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Abstract. In this paper, we introduce a new type of projective modules,

called the weak w-projective module. By using this type of modules, we give

a homological characterization of Krull domains. More precisely, it is shown

that an integral domain is a Krull domain if and only if every submodule of a

projective module is weak w-projective.

1. Introduction

Recall that a Dedekind domain is an integral domain in which each nonzero ideal
is invertible, or equivalently, an integrally closed Noetherian domain of Krull di-
mension one. It is well known that a Dedekind domain can also be characterized
in terms of homological algebra. More precisely, an integral domain is a Dedekind
domain if and only if its global dimension is at most one (i.e., every submodule of a
projective module over it is projective), if and only if every divisible module over it
is injective. Thus, a natural question arises whether there exists the corresponding
homological characterizations for Krull domains. In this direction, Nishi and Shi-
nagawa showed in [10, Proposition 24] that for a module M over a Krull domain,
M is injective if and only if it is divisorial and divisible. Also, they remarked that
the property that every divisible divisorial module is injective can not characterize
a Krull domain (see [10, Remark 6]). Recently, El Baghdadi et al. [2] have shown
that the semi-divisorial (or w-module) concept is more suitable for a characteriza-
tion of Krull domains by means of the property that divisibility implies injectivity.
Namely, they prove that an integral domain is a Krull domain if and only if every
divisible w-module over it is injective (see [2, Theorem 2.6]).

Now, we review some terminology related to the w-modules over commutative
rings with zero divisors. All rings considered in this paper are assumed to be
commutative and to have an identity element; in particular, R denotes such a ring.
In the integral domain case, w-modules were called semi-divisorial modules in [5]
and (in the ideal case) F∞-ideals in [6], which have proved to be useful in the study
of multiplicative ideal theory and module theory. In [20], the notion of w-modules
was generalized to the ring with zero divisors. An ideal J of R is called a Glaz-
Vasconcelos ideal (a GV-ideal for short) if J is finitely generated and the natural
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homomorphism ϕ : R → J∗ = HomR(J,R) is an isomorphism. Note that the set
GV(R) of GV-ideals of R is a multiplicative system of ideals of R. Let M be an
R-module. Define

torGV(M) := {x ∈ M | Jx = 0 for some J ∈ GV(R)}.

Thus torGV(M) is a submodule of M . Now M is said to be GV-torsion (resp., GV-
torsionfree) if torGV(M) = M (resp., torGV(M) = 0). A GV-torsionfree module
M is called a w-module if Ext1R(R/J,M) = 0 for all J ∈ GV(R). Then projective
modules and reflexive modules are both w-modules. In [14, Theorem 6.7.24], it was
shown that all flat modules are w-modules. Also it is known that an GV-torsionfree
R-module M is a w-module if and only if Ext1R(N,M) = 0 for every GV-torsion
R-module N (see [14, Theorem 6.2.7]). Let w-Max(R) denote the set of w-ideals
of R maximal among proper integral w-ideals of R and we call m ∈ w-Max(R) a
maximal w-ideal of R. Then every proper w-ideal is contained in a maximal w-ideal
and every maximal w-ideal is a prime ideal. For any GV-torsionfree module M ,

Mw := {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M , where
E(M) denotes the injective envelope of M . It is clear that a GV-torsionfree module
M is a w-module if and only if Mw = M . It is worthwhile to point out that
from a torsion-theoretic point of view, the notion of w-modules coincides with that
of torGV-closed (i.e., torGV-torsionfree and torGV-injective) modules, where the
torsion theory torGV whose torsion modules are the GV-torsion modules and the
torsionfree modules are the GV-torsionfree modules.

In a very recent paper [13], the first named author and Zhou have given a new
homological characterization of Krull domains in terms of w-projective modules.
The notion of w-projective modules appeared first in [15] when R is an integral
domain and was extended to an arbitrary commutative ring in [19]. Recall that an
R-module M is said to be a w-projective module if Ext1R(L(M), N) is a GV-torsion
module for any torsionfree w-module N , where L(M) = (M/torGV(M))w. Then it
is shown that an integral domain R is a Krull domain if and only if every submodule
of a finitely generated projective R-module is w-projective (see [13, Theorem 3.3]).
However, they do not know whether the property that every submodule of an
arbitrary projective module is w-projective can also characterize a Krull domain,
and this question motivates us to seek an exact characterization of Krull domains
which is similar to that of Dedekind domains.

