae, 
most other Gram-negative and several Gram-
positive bacterial species. Lately, several 
different carbapenemases have been isolated. 
Carbapenemase-producing strains are on the rise 
and they are usually resistant to most antibiotics 
with the (partial) exception of tigecycline and 
some old and sub-optimal agents such as colistin 
or fosfomycin [14,15]. However, tigecycline has 
little or no activity against Pseudomonas and 
tigecycline-resistant Enterobacteriaceae are 
also emerging [16]. Furthermore, tigecycline 
has shown limited clinical effectiveness in 
treating severe infections, possibly due to its 
pharmacokinetic/pharmacodynamic profile and 
its bacteriostatic rather than bacteriolytic activity 
[17]. Moreover, even completely colistin-resistant 
carbapenemase-producing Klebsiella pneumoniae 
strains have already emerged [18], leaving no more 
arrows in the antibiotic quiver. These scenarios 
have led WHO and leading infectious disease 
professionals to warn that modern medicine is 
on the verge of a postantibiotic era [203], an ironic 
contrast to the euphoric predictions of the 1960s.

Antibiotic resistance is often encoded on 
promiscuous plasmids, which can be easily 
transferred among strains and species, thereby 
facilitating the fast spread of drug resistance. Gut 
resident microflora [19] or contaminated food and 
water [20,21] have been shown to serve as a reservoir 
and source of spread for antibiotic resistance such 
as ESBL. Misuse of antibiotics creates selective 
pressure which favors the development of drug 
resistance. Some authors have estimated up to 
50% of all antibiotic prescriptions worldwide 
to be considered inappropriate [22]. Such misuse 
includes antibiotic treatment of viral infections, 
prescription of broad-spectrum antibiotics 
for banal infections, too low dosing or too 
short intake periods, all of which create ideal 
conditions for Darwinian selection of antibiotic- 
resistant mutants. Another cause for concern is 
the massive consumption of broad-spectrum 

antibiotics in animal farming. In addition to, 
for example, high ESBL carriage rates in poultry, 
published evidence suggests that soil resident 
bacteria are becoming increasingly antibiotic-
resistant as a result of uncontrolled antibiotic 
use in meat production and plant agriculture 
[23]. In an excellent study, Forsberg et al. recently 
demonstrated that soil bacteria may serve as an 
important environmental source of resistance 
genes [24]. The authors found perfect sequence 
identity in several resistance genes and flanking 
mobile elements of soil bacteria and human 
pathogens as a direct indicator of horizontal gene 
transfer of resistance genes [24].

The combination of rapidly emerging multi
drug resistance and increasing global population 
density urgently calls for novel, broadly effective 
and cost-efficient therapies for infectious diseases. 
While the development of new antibiotics is 
sorely needed, the pipeline may still fail to keep 
pace with the emergence of resistance [6]. It will 
therefore be important to design strategies to 
limit our dependence on antibiotics as the sole 
therapeutic option for bacterial infections. Instead 
of the traditional pathogen-centered therapies, we 
discuss the prospects of host-focused approaches 
to selectively stimulate protective antimicrobial 
immune responses. Such treatments are referred 
to as adjuvant immunotherapies and could be 
used as an alternative or a potent addition to 
conventional antibiotics [25]. Intentional induction 
of antimicrobial immunity is an old and very 
efficient prophylactic concept, first introduced 
by Edward Jenner in 1798 and widely known 
as vaccination [26]. Specific vaccines against 
problematic pathogens known to frequently 
carry antibiotic resistance could critically limit 
their spread. However, besides technical obstacles 
to develop efficient targeted vaccines, there is 
growing vaccination reluctance in the population 
due to safety concerns [27]. In addition, acute 
bacterial infections demand quick-acting 
therapies. Classical vaccines confer protection by 
generating adaptive immune responses, which 
normally require several days or even weeks to 
fully unfold. By contrast, the innate immune 
system possesses a large arsenal of antimicrobial 
effectors, which can be activated within minutes 
or hours. Furthermore, innate immune responses 
are antigen-independent, allowing a broader 
application of adjuvant immunotherapies, 
at least against the same class of pathogens 
(e.g., Gram-negative extracellular bacteria). It 
has also been suggested that immunotherapies 
may be favorable for managing chronic infections 
such as M. tuberculosis infections [28]. Here, we 
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Box 1. Pattern recognition receptors.

TLRs

�� TLRs were the first group of PRRs to be discovered. In humans, ten functional TLRs have been found, which detect a broad range of 
PAMPs including lipids, lipoproteins, lipopolysaccharide, proteins and nucleic acids derived from bacteria, fungi, viruses and parasites, 
as well as some synthetic compounds. According to their subcellular localization, TLRs can be divided into surface (TLR‑1–6 and -10) 
and endosomal (TLR‑3 and -7–9) TLRs

�� TLRs are transmembrane proteins and the extracellular LRR domain is thought to bind microbial ligands, which results in the formation 
of receptor homo- or hetero-dimers. Dimerization of cytosolic TIR domains is required for the recruitment of adaptor molecules. 
All TLRs, except TLR‑3, signal through MyD88. TLR‑3 recruits TRIF, which can also be recruited to TLR‑4 upon receptor internalization. 
Through a series of downstream signaling partners, MyD88 activates NF-kB and MAPKs, whereas TRIF primarily activates IRF3 and 
NF-kB. TLRs can also detect endogenous molecules modified by microbes, such as hemozin, which is a produced by Plasmodium 
falciparum through digestion of hemoglobin

NLRs

�� NLRs form a large family of at least 20 proteins in humans, characterized by a LRR, NOD domain and variable effector domain. 
NLR activation by PAMPs, as well as DAMPs, induces different responses. NLRs can be functionally divided into three groups:
–	 NLRs that initiate proinflammatory responses through RIP2 kinase and downstream NF-kB and MAPK activation (e.g., NOD1 

and NOD2)
–	 NLRs that form inflammasomes leading to the activation of caspase-1 (e.g., NLRP1, NLRP3 and NLRC4/NAIP5)
–	 NLRs that regulate other cellular responses such as type-I IFN production or MHC molecule expression (e.g., NLRC5 and NLRP12)

�� Many NLR functions and ligands remain unknown. Owing to their cytosolic localization, NLRs are considered gatekeepers of the host 
cell cytosol that detect invading pathogens