In the present paper, we first introduce and study a new type of projective
modules, called the weak w-projective module (see Section 2). Then we discuss, in
Section 3, the weak w-projective dimension of modules and rings. Finally, in the
last section, it is proved that an integral domain R is a Krull domain if and only
if every submodule of a projective module is weak w-projective (see Theorem 4.3).
In other words, we show that Krull domains are exactly the integral domains of
global weak w-projective dimension at most one.

Any undefined notions or notation are standard, as in [11, 14, 12].
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2. Strong w-modules and weak w-projective modules

Before we introduce the notion of weak w-projective modules we need to prepare
a little. First, we introduce the concept of strong w-modules.

Definition. An GV-torsionfree module M is said to be a strong w-module if
Exti

R(N,M) = 0 for each integer i > 1 and for all GV-torsion modules N .

Clearly all strong w-modules are w-modules. But the converse is not true in gen-
eral. For example, let R be a two-dimensional regular local ring with the maximal
ideal m. Then it is easy to check that m is a GV-ideal and that Ext2R(R/m, R) 6= 0.
So R, as a module over itself, is a w-module but not a strong w-module. Moreover,
one can see that all GV-torsionfree injective modules are strong w-modules and
that the class of all strong w-modules is closed under direct products.

Recall from [14] that a sequence A → B → C of R-modules and R-homomorphisms
is called a w-exact sequence if the sequence Am → Bm → Cm is exact over Rm for
any maximal w-ideal m of R. The following basic facts on w-exact sequences may
be found in [14, Proposition 6.3.4].

(i) A sequence 0 → A
f→ B is w-exact if and only if ker(f) is GV-torsion.

(ii) A sequence B
g→ C → 0 is w-exact if and only if coker(g) is GV-torsion.

(iii) A sequence A
f→ B

g→ C is w-exact if and only if both (im(f)+ker(g))/im(f)
and (im(f) + ker(g))/ker(g) are GV-torsion.

Next, we give some basic properties of strong w-modules that we shall use in the
sequal.

Lemma 2.1. Let 0 → L
f−→ F

g−→ M → 0 be a w-exact sequence of R-modules
and let N be a strong w-module over R. Then there is a long exact sequence of
R-modules

0 −→ HomR(M,N) −→ HomR(F,N) −→ HomR(L,N)
−→ Ext1R(M,N) −→ Ext1R(F,N) −→ Ext1R(L,N) −→ · · ·
−→ Extn

R(M,N) −→ Extn
R(F,N) −→ Extn

R(L, N)
−→ Extn+1

R (M,N) −→ · · ·

Proof. Set

A = ker(f), B1 = im(f), B2 = ker(g), C1 = im(g), C2 = coker(g).

Then A, C2, (B1 + B2)/B1, and (B1 + B2)/B2 are all GV-torsion modules. For
any integer k > 0, since the sequence 0 → A → L → B1 → 0 is exact with A

GV-torsion and N is a strong w-module, we have

Extk
R(B1, N) ∼= Extk

R(L, N).

Similarly, since 0 → B1 → B1 + B2 → B1 + B2/B1 → 0 is an exact sequence with
(B1 + B2)/B1 GV-torsion,

Extk
R(B1 + B2, N) ∼= Extk

R(B1, N).

By the same argument,

Extk
R(B1 + B2, N) ∼= Extk

R(B2, N) and Extk
R(M,N) ∼= Extk

R(C1, N).
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Now by applying the functor HomR(−, N) to the exact sequence 0 → B2 → F →
C1 → 0, we obtain a long exact sequence

0 −→ HomR(C1, N) −→ HomR(F,N) −→ HomR(B2, N)
−→ Ext1R(C1, N) −→ Ext1R(F,N) −→ Ext1R(B2, N) −→ · · ·
−→ Extn

R(C1, N) −→ Extn
R(F,N) −→ Ext1R(B2, N)

−→ Extn+1
R (C1, N) −→ · · ·

Thus, by replacing Extk
R(C1, N) with Extk

R(M,N), and Extk
R(B2, N) with Extk

R(L,N)
respectively in the long exact sequence above, where k > 0, we achieve the desired
long sequence. �

Let M and N be R-modules and let f : M → N be a homomorphism. Following
[14], we say that f is a w-monomorphism (resp., w-epimorphism, w-isomorphism)
if fm : Mm → Nm is a monomorphism (resp., an epimorphism, an isomorphism) for
any maximal w-ideal m of R.

Proposition 2.2.

(1) Let N be a strong w-module and let f : M → M ′ be a w-isomorphism of
R-modules. Then Extk

R(M,N) ∼= Extk
R(M ′, N) for all integers k > 1.

(2) Let 0 → A → B → C → 0 be an exact sequence of R-modules where A is a
strong w-module. Then B is a strong w-module if and only if so is C.

Proof. (1) The proof is clear by applying Lemma 2.1 to the w-exact sequence 0 →
0 → M → M ′ → 0.

(2) Let T be a GV-torsion R-module and let k > 1 be an integer. Then we
consider the following two exact sequences of R-modules

HomR(T,A) → HomR(T,B) → HomR(T,C) → Ext1R(T,A)

and
Extk

R(T,A) → Extk
R(T,B) → Extk

R(T,C) → Extk+1
R (T,A).

Since A is a strong w-module, we obtain

HomR(T,B) ∼= HomR(T,C) and Extk
R(T,B) ∼= Extk

R(T,C).

Hence it follows that B is a strong w-module if and only if so is C. �

Now we introduce a class of strong w-modules, which will be used to define the
weak w-projective. Throughout this paper, P†w denote the class of GV-torsionfree
R-modules N with the property that Extk

R(M,N) = 0 for all w-projective R-
modules M and for all integers k > 1. Clearly, every GV-torsionfree injective
R-module belongs to P†w.

Proposition 2.3.

(1) Let {Ni}i∈Γ be a family of GV-torsionfree R-modules. Then
∏

i∈Γ Ni ∈ P†w
if and only if Ni ∈ P†w for each i ∈ Γ.

(2) If N ∈ P†w, then Extk
R(T,N) = 0 for all GV-torsion R-modules T and for

all integers k > 1. Hence, every module in P†w is a strong w-module.
(3) Let 0 → A → B → C → 0 be an exact sequence of R-modules with A ∈ P†w.

Then B ∈ P†w if and only if so is C.
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Proof. (1) This follows easily from [11, Theorem 7.14] and the fact that the class
of GV-torsionfree modules is closed under direct products.

(2) Since all GV-torsion module are w-projective, the proof is obvious.
(3) Let A ∈ P†w. Then for each GV-torsion R-module T , there exists an exact

sequence of R-modules

0 = HomR(T,A) → HomR(T,B) → HomR(T,C) → Ext1R(T,A).

By (2), Ext1R(T,A) = 0. Therefore, we see that B is a GV-torsionfree module if and
only if so is C. Moreover, for each w-projective R-module M and for each integer
k > 1, we have

0 = Extk
R(M,A) → Extk

R(M,B) → Extk
R(M,C) → Extk+1

R (M,A) = 0.

Thus, Extk(M,B) ∼= Extk
R(M,C), and so (3) is proved. �

To give a class of examples of modules in P†w we recall the definition of w-Nagata
rings (see [19]). Let M be an R-module. Write

M [x] := R[x]
⊗

R M =
{∑

i

uix
i

∣∣∣∣ ui ∈ M

}
.

For any α ∈ M [x], we denote by c(α) the submodule of M generated by the
coefficients of α and is called the content of α. If A is an R[x]-submodule of M [x],
then the subset c(A) of all coefficients of elements in A is a submodule of M and is
called the content of A.

In the following we set

Sw := {f ∈ R[x] | c(f)w = R}.

It is easy to see that Sw is a multiplicative closed set of R[x]. Note that a finitely
generated ideal J of R is a GV-ideal if and only if Jw = R (see [20, Proposition
3.5]). From this, we have

Sw = {f ∈ R[x] | c(f) ∈ GV(R)}.

For any R-module M , we set

R{x} := R[x]Sw , M{x} := M [x]Sw = R{x}
⊗

R M.

This type of rings was first introduced and studied by Nagata. So R{x} is called
a w-Nagata ring and M{x} a w-Nagata module. For the Nagata ring (or Nagata
module) relative to an arbitrary hereditary torsion theory, see [7].

Proposition 2.4.

(1) Every R{x}-module, as an R-module, is in P†w.
(2) Let p be a prime w-ideal of R. Then every Rp-module, as an R-module, is

in P†w.