RLRs

�� RLRs contain an N-terminal CARD (not present in LGP2) and a DExD/H-box RNA helicase domain. RIG-I and MDA5 detect viral dsRNA, 
whereas LGP2 might function as a negative regulator or cofactor of these receptors. Upon detection of viral RNA, RIG-I and MDA5 
signal through IPS-1, also called MAVS or VISA, and induce type-I IFN production

CLRs

�� CLRs form a large family of proteins that all share the common feature of a CTLD. Several CLRs are considered PRRs, involved in the 
sensing of mycobacterial, fungal and viral carbohydrate, as well as noncarbohydrate PAMPs. Downstream-signaling via SYK and CARD9 
leads to the production of proinflammatory cytokines, inflammasome activation and ROS generation. CLEC9A, also known as DNGR1, 
is a CLR expressed primarily on cross-presenting DCs. It detects F-actin as a DAMP exposed by necrotic cells and promotes cellular 
immunity

Other cytosolic PRRs

�� AIM2 was recently identified as a sensor for cytosolic DNA, leading to ASC recruitment, inflammasome formation and caspase-1 
activation. AIM2 is a member of the PHYIN protein family, which comprises four human and at least 11 mouse proteins. Another PYHIN 
family member, IFI16, and its mouse ortholog, p204, were recently proposed as sensors of cytosolic DNA inducing type-I IFN 
production

�� DHX9 and DHX36 were recently found to bind cytosolic CpG DNA and activate MyD88 in human plasmacytoid DCs. A complex 
consisting of DHX36, DDX1 and DDX21 was also found to sense cytosolic dsRNA and to induce TRIF-dependent IFN-b production. 
STING plays a key role in the cellular response to cytosolic DNA and it was recently shown to detect bacterial-derived c-di-GMP and 
c-di-AMP, and induce type-I IFNs

CARD: Caspase activation and recruitment domain; CLR: C-type lectin receptor; CTLD: C-type lectin-like domain; DAMP: Danger-associated molecular pattern; 
DC: Dendritic cell;  LRR: Leucin-rich repeat; NOD: Nucleotide oligomerization domain; NLR: Nucleotide oligomerization domain-like receptor; PAMP: Pathogen 
associated molecular pattern; PRR: Pattern recognition receptor; RLR: RIG-I-like receptor; ROS: Reactive oxygen species; TIR: Toll-IL-1 receptor; TLR: Toll-like receptor.

discuss novel strategies for targeted activation of 
innate immunity and review previously published 
studies on innate immune stimulants as adjuvant 
immunotherapeutic agents. We will particularly 
focus on novel insights into the immunological 
decision-making mechanisms that govern 
antimicrobial responses and means to manipulate 
them therapeutically.

Innate immune detection of 
microbial infections
The innate immune system comprises a complex 
network of cellular and molecular components 
that collectively detect microbial invaders 
and orchestrate protective immune responses. 

Targeted manipulation of this sophisticated 
machinery may therefore represent a promising 
strategy against bacterial infections without the 
risk of further aggravating antibiotic resistance 
through increased selective pressure.

As predicted by Charles Janeway Jr in 1989, the 
innate immune system senses microorganisms 
through pattern recognition receptors (PRRs), 
a large group of germline-encoded immune 
receptors (Box 1). PRRs recognize highly conserved 
pathogen-associated molecular patterns (PAMPs) 
[29], which are defined as integral parts of all 
microorganisms and mark them as foreign to 
the immune system [30]. PRR ligation activates 
intracellular signaling cascades, often converging 
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on NF-kB, MAPKs and/or interferon regulatory 
factors [31], leading to cytokine expression, 
enhanced phagocytosis and the generation 
of reactive oxygen species or production of 
antimicrobial peptides [32]. Upon activation, 
some members of the nucleotide oligomerization 
domain (NOD)-like receptor (NLR) family of 
PRRs can assemble into large cytosolic protein 
complexes, termed inf lammasomes, which 
serve as platforms for autocatalytic activation of 
caspase-1 and subsequent maturation and release 
of IL-1b and IL-18 [33]. In APCs, PRR activation 
promotes antigen processing and presentation, 
upregulation of co-stimulatory molecules and 
cytokine production. Thus, PRR ligation links 
innate and adaptive immunity [34]; a fact that is 
frequently exploited since many known vaccine 
adjuvants act as PRR ligands [35,36].

The pattern recognition dilemma: 
how to discriminate dangerous from 
harmless microbial contacts
Inflammatory immune responses must be tightly 
controlled in order to avoid unnecessary or 
excessive tissue damage, while ensuring efficient 
microbial clearance. Thus, antimicrobial immune 
responses are scaled to the level of infectious 
threat posed by a given microbial encounter 
[37]. Indeed, pathogenic and invasive bacteria 
generally elicit more robust immune responses 
compared with nonpathogenic or commensal 
microbes [38]. Given that all microorganisms per 
definition contain PAMPs, finer immunological 
distinctions, for example, between pathogens 
and commensals, require additional layers of 
regulation. We have recently proposed a concept 
of five immune checkpoints that collectively 
allow the immune system to integrate microbial 
signals along with (micro-) environmental cues 
to accurately measure the infectious threat [37]. 
We proposed that the infectious threat level is 
measured through a series of checkpoints that 
discriminate between soluble and particulate 
(checkpoint 1), live and dead (checkpoint 2), 
pathogenic and nonpathogenic (checkpoint 3) 
and invasive and colonizing (checkpoint  4) 
microbial stimuli. In addition, tissue (mucosal 
and parenchymal) and compartment (local, 
systemic, sterile and nonsterile)-specific cues 
are integrated to shape the ensuing immune 
response (checkpoint 5) [37]. While the molecular 
mechanisms underlying many of these delicate 
distinctions still remain to be fully elucidated, 
we believe that the targeted manipulation 
of individual or several of these immune 
checkpoints may represent a powerful strategy 

to elicit protective antimicrobial immunity [39]. 
Based on our recent findings, we particularly 
favor the activation of signaling pathways 
that are centrally involved in the detection of 
microbial viability, bacterial pathogenicity and 
tissue damage [39,40].