Proof. (1) Let N be an R{x}-module and let M be a GV-torsion R-module. Then
there exists an exact sequence of R{x}-modules 0 → N → E → B → 0 with E

injective over R{x}. By the the first and second parts of Exercise 5 on page 360
of [1], it is easy to see that E is also injective over R. Moreover, [14, Theorem
6.6.19(2)] says that N,E, B are all w-modules over R. Hence Ext1R(M,B) = 0,
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Ext1R(M,N) = 0 and Extk+1
R (M,N) ∼= Extk

R(M,B) for all integers k > 1. Thus,
one can easily show, by induction, that N is a strong w-module.

Now assume that M is a w-projective R-module. Since the natural homomor-
phism M → L(M) is a w-isomorphism, it follows from [19, Proposition 2.3(1)] that
L(M) is a w-projective w-module. Thus by Proposition 2.2(1), we may assume
without loss of generality that M is a w-module. Therefore, by [14, Theorem 6.7.9],
we see that Ext1R(M,N) is a GV-torsion R-module. But note that Ext1R(M,N) is
also a R{x}-module, and so it is a w-module (in particular, a GV-torsionfree mod-
ule) over R. Consequently, Ext1R(M,N) = 0. Now the rest of this proof may be
followed in much the same way as the previous paragraph.

(2) By using the fact that every Rp-module is a w-module over R (see [14,
Proposition 6.2.18]), the proof is the similar to that of (1). �

Definition. Let M be an R-module. Then M is said to be a weak w-projective
module if Ext1R(M,N) = 0 for all N ∈ P†w.

Clearly, all projective modules are weak w-projective. However, there is a weak
w-projective module that is not projective. For example, let J be a GV-ideal of
R with J 6= R. Then R/J is a GV-torsion R-module. By Proposition 2.3(2),
every GV-torsion module is a weak w-projective module, and so R/J is weak w-
projective. But R/J is not projective over R since J 6= R. Moreover, it is clear
that every w-projective module is weak w-projective.

The next proposition collects some basic properties of weak w-projective mod-
ules.

Proposition 2.5.
(1) The class of all weak w-projective modules is closed under arbitrary direct

sums and under direct summands.
(2) An R-module M is weak w-projective if and only if Extk

R(M,N) = 0 for all
N ∈ P†w and for all k > 0.

(3) Let 0 → A → B → C → 0 be a w-exact sequence of R-modules with C weak
w-projective. Then A is weak w-projective if and only if so is B.

(4) If M is a weak w-projective R-module, then HomR(M,N) is a strong w-
module for all N ∈ P†w.

Proof. (1) This follows easily from [11, Theorem 7.13].
(2) Let M be a weak w-projective R-module and N ∈ P†w. Then the case k = 1

is just the definition of weak w-projective modules. For any positive integer k > 1,
by Proposition 2.3(3), there is an exact sequence of R-modules

0 → N → E0 → E1 → · · · → Ek−2 → C → 0

where E0, . . . , Ek−2 are injective and GV-torsionfree and C ∈ P†w. Thus, we obtain
Extk

R(M,N) ∼= Ext1R(M,C) = 0. The converse is trivial.
(3) Let N ∈ P†w. Then by Lemma 2.1 we have the exact sequence

Ext1R(C,N) → Ext1R(B,N) → Ext1R(A,N) → Ext2R(C,N).

Since C is weak w-projective, Ext1R(B,N) ∼= Ext1R(A,N) by (2). It follows that A

is weak w-projective if and only if so is B.
(4) Assume that M is a weak w-projective R-module and N ∈ P†w.
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Let us first consider the special case when M is free, i.e., M =
⊕
j∈Γ

R for some

index set Γ. Then

HomR(M,N) ∼=
∏
j∈Γ

HomR(R,N) ∼=
∏
j∈Γ

N.

Since N ∈ P†w (in particular, N is a strong w-module), HomR(M,N) is also a
strong w-module.

Now let M be arbitrary and T a GV-torsion R-module. Note that HomR(M,N)
is a w-module ([20, Theorem 2.8]), and so Ext1R(T,HomR(M,N)) = 0. Now let
k > 0 be an integer and let 0 → A → F → M → 0 be an exact sequence of R-
modules with F free. Then the weak w-projectivity of M gives an exact sequence

0 → HomR(M,N) → HomR(F,N) → HomR(A,N) → 0.

The middle term is a strong w-module as F is free. Therefore, we have

Extk
R(T,HomR(M,N)) ∼= Extk−1

R (T,HomR(A,N)).