Viability-associated PAMPs are 
signatures of microbial life 
& indicators of increased infectious 
threat
Live microorganisms are historically known to 
induce more vigorous immune responses than 
their killed counterparts, illustrated by the 
often-observed superiority of live vaccines 
[27,41,42]. Given that microbial viability is 
the fundamental basis of infectivity, we 
hypothesized that the innate immune system 
actively discriminates between live and dead 
microbes. Indeed, we found that only viable but 
not killed avirulent E. coli activate the NLRP3 
inflammasome, leading to caspase-1 activation 
and subsequent cleavage and release of IL-1b, 
and pyroptosis. In addition, stimulation of 
murine macrophages or dendritic cells with 
live avirulent bacteria significantly enhanced 
the production of type-I IFN. These responses 
were not restricted to E.  coli and were also 
observed with other nonpathogenic or severely 
attenuated bacteria. This study demonstrated 
an inherent ability of innate immune cells to 
detect bacterial viability per se, independently 
of virulence factors [40]. Previously, superior 
immune responses to viable microorganisms 
(e.g.,  in vaccines) compared with inanimate 
stimuli had been attributed to an allegedly 
higher virulence and persistence of live microbes 
[27]. When we searched for unique molecular 
characteristics of viable bacteria, we identified 
bacterial mRNA as a labile component, 
which was rapidly lost upon bacterial killing. 
Addition of purified bacterial mRNA to heat-
killed E. coli completely restored their ability 
to induce inflammasome activation and IFN-b 
production, indicating that prokaryotic mRNA 
is a molecular signature of microbial life, the 
detection of which triggers robust immune 
responses not warranted for dead microbes. We 
consequently defined prokaryotic mRNA as the 
first member of a novel class of PAMPs, called 
viability-associated PAMPs (vita-PAMPs) 
[40]. Vita-PAMPs indicate microbial viability 
and thus an elevated infectious threat to the 
immune system. Cellular responses to vita-
PAMPs require NLRP3, ASC and caspase-1 for 
IL-1b production and pyroptosis in addition 
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to the transcription factor IRF3 for IFN-b 
expression. Importantly, the Toll-like receptor 
(TLR) adaptor protein TRIF is required for 
both inf lammasome activation and IFN-b 
production, indicating its central role in the 
detection of microbial viability [40]. Recently, 
Rathinam et  al. found that TRIF induces 
caspase-11 expression via auto/parakrine type-I 
IFN signaling, which leads to a noncanonical 
activation of the NLRP3 inf lammasome 
in response to live Gram-negative bacteria 
[43]. Moreover, TRIF-dependent responses 
are crucial for host defense against systemic 
E.  coli infections in mice [40], which is 
further underscored by studies demonstrating 
protective effects of TRIF signaling during 
respiratory and intestinal Gram-negative 
bacterial infections [44–46].

Besides the robust innate immune responses 
triggered by viable bacteria and vita-PAMPs, we 
found that bacterial RNA is a potent stimulator 
of adaptive immunity. Vaccination of mice with 
a combination of heat-killed E. coli and purified 
bacterial RNA elicited class-switched E.  coli-
specific IgG serum levels comparable with or even 
higher than immunization with viable bacteria 
[40]. Besides bacterial mRNA, other vita-PAMPs 
likely exist, such as soluble mediators indicative 
of bacterial metabolism. Cyclic dinucleotides 
are bacterial second messenger molecules, which 
were recently shown to activate innate immune 
responses. Most notably, the bacterially-
produced cyclic dinucleotides c-di-AMP and 
c-di-GMP stimulate robust production of 
type-I IFN, which is also a hallmark response 
to viable bacteria [40,47]. Two recent studies 
identified STING and the cytoplasmic helicase 
DDX41 as host cell receptors for c-di-AMP 
and c-di-GMP [48,49]. Besides these and other 
intracellular signaling molecules, bacteria utilize 
a sophisticated system, named quorum-sensing 
(QS), for intercellular communication. QS 
serves to coordinate population behavior, for 
example, growth, motility or biofilm formation 
[50]. This communication requires the synthesis 
of small, diffusible molecules, termed QS 
molecules (QSMs). Gram-negative bacteria 
use autoinducer (AI)-1, which is a N-acyl 
homoserine lactone; or AI-2, a cyclic furanosyl 
borate diester, and AI-3, as well as a host of other 
compounds, many of which have not yet been 
identified [50]. Gram-positive bacteria use post-
translationally modified autoinducing peptides 
[50]. Once a threshold concentration is reached 
within a population, the QS molecule–receptor 
complex regulates the expression of quorum 

sensing-dependent genes [50]. Interestingly, 
QSMs can also affect mammalian cells. For 
instance, N-(3-oxo-dodecanoyl) homoserine 
lactone (C12) from Pseudomonas aeruginosa 
inhibits TLR-induced NF-kB signaling 
through a hitherto undefined pathway [51]. 
Reduced viability and IL-12 production, along 
with lower expression of TLR‑2 and TLR‑4 in 
human monocytes in the presence of C12 has 
also been observed [52]. By contrast, a previous 
study reported increased chemotaxis and 
phagocytic activity of neutrophils in response 
to C12 secreted by P. aeruginosa in the early 
phase of biofilm formation [53]. Given that 
the production of signaling molecules such as 
cyclic dinucleotides and QSMs depends on 
active bacterial metabolism and thus viability, 
they could be valuable indicators for the innate 
immune system by relaying information on 
the viability status and population density of 
infecting bacteria.

Inflammasome activation as a 
signature response to microbial 
virulence & tissue damage
Inflammasome-forming NLRs are located in the 
cytosol and are therefore prime sensors of invasive 
pathogens. Inflammasome formation is strongly 
stimulated by many bacterial virulence factors 
[38]. For example, bacterial pore-forming toxins 
including listeriolysin of Listeria monocytogenes 
[54], pneumolysin of Streptococcus pneumoniae 
[55] or a-hemolysin of S. aureus [56] stimulate 
the NLRP3 inf lammasome, components 
of bacterial type III secretion systems and 
flagellin are recognized by the NAIP5/NLRC4 
inflammasome [57], and lethal factor of Bacillus 
anthracis is sensed by the NLRP1 inflammasome 
[58]. Moreover, inflammasomes have been shown 
to react to endogenous host molecules such as 
ATP or uric acid released after tissue damage 
caused by sterile insults [59]. It is also likely that 
inflammasomes are activated by these danger 
signals at later stages of infections associated 
with high degrees of tissue damage. Given that 
inflammasome activation is a critical response 
to most virulent bacteria, it seems reasonable 
to consider inf lammasome activators as 
candidate therapeutic agents for infections 
with low-virulent or opportunistic bacteria in 
immunocompromised patients.