Note, by (3), that A is also weak w-projective. Thus, by induction on k, one can
easily see that Extk

R(T,HomR(M,N)) = 0 for all k > 0, i.e., HomR(M,N) is a
strong w-module. �

Corollary 2.6. Let 0 → L
f−→ F

g−→ M → 0 be a w-exact sequence of R-modules
with F weak w-projective. Then for all N ∈ P†w and all integers k > 1,

Extk
R(L,N) ∼= Extk+1

R (M,N).

Proof. This follows immediately from Proposition 2.5(2) and Lemma 2.1. �

Corollary 2.7. If f : M → N is a w-isomorphism of R-modules, then M is weak
w-projective if and only if so is N .

Proof. This proof is a consequence of Proposition 2.5(3). �

Proposition 2.8. If M is a weak w-projective R-module, then:
(1) M{x} is projective over R{x}.
(2) Mp is free over Rp for all prime w-ideals p of R.

Proof. Assume that M is a weak w-projective R-module.
(1) Let N be an R{x}-module and let 0 → A → F → M → 0 be an exact

sequence of R-modules with F free. Then N ∈ P†w by Proposition 2.4(1), and so
Ext1R(M,N) = 0. Now, let us consider the following commutative diagram with
exact rows.

HomR{x}(F{x}, N)

∼=
��

// HomR{x}(A{x}, N)

∼=
��

// Ext1R{x}(M{x}, N)

��

// 0

HomR(F,N) // HomR(A,N) // Ext1R(M,N) // 0

By the Adjoint Isomorphism, the first two vertical maps are isomorphisms. Thus,
we have

Ext1R{x}(M{x}, N) ∼= Ext1R(M,N) = 0.

So M{x} is projective over R{x}.
(2) The proof is similar to that of (1). �
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Recall that an R-module M is said to be of finite type if there is a w-exact
sequence of R-modules F → M → 0, where F is finitely generated free, and to be
of finitely presented type if there is a w-exact sequence of R-modules F1 → F0 →
M → 0, where F1 and F0 are finitely generated free (see [14]). Also recall from [8]
that an R-module M is called w-flat if Mm is flat over Rm for all maximal w-ideals
m of R.

Corollary 2.9. The following statements are equivalent for an R-module M .
(1) M is a weak w-projective module of finite type.
(2) M is a w-projective module of finite type.
(3) M is a w-flat module of finitely presented type.

Proof. (1) ⇒ (2) Assume that (1) holds. Then it follows from [19, Proposition
3.9(3)] and Proposition 2.8(1) that M{x} is finitely generated projective over R{x}.
Hence, by [19, Theorem 3.11], M is w-projective.

(2) ⇒ (1) is clear.
(2) ⇔ (3) This follows from [19, Theorem 2.19] and [14, Theorem 6.7.23]. �

Recall that a nonzero (fractional) ideal I of an integral domain R (with quotient
field K) is called w-invertible if (II−1)w = R, where I−1 = {r ∈ K | rI ⊆ R}.
It was proved in [13, Theorem 2.7] that a nonzero (fractional) ideal of an integral
domain is w-projective if and only if it is w-invertible. In fact, we also have the
following corollary.

Corollary 2.10. An ideal of an integral domain is weak w-projective if and only
if it is w-projective, if and only if it is w-invertible.

Proof. It suffices by Corollary 2.9 to show that every weak w-projective ideal of
an integral domain is of finite type. For this, let I be a weak w-projective ideal
of an integral domain R. Then by Proposition 2.8, I{x} is projective over R{x},
and so it is finitely generated. Thus, [19, Proposition 3.9(3)] says that I is of finite
type. �

As a consequence of Proposition 2.8(2), we have the following corollary.

Corollary 2.11. Every weak w-projective module is a w-flat module.

It was shown in [19, Proposition 2.10] that if I is a nonzero nil ideal of R, then
I is never w-projective. In fact, we have:

Proposition 2.12. If I is a nonzero nil ideal of R, then I is never weak w-
projective.

Proof. By using Proposition 2.8(2), the proof is essentially the same as that given
for [19, Proposition 2.10]. �

3. The weak w-projective dimension of modules and rings

We now introduce the notion of weak w-projective dimension as follows.