We will next discuss the prospects of using 
immune stimulants that simulate an elevated 
infectious threat level to the immune system as a 
means of amplifying antimicrobial host immune 
responses to bacterial infections.
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Stimulation of innate immunity as an 
adjuvant anti-infective therapy
As conventional antibiotics are becoming an 
increasingly blunt sword due to rapidly emerging 
multidrug resistance, alternative concepts, for 
instance, targeted activation of host immune 
responses, are urgently needed. Such adjuvant 
therapies would ideally mobilize protective 
responses without causing inappropriate 
collateral tissue damage.

We will summarize previous efforts in the 
development of immune adjuvants to treat 
infectious diseases and further discuss ways to 
use vita-PAMPs and other viability-associated 
molecules, as well as inflammasome activators, 
as therapeutics to enhance protective immunity 
during infections.

Broad innate immune stimulation: 
targeting TLRs & NODs, among 
other PRRs
Their central role in the detection of micro
organisms and ability to rapidly induce innate 
immune responses have made PPR ligands 
obvious candidates for vaccine adjuvants and 
therapeutics for diseases ranging from cancer to 
viral infections [60–65]. Here, we will summarize 
some previous studies with a focus on bacterial 
infections. An overview of PRR ligands that 
have been evaluated in preclinical studies and 
clinical trials is given in Table 1.

�� Toll-like receptors
Ligation of TLRs elicits proinf lammatory 
responses and although most TLRs share 
substantial similarities with regards to their 
intracellular signaling, individual TLRs or 
certain combinations of TLRs have distinct 
effects on ensuing immune responses.

Pretreatment with soluble TLR agonists such 
as Pam3-CSK4 or MALP2 (TLR‑2), poly
inosinic:polycytidinic acid (polyI:C, TLR‑3), 
lipopolysaccharide (LPS, TLR‑4) or CpG 
DNA (TLR‑9) has been shown to enhance host 
defense through increased phagocytosis and 
bacterial killing in mice [66–68]. Since LPS is not 
suitable for clinical applications due to its high 
toxicity, which is mainly associated with the 
lipid A portion of the molecule, other ligands 
such as monophosphoryl lipid A (MPLA) and 
aminoalkyl glucosaminide phosphates (AGPs) 
have been tested. MPLA and AGP are less toxic, 
TRIF-biased TLR‑4 agonists, and MPLA is 
already used as adjuvant in several vaccine 
formulations [69]. Synthetic TLR‑4 agonists 
can also enhance host defense. Prophylactic 

administration of the AGP CRX‑524 or a 
combination of CRX‑524 and CRX-527 
increases resistance to L. monocytogenes and 
Yersinia pestis infections in mice [70,71]. MPLA can 
promote clearance of Haemophilus influenzae and 
Moraxella catarrhalis from the nasal mucosa of 
mice [72]. Another interesting ligand is flagellin, 
the main component of bacterial flagella. It binds 
TLR‑5 and elicits MyD88-dependent responses, 
but it is also recognized by NAIP5, which forms 
an inflammasome with NLRC4 and induces 
the release of IL-1b and IL-18 [57]. Mucosal 
administration of flagellin promotes pulmonary 
immunity and protects mice from bacterial 
pneumonia with P. aeruginosa and S. pneumoniae 
[73,74]. Despite these promising preclinical 
results, there are only limited clinical data 
available regarding the use of TLR agonists in 
the treatment of bacterial infections in patients. 
The few examples include heat-killed or lysed 
bacteria, or bacterial mixtures such as CADI‑05 
[75] or Luivac [76,77], all of which have shown 
only limited clinical success so far. Nonetheless, 
TLRs remain attractive targets, especially for 
infections with poorly TLR-stimulatory bacteria 
such as Francisella tularensis, which expresses a 
modified form of LPS [78]. Some pathogens, 
on the other hand, exploit TLR-controlled 
cellular responses. Salmonella enterica serovar 
Typhimurium requires TLR signaling in order 
to switch on virulence genes encoded by SPI2, 
which allows the establishment of the salmonella-
containing vacuole and bacterial replication [79], 
indicating that broad TLR stimulation may not 
be universally efficient.

Despite the limited success of TLR ligands 
for the treatment of bacterial infections, these 
are routinely used to treat viral infections and 
certain types of skin cancers [80]. Endosomal 
TLRs (TLR‑3, TLR‑7, TLR‑8 and TLR‑9) 
detect nucleic acids such as viral RNA or 
DNA. Imiquimod, a synthetic TLR‑7 agonist, 
is approved as a first-line therapy for HPV-
associated genital warts [81] and has also been 
successfully used to treat HSV infections 
[82]. Resiquimod (R-848), a dual TLR‑7 and 
TLR‑8 agonist, and ANA773, a prodrug of a 
small-molecule TLR‑7 agonist, were shown to 
(transiently) lower HCV RNA serum levels 
when administered to chronically HCV-infected 
patients [83,84]. Interestingly, it was recently 
demonstrated that exogenous TLR stimulation 
can restore repressed innate immune responses 
during chronic fungal infections [85].

In addition to stimulating individual TLRs, 
efforts have also been undertaken to target 
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Table 1. Overview of tested immunostimulants.

Adjuvant Function Experimental and preclinical data Clinical trials† Ref.

Poly(I:C) Synthetic 
ligand of 
TLR‑3, RIG-I, 
MDA5 and 
DDX1, DDX21 
and DHX36

Increased phagocytosis and intracellular killing of Escherichia coli
Transiently increased cytokine production and pulmonary 
neutrophil recruitment, and prolonged survival in Francisella 
tularensis-infected mice
Increased cytokine production and bacterial killing by human 
macrophages
Pretreatment causes increased Streptococcus 
pneumoniae-induced lethality

Trials evaluating use in cancer 
vaccines and cancer treatment
NCT01437605
NCT01008527
NCT00694551
NCT00374049
NCT01720836
NCT00986609

[67,102, 
106,144]

MPLA Synthetic 
TRIF-biased 
TLR‑4 agonist

Reduction of bacterial burden in the nasopharynx and 
recruitment of neutrophils in Haemophilus influenzae- and 
Moraxella catarrhalis-infected mice

Approved in FENDrix® 

(GlaxoSmithKline Biologicals, 
Rixensart, Belgium; HBV vaccine) 
and Cervarix® (GlaxoSmithKline 
Biologicals; HPV vaccine)

[145,146]

CRX-524, 
CRX-527, 
RC-529

Synthetic 
TRIF-biased 
TLR‑4 agonist

Increased survival of Listeria monocytogenes-infected mice
Reduction of bacterial burden in lung and increased IFN-g and 
IL-12p70 production in Yersinia pestis-infected mice
Enhanced survival in combination with gentamicin
Increased cytokine production in vitro and in vivo, and increased 
survival and reduction of bacterial burden in lung, liver and 
spleen in F. tularensis-infected mice

RC-529 approved in Supervax® 
(Dynavax, CA, USA; HBV 
vaccine)

[70,71,78]

Flagellin Bacterial 
protein, ligand 
for TLR‑5 and 
NAIP5/NLRC4

Increased survival, reduced bacterial burden and enhanced 
pulmonary cytokine production and neutrophil recruitment in 
S. pneumoniae-infected mice
Increased survival and bacterial clearance, decreased 
dissemination, and enhanced induction of antimicrobial peptides 
in Pseudomonas aeruginosa-infected mice
Increased survival and protection of intestinal integrity, and 
decreased bacterial burden in antibiotic-pretreated mice infected 
with Clostridium difficile
Increased survival and delayed onset of Salmonella typhimurium 
infection
Reduced colonization and enhanced expression of RegIIIg in 
antibiotic-treated VRE-infected mice

Several trials explore flagellin as 
vaccine adjuvant for influenza
NCT01172054
NCT00966238 
NCT00730457
NCT0096623
NCT0921973
NCT00921947
NCT00603811 
Campylobacter
NCT00124865
Y. pestis
NCT0138744

[73,74, 
147–151]

mesoDAP 
containing 
PGN

NOD1 agonist Increased killing of S. pneumoniae and enhanced neutrophil 
functions 

– [95]

Nigericin NLRP3 agonist Augmented IL-1b production and decreased morbidity and 
mortality in elderly mice infected with influenza

– [136]

CNF1 E. coli-derived 
effector, 
modifies host 
Rho GTPases

Increased survival and transcription of antimicrobial peptides in 
CNF1-expressing Drosophila infected with highly virulent 
P. aeruginosa 

– [152]

c-di-GMP Bacterial 
second 
messenger, 
STING/DDX41 
ligand, 
induces type-I 
IFN

Increased leukocyte recruitment and reduced bacterial burden in a 
Staphylococcus aureus mouse mastitis model
Maturation of murine and human DCs in vitro
Increased survival and reduced bacterial burden in lung and blood 
in lethal S. pneumoniae infection in mice
Increased survival and enhanced chemokine/cytokine production, 
and reduced bacterial burden in lung and blood in Klebsiella 
pneumoniae-infected mice
Increased pulmonary neutrophil recruitment and reduced bacterial 
burden in lung and spleen in Acinetobacter baumannii-infected 
mice

– [49, 
113–116, 

153]

†For more information on the clinical trials, please see ClinicalTrials.gov [204]. 
AHL: N-acyl ʟ-homoserine lactone; COPD: Chronic obstructive pulmonary disease; DC: Dendritic cell; Poly(I:C): Polyinosinic:polycytidylic acid; mesoDAP: Meso-
diaminopimelic acid; MPLA: Monophosphoryl lipid A; NOD: Nucelotide oligomerization domain; PGN: Peptidoglycan; PRR: Pattern recognition receptor; 
QSM: Quorum-sensing molecule; TLR: Toll-like receptor; VRE: Vancomycin-resistant Enterococcus.
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the major signaling adaptors of TLRs, namely 
MyD88 and TRIF. Their important function in 
humans was demonstrated in individuals with 
genetic deficiency of central TLR signaling 
molecules. These patients suffer from severe 
invasive bacterial and viral infections [86,87]. 
However, no selective activators of these 
molecules are currently available for clinical use, 
and most data regarding the protective potential 
of MyD88 and TRIF during bacterial infections 
are derived from mouse studies [45,46,88].

To date, TLR-targeting strategies for the 
treatment of bacterial infections are still at an 
experimental stage.

�� Nucleotide oligomerization domains
NLRs constitute a large group of cytosolic 
proteins generally characterized by a three-
domain structure, consisting of a leucine rich 
repeat domain, a NOD and a variable effector 
domain [89]. Their cytosolic location makes 
NLRs ideal sensors for invasive pathogens or 
translocated microbial products. They can be 
functionally subdivided into three main groups:

�� NOD proteins that activate inflammatory 
signaling through RIP2 and downstream 
NF-kB and MAPK signaling (e.g., NOD1 
and NOD2) [90];

�� Inflammasome-forming NLRs (e.g., NLRP1, 
NLRP3 and NLRC4/NAIP5) [33];

�� NLRs that regulate other cellular responses 
such as type-I IFN production or MHC 
molecule expression (e.g., NLRC5, CIITA and  
NLRP12) [91], in addition to a number of 
NLRs with hitherto unknown functions.

The potential use of NLR ligands to treat 
acute infections has been predominantly 
evaluated for NOD1 and NOD2 ligands in 
several murine infection models. The recognition 
of peptidoglycan from H. influenzae through 
NOD1 enhanced opsonophagocytic killing of 
S. pneumoniae by neutrophils, an effect that 
could be mimicked by a synthetic muropeptide 
(FK-156) [92]. Besides its possible therapeutic 
impact, this study also elegantly demonstrates 
how microbes exploit the host’s immune system 
to compete with one another. These results 
were later also confirmed with aerosolized 
H. influenzae lysates [93,94].

Recently, it was shown than intestinal 
microbiota-derived NOD1 ligands translocate 
into the circulation and enhance protective 
neutrophil functions in the periphery [95]. 
This effect is lost upon antibiotic treatment, 
which depletes the resident microflora, but it 
can be restored by exogenous administration 
of M-TriDAP, a NOD1 ligand derived from 
Gram-negative bacteria. Thus, artificial NOD1 
stimulation may represent a promising strategy 
to enhance innate immunity against bacterial 
pathogens, especially during broad-spectrum 
antibiotic treatment that depletes or severely 
alters the endogenous microflora.

NOD2 agonists also augment the phagocytic 
activity of peripheral blood leukocytes and 
peritoneal, liver and lung macrophages [96]. 
Treatment of human alveolar macrophages with 
the NOD2 ligand muramyl dipeptide induces 
autophagy and expression of antimicrobial 
peptide LL37, leading to improved mycobacterial 
killing [97], whereas mice lacking NOD2 are 
more susceptible to M. tuberculosis infections [98]. 