Definition. If M is an R-module, then w.w-pdRM 6 n (w.w-pd abbreviates weak
w-projective dimension) if there is a w-exact sequence of R-modules

0 → Pn → · · · → P1 → P0 → M → 0, (?)
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where each Pi is a weak w-projective module. The w-exact sequence (?) is called
a weak w-projective w-resolution of length n of M . If no such finite w-resolution
exists, then w.w-pdRM = ∞; otherwise, define w.w-pdRM = n if n is the length
of a shortest weak w-projective w-resolution of M .

Clearly, an R-module M is weak w-projective if and only if w.w-pdRM = 0, and
w.w-pdRM 6 pdRM , where pdRM denotes the classical projective dimension of
M .

Proposition 3.1. The following statements are equivalent for an R-module M .
(1) w.w-pdRM 6 n.
(2) Extn+k

R (M,N) = 0 for all N ∈ P†w and for all k > 0.
(3) Extn+1

R (M,N) = 0 for all N ∈ P†w.
(4) If 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 is an exact sequence, where

P0, P1, . . . , Pn−1 are projective R-modules, then Pn is weak w-projective.
(5) If 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 is a w-exact sequence,

where P0, P1, . . . , Pn−1 are weak w-projective R-modules, then Pn is weak
w-projective.

(6) If 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 is an exact sequence,
where P0, P1, . . . , Pn−1 are weak w-projective R-modules, then Pn is weak
w-projective.

(7) If 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 is a w-exact se-
quence, where P0, P1, . . . , Pn−1 are projective R-modules, then Pn is weak
w-projective.

(8) If 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 is a w-exact sequence,
where P0, P1, . . . , Pn−1 are weak w-projective w-modules over R, then Pn is
weak w-projective.

Proof. (1) ⇒ (2) We prove (2) by induction on n > 0. For the case n = 0, M is a
weak w-projective module. Then (2) holds by Proposition 2.5(2). If n > 0, then
there is a w-exact sequence 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0, where
each Pi is a weak w-projective R-module. Set K0 = ker(P0 → M). Then both
0 → K0 → P0 → M → 0 and 0 → Pn → Pn−1 → · · · → P1 → K0 → 0 are w-exact,
and w.w-pdRK0 6 n− 1. By induction, Extn−1+k

R (K0, N) = 0 for all N ∈ P†w and
all k > 0. Thus, it follows from Corollary 2.6 that Extn+k

R (M,N) = 0.
(2) ⇒ (3) Trivial.
(3) ⇒ (4) Let 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 be an exact

sequence of R-modules with P0, P1, . . . , Pn−1 projective, and write K0 = ker(P0 →
M) and Ki = ker(Pi → Pi−1), where i = 1, . . . , n− 1. Then Kn−1 = Pn. Since all
P0, P1, . . . , Pn−1 are projective, Ext1R(Pn, N) ∼= Extn+1

R (M,N) = 0 for all N ∈ P†w.
Hence, Pn is a weak w-projective module.

(4) ⇒ (1) Obvious.
(3) ⇒ (5) Let 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 be a w-exact

sequence of R-modules with P0, P1, . . . , Pn−1 weak w-projective, and set Ln = Pn

and Li = im(Pi → Pi−1), where i = 1, . . . , n − 1. Then both 0 → Li+1 → Pi →
Li → 0 and 0 → L1 → P0 → M → 0 are w-exact sequences. By using Corollary
2.6 repeatedly, we will see that

Ext1R(Pn, N) ∼= Extn+1
R (M,N) = 0
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for all N ∈ P†w. Thus, Pn is a weak w-projective module.
(5) ⇒ (6) ⇒ (4) and (5) ⇒ (8) ⇒ (7) ⇒ (4) are obvious. �

Definition. The global weak w-projective dimension of a ring R is defined by

gl.w.w-dim(R) = sup{w.w-pdRM | M is an R-module}.

Proposition 3.2. The following statements are equivalent for R.
(1) w.w-pdRM 6 n for all R-modules M , that is, gl.w.w-dim(R) 6 n.
(2) w.w-pdRR/I 6 n for all ideals I of R.
(3) idRN 6 n for all N ∈ P†w.

Consequently, the global weak w-projective dimension of R is also determined by
the formulas:

gl.w.w-dim(R) = sup {w.w-pdRR/I | I is an ideal of R}
= sup

{
idRN | N ∈ P†w

}
Proof. (1) ⇒ (2) Trivial.