Table 1. Overview of tested immunostimulants (cont.).

Adjuvant Function Experimental and preclinical data Clinical trials† Ref.

AHLs Bacterial QSMs Increased survival, enhanced neutrophil recruitment and 
reduced bacterial burden in spleen, lung and blood in a lethal 
Aeromonas hydrophila infection in mice
Enhanced phagocytosis by murine macrophages

– [126]

Whole 
bacteria and 
bacterial 
lysates

Agonists of 
multiple PRRs

Lysed, aerosolized H. influenzae increases survival in 
S. pneumoniae-, P. aeruginosa-, K. pneumoniae-, S. aureus-, 
Bacillus anthracis-, Y. pestis- or F. tularensis-infected mice
Local protection and production of AMPs in S. pneumoniae-
infected mice
Reduced frequency of recurrent respiratory tract infections in 
children
Improved symptoms in chronic bronchitis and COPD, unclear if 
Luivac can prevent exacerbations

Multiple trials CADI-05 
Luivac 

[76,77,93,94]

†For more information on the clinical trials, please see ClinicalTrials.gov [204]. 
AHL: N-acyl ʟ-homoserine lactone; COPD: Chronic obstructive pulmonary disease; DC: Dendritic cell; Poly(I:C): Polyinosinic:polycytidylic acid; mesoDAP: Meso-
diaminopimelic acid; MPLA: Monophosphoryl lipid A; NOD: Nucelotide oligomerization domain; PGN: Peptidoglycan; PRR: Pattern recognition receptor; 
QSM: Quorum-sensing molecule; TLR: Toll-like receptor; VRE: Vancomycin-resistant Enterococcus.
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These studies collectively indicate the potential 
value of NOD stimulation as an addition to 
tuberculostatic therapies.

�� Other PRRs
Synthetic dsRNA mimetic poly(I:C) is probably 
one of the best studied immunostimulants [99]. 
It activates several PRRs and had been known 
as a potent inducer of type-I IFNs for decades 
before PRRs were discovered [99]. Poly(I:C) and 
derivates thereof have shown promising effects 
as vaccine adjuvants in various mouse models 
[100]. However, its therapeutic potential during 
acute infections needs further investigation, 
although the poly(I:C) derivate poly(ICLC) 
protected mice against lethal inhalational 
anthrax [101] and prolonged survival after 
intranasal F. tularensis challenge [102]. The 
latter study is also a good example of the 
potential combination of immunostimulatory 
and classical antimicrobial therapies, as 
it demonstrated that poly(I:C) treatment 
provided a time window to initiate antibiotic 
therapy. The dual function of poly(I:C) to 
induce type-I IFNs as well as proinflammatory 
mediators, and the fact that both pathways 
are protective against most Gram-negative 
bacteria such as Legionella pneumophila [103] 
and P. aeruginosa [104] make poly(I:C) derivates 
good candidates for the treatment of Gram-
negative infections. However, poly(I:C) 
application can also have harmful effects, 
since it was shown to cause exacerbation of 
M. tuberculosis infection [105] and increased 
susceptibility to pulmonary secondary bacterial 
infections, effects that are not observed with 
the TLR‑7 agonist imiquimod [106].

C-type lectin receptors (CLRs) represent 
a relatively young group of PRRs (Box 1) [107] 

and their therapeutic potential has not been 
explored in great detail. Interestingly, it was 
recently discovered that the adjuvant activity 
of mycobacterial cord factor and its analog 
trehalose-6,6-dibehenate is mediated by the 
CLR MINCLE [108–110]. It is also well established 
that CLRs play a critical role in host defense 
against fungal infections, alone or in concert 
with TLRs [111]. The ongoing identification of 
CLR functions and ligands could provide new 
targets, and may hold therapeutic potential 
for difficult-to-treat mycobacterial or fungal 
infections.

Generally, bacterial pathogens contain multiple 
PAMPs and activate several signaling pathways 
emanating from distinct cellular compartments 
leading to unique innate immune responses. 

Hence, instead of targeting individual PRRs, 
a combined stimulation of different receptor 
modules might be the favorable approach to 
adjuvant immunotherapies of bacterial infections.

Simulating a highly infectious threat
The immune system carefully scales the 
infectious threat of microbial encounters in 
order to mount appropriate immune responses 
[37]. Detection of molecular signatures of 
microbial viability, microbial virulence or 
tissue damage alerts the immune system to an 
elevated level of infectious threat and elicits 
robust responses [37,39]. Thus, manipulation 
of the cellular detection machineries involved 
in the recognition of microbial threats might 
be a good strategy to generate specific, host 
protective immunity. We will therefore discuss 
ligands and receptors that might be used to 
mimic highly infectious threats.

Recently, we discovered an inherent capacity 
of the immune system to distinguish between 
live and dead bacteria through the recognition 
of a specialized class of PAMPs selectively 
associated with viable microbes called vita-
PAMPs [40]. We found that bacterial mRNA 
represents such a vita-PAMP because it is only 
found in significant amounts in viable bacteria 
and it elicits typical innate and adaptive immune 
responses when detected in conjunction with 
phagocytosed bacteria. One signature response 
to live bacteria and vita-PAMPs is the activation 
of the NLRP3 inflammasome and subsequent 
release of IL-1b. Importantly, this pathway 
plays a critical role in host defense against 
bacterial infections such as pneumococcal 
pneumonia [55]. Targeted NLRP3 activation 
could therefore prove benef icial during 
bacterial infections of immunocompromised 
patients. Several conditions, such as chronic 
obstructive pulmonary disease, smoking, 
mechanical ventilation or viral infections can 
predispose patients to bacterial respiratory 
infections, probably due to a combination 
of structural mucosal alterations and local 
immunosuppression. Prophylactic delivery of 
vita-PAMPs (e.g.,  in the form of aerosolized 
particles) to stimulate local immunity against 
viable microbes might protect at-risk patients 
from acquiring bacterial pneumonia, for 
example, during mechanical ventilation. Direct 
experimental and clinical evidence for such an 
approach is currently missing; however, indirect 
evidence stems from studies in gene-knockout 
mice lacking key components of the signaling 
cascade triggered by live bacteria. Mice deficient 
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in TRIF or NLRP3 are highly susceptible to 
pneumonia caused by extracellular bacteria 
[46,55,88]. Activation of TRIF by viable Gram-
negative bacteria plays a crucial role for the 
activation of the NLRP3 inflammasome, for 
example, via autocrine IFN-b signaling and 
caspase-11 [40,43,45]. However, TRIF activation 
alone, for example, through TLR‑3 or TLR‑4 
activation, does not suffice to activate the 
inf lammasome, and pretreatment of mice 
with poly(I:C) was shown to actually increase 
their susceptibility to Gram-positive pathogens 
[106]. Thus, vita-PAMPs are likely to confer 
their protective effects in concert with other 
bacterial ligands. To date, bacterial mRNA is 
the only known vita-PAMP, yet, the cellular 
receptor for bacterial mRNA is currently 
unknown [40]. Detailed knowledge about 
the cellular receptors and signaling pathways 
could allow the development of ligands capable 
of stimulating viability-induced immunity. 
Moreover, combining vita-PAMPs with other 
immunostimulatory molecules to target 
additional checkpoints of immunological risk 
assessment could further improve host protective 
immune responses [37,39].

In addition to prokaryotic mRNA, other 
vita-PAMPs or related molecules and activities 
very likely exist [37,39]. The bacterial second 
messenger molecules c-di-GMP and c-di-AMP 
are potent stimulators of type-I IFNs, and 
might represent a novel group of vita-PAMPs 
[112]. Treatment of murine and human dendritic 
cells with c-di-GMP promotes maturation and 
cytokine production, and enhances their ability 
to stimulate T cells, independently of TLR or 
NLR signaling [113]. In a mouse model, local 
or systemic c-di-GMP treatment protected 
against subsequent K. pneumoniae infection 
by enhancing innate immune responses [114]. 
Ex  vivo-cultured lung macrophages from 
c-di‑GMP-treated mice showed increased 
cytokine production and iNOS expression [114]. 
Beneficial effects of c-di-GMP administration 
were later confirmed in S. pneumoniae [115] and 
Acinetobacter baumannii infection models [116]. 
However, the molecular mechanisms of c-di-
GMP-mediated immune activation remained 
unclear until recently, when two separate 
studies identif ied STING and DDX41 as 
mammalian sensors of c-di-AMP and c-di-
GMP [48,49]. In addition to potent innate 
immune activation, a superior capacity of c-di-
GMP and c-di-AMP to induce specific class-
switched antibodies and Th1 type immunity 
compared with LPS, CpG DNA and alum 

was recently reported  [117,118]. Both c-di-AMP 
and c-di-GMP have potent adjuvant activity 
when intranasally administered [117,119], which 
is interesting given the constitutive PAMP 
exposure of the nasal mucosa due to microbial 
colonization. The additional stimulatory effect 
of intranasal cyclic dinucleotide administration 
indicates that these second messenger molecules 
may convey increased infectious threat levels 
to the mucosal immune system [37,120]. Despite 
these promising results, cyclic dinucleotides 
have not been evaluated as immune adjuvants 
in clinical trials so far.

Until recently, cyclic dinucleotides were 
considered to be produced exclusively in 
bacteria. However, in two groundbreaking 
studies, Wu  et  al. and Sun et  al. discovered 
the synthesis of cyclic GMP-AMP (cGAMP) 
molecules in mammalian cells [121,122] . 
Production of cGAMP is triggered upon 
recognition of cytosolic dsDNA by the enzyme 
cGAMP synthase (cGAS). Subsequently, 
cGAMP binds to STING and induces IFN-b 
production. These studies demonstrate for the 
first time the generation of cyclic dinucleotides 
in eukaryotic cells and provide an exciting 
new mechanism for innate immune responses 
to cytosolic DNA [121]. Importantly, similar 
responses could be evoked by synthetic cGAMP, 
indicating the immunostimulatory potential of 
cGAMP or related molecules, comparable with 
c-di-GMP or c-di-AMP.

QSMs represent another class of molecules 
that could serve to inform the immune system 
about the infectious threat level, since their 
production closely correlates with bacterial 
population density and pathogenicity [50]. 
Bacteria use QS to regulate growth and 
virulence, for example, by controlling the 
expression of genes required for biof ilm 
formation and invasiveness. Interestingly, 
several bacterial QSMs modulate responses 
in mammalian immune cells however, with 
different outcomes. While some studies 
have shown that certain QSMs disrupt 
NF-kB signaling and induce apoptosis  in 
macrophages [51,123] , other groups have 
observed immunostimulatory effects such 
as enhanced neutrophil chemoattraction 
[53,124]. Moreover, the mammalian receptors 
responsible for the cellular effects of QSMs 
are still largely elusive, with few exceptions. In 
an elegant study Lee et al. identified the bitter 
taste receptor T2R38 expressed in the mucosa 
of the upper respiratory tract as a sensor of 
P. aeruginosa-derived QSM N-acyl homoserine 
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lactone [125]. They revealed a critical impact of 
T2R38 signaling on mucosal host defense and 
discovered that T2R38 gene polymorphisms 
are associated with an increased susceptibility 
to upper respiratory tract infections with 
Gram-negative bacteria [125]. A previous study 
in mice had shown that administration of 
exogenous N-acyl homoserine lactone confers 
protection against Aeromonas hydrophila 
infection [126]. At this point it is too early to 
predict a therapeutic potential of QSMs as 
immunostimulatory agents, especially since the 
mechanisms of interaction between QSMs and 
the mammalian immune system still remain 
largely unclear. However, in contrast to the 
little-known cross-kingdom interactions, the 
role of QSMs in the regulation of bacterial 
virulence and infection is well documented 
[127]. Thus, intercepting with QS to suppress 
bacterial virulence and growth, a concept that 
has been termed quorum quenching, is viewed 
as a novel antimicrobial strategy [128]. Several 
approaches to quorum quenching, also called 
signal interference, have been experimentally 
tested. Small-molecule inhibitors of QS 
systems have been successfully used to inhibit 
P.  aeruginosa and A. baumannii biof ilm 
production [129–131]. Moreover, pretreatment 
with QS inhibitors renders Gram-positive and 
-negative bacterial biofilms more susceptible 
to available antibiotics in clinically relevant 
concentrations, and enhances bacteria l 
clearance in mice [132,133]. Biofilms constitute 
a notorious obstacle for successful antibiotic 
therapy, thus suppressing biofilm formation 
would represent a major therapeutic advance 
and powerful adjuvant strategy. As an 
alternative to competitive QSM inhibition, 
it has also been proposed to interfere with 
QSM synthesis and induce its degradation 
[134,135]. Therapeutic manipulation of QS is 
in its infancy and further studies are required 
to determine its clinical value, possibly in 
combination with other immunotherapeutic 
and antibiotic strategies.

Inf lammasome activation represents a 
response to elevated infectious threat [37,38] and 
the subsequent production of inflammasome-
dependent mediators including IL-1b and 
IL-18 are required for the protective early 
innate immune response to possibly most 
pathogenic bacteria. Moreover, inflammasome-
dependent cytokines also critically shape the 
ensuing adaptive immune response to bacteria. 
However, infections with less virulent or 
opportunistic bacteria often do not lead to strong 

inf lammasome activation, especially when 
they are in a persistent, nonreplicating form of 
their life cycle. These bacteria can nonetheless 
pose a great threat for immunocompromised 
patients. In addition, some pathogenic bacteria 
have evolved mechanisms to evade recognition 
by inf lammasomes. For example, we have 
recently shown that certain invasive types of 
pneumococci express a pneumolysin variant 
that is no longer recognized by the NLRP3 
inflammasome [55]. We therefore propose that 
artificial inflammasome activation by synthetic 
agonists might be a suitable approach to 
strengthen protective immunity. Experimental 
evidence for this assumption comes from viral 
infection models. It has been shown that elderly 
mice expressed reduced levels of NLRP3, 
which resulted in impaired inf lammasome 
function and enhanced susceptibility to 
inf luenza virus infection [136]. Treatment 
of infected elderly mice with the NLRP3 
agonist nigericin augmented IL-1b production 
and decreased morbidity and mortality. 
Interestingly, alum that has been in clinical 
use for decades as a vaccine adjuvant is also a 
strong inflammasome activator [35]. Although 
there is some controversy, it is likely that alum ś 
effect on the inflammasome contributes to its 
adjuvancy [35]. In addition to these protective 
therapeutic effects during acute viral infections 
in mice, alum might be a good candidate as an 
adjuvant therapeutic for bacterial infections. 
Furthermore, flagellin or other synthetic or 
natural inf lammasome activators might be 
considered as suitable candidates. Flagellin-
induced NLRC4 activation and subsequent 
IL-18 release was shown to elicit host protective 
CD8+ T‑cell responses in a mouse model of 
Salmonellosis [137]. Overall, inf lammasome 
agonists have shown protective effects in 
different infection models in mice and should 
be further examined as adjuvant therapeutics 
in severe bacterial infections, especially those 
in elderly and immunocompromised patients 
caused by multidrug-resistant bacteria.

Disinhibition as an alternative 
strategy to immune stimulation
One obvious disadvantage of adjuvant immune 
stimulation is its inherent risk of inducing 
unwanted inflammation and collateral tissue 
damage. Rather than actively stimulating 
immune responses, it could therefore be a 
valid alternative to release natural breaks on 
inflammatory pathways in order to selectively 
trigger immune activation at the site of infection. 
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Executive summary

�� Infectious diseases represent a major medical challenge and socioeconomic burden worldwide.

�� Newly emerging infectious diseases and sharply increasing multidrug resistance rates, especially among Gram-negative bacteria, call for 
immediate action and the development of novel therapies.

�� Adjuvant immunotherapies should be considered as an addition and alternative to classical antibiotics.

�� Targeted stimulation of innate immunity promotes pathogen clearance.

�� The immune system scales its responses to the level of infectious threat.

�� Manipulating immunological threat evaluation could represent a valid strategy to elicit protective immune responses.

�� The immune system can detect bacterial viability through the recognition of viability-associated pathogen-associated molecular 
patterns.

�� The immune system discriminates between virulent and less virulent bacteria through the detection of virulence factors by, for example, 
inflammasomes.

�� Viability-associated pathogen-associated molecular patterns, inflammasome activators or other molecules indicative of high infectious 
threat levels may serve as potent immunostimulants.

�� It will be critical to identify ligands and responding pathways that selectively elicit protective immune responses but minimize unwanted 
inflammation and tissue damage.

�� Risk patients may profit from prophylactic immune stimulation to prevent hospital-acquired infections.

Such strategies are currently being explored 
for anti-viral or -tumor immunotherapies. For 
instance, expression of inhibitory receptors by 
virus-specific T cells predicts HCV persistence 
and blockade of inhibitory receptors PD-1 or 
Tim-3 can improve viral clearance [138]. PD-1 
blockade also enhances antiviral immunity 
in SIV-infected nonhuman primates [139]. 
Moreover, anti-PD-1 antibody treatment shows 
promising results for refractory melanoma 
and small-cell lung cancer [140]. In contrast to 
adaptive immune responses, far less is known 
about the therapeutic potential of targeting 
inhibitory molecules in innate immune 
signaling cascades [141]. For instance, SOCS 
proteins inhibit cellular signaling through 
cytokine and PRRs, and it has been shown 
that certain bacteria and viruses exploit 
SOCS proteins for immune evasion [142,143]. 
Thus, in similarity to anti-tumor and -viral 
immunotherapies, disinhibiting inflammatory 
signal cascades through the blockade of 
suppressor molecules could help to selectively 
activate immune responses in infected tissues.

Conclusion & future perspective
Immunotherapies hold great promise for 
future treatments of autoimmunity, cancer 
and infectious diseases. Classical vaccination 
is the oldest and probably most successful 
immunotherapy; it is also the most efficient 
public health measure against infectious 
diseases. Rapidly emerging antibiotic resistance, 
especially of Gram-negative bacteria, represents 
an enormous medical and socioeconomic 
challenge of the near future. The gradual loss 
of effective antibiotics is a serious threat to the 

very existence of modern medicine as we know it 
today [203]. Thus, alternative strategies are sorely 
needed. We should therefore start to utilize 
our expanding knowledge of the molecular 
mechanisms of innate immune responses to 
design novel antimicrobial immunotherapies. 
The obvious risks of immunotherapies, 
including autoimmunity, autoinflammation 
and consecutive organ damage, have to be 
taken very seriously and remain the major 
obstacles on the road to clinical applications. 
Thus, despite the urgency of the situation, it is 
absolutely essential to identify specific ligands 
and responding signaling pathways that can 
mediate host protection while sparing healthy 
tissues. In order to maintain immunological 
homeostasis, antimicrobial immune responses 
are tightly scaled to the level of infectious threat 
[37]. Identification of molecular switches to 
manipulate the immunological risk assessment 
machinery may be the key to successful adjuvant 
immunotherapies of infectious diseases.
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