(2) ⇒ (3) Let N ∈ P†w. Then by Proposition 2.3(3), there exists an exact
sequence of R-modules

0 → N → E0 → E1 → · · · → En−1 → En → 0

where E0, E1, . . . , En−1 are GV-torsionfree and injective and En ∈ P†w. Thus, it
follows from (2) that Ext1R(R/I,En) ∼= Extn+1

R (R/I,N) = 0, and so En is injective.
Therefore, idRN 6 n.

(3) ⇒ (1) Let M be an R-module and let

0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0

be an exact sequence of R-modules, where P0, P1, . . . , Pn−1 are projective. Then for
each N ∈ P†w, Ext1R(Pn, N) ∼= Extn+1

R (M,N) = 0, and so Pn is weak w-projective.
Hence, w.w-pdRM 6 n. �

Following [18], for an R-module M , we denote by w-fdRM the w-flat dimension of
M , and we use the notation w-w.gl.dim(R) to denote the w-weak global dimension
of R. As a consequence of Corollary 2.11, we have the following proposition.

Proposition 3.3. Let M be an R-module. Then w-fdRM 6 w.w-pdRM . Conse-
quently, w-w.gl.dim(R) 6 gl.w.w-dim(R).

Recall from [14] that a ring R is said to be w-coherent if every finite type ideal
of R is of finitely presented type, and is said to be w-Noetherian if every ideal of R

is of finite type. The w-Noetherian domain is also called the strong Mori domain
(for short, SM domain) in [16].

Proposition 3.4. Let R be a w-coherent ring and let M be an R-module of finitely
presented type. Then

(1) There is a w-exact sequence of R-modules

· · · → Pn → Pn−1 → · · · → P1 → P0 → M → 0,

where all Pi are finitely generated projective.
(2) w-fdRM = w.w-pdRM .
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Proof. (1) Since M is of finitely presented type, there exists a w-exact sequence

of R-modules P0
f−→ M → 0 with P0 finitely generated projective. Hence, the

w-coherence of R implies that A := ker(f) is of finitely presented type. Thus,
continuing in this way, we can obtain the desired w-exact sequence.

(2) It follows from (1), Corollary 2.9 and Proposition 3.3. �

If we denote the classical global dimension of a ring R by gl.dim(R), then:

Proposition 3.5.

(1) If R is a w-coherent ring, then

w-w.gl.dim(R) = sup{w.w-pdRM}

where M runs over all R-modules of finitely presented type.
(2) If R is a w-Noetherian ring, then

gl.w.w-dim(R) = w-w.gl.dim(R) = gl.dim(R{x}).

Proof. (1) Immediate from [18, Proposition 3.3] and Proposition 3.4.
(2) By (1) and Proposition 3.2, we have gl.w.w-dim(R) = w-w.gl.dim(R). Since

R is w-Noetherian, R{x} is Noetherian (see [14, Theorem 6.8.8]). Hence, it follows
from [18, Proposition] and [14, Corollary 3.9.6] that

gl.w.w-dim(R) = w-w.gl.dim(R) = w.gl.dim(R{x}) = gl.dim(R{x}).

�

Proposition 3.6. If R is a SM domain which is not a field, then

gl.w.w-dim(R[x1, . . . , xn]) = gl.w.w-dim(R).

Proof. This follows from Proposition 3.5(2), [17, Theorem 1.13] and [18, Theorem
4.7]. �

4. Rings with global weak w-projective dimension less than or equal

to one

Proposition 4.1. The following statements are equivalent for a ring R.

(1) R is semisimple.
(2) Every cyclic R-module is projective.
(3) Every R-module is weak w-projective, that is, gl.w.w-dim(R) = 0.

Proof. By using Proposition 2.9, the proof is essentially the same as that given for
[19, Theorem 3.15]. �

Throughout the rest of this article, R will denote an integral domain. Recall that
an R-module D is called h-divisible if it is an epic image of an injective R-module.
Similarly, we can define the divisible module relative to P†w as follows:

Definition. An R-module D is said to be P†w-divisible if it is isomorphic to E/N

where E is a GV-torsinfree injective R-module and N ∈ P†w is a submodule of E.
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It is obvious that every P†w-divisible R-module is h-divisible. Moreover, it follows
from Proposition 2.3(3) that every P†w-divisible R-module is in P†w.

It was shown in [4, VII, Proposition 2.5] that an R-module M has projective
dimension at most one if and only if Ext1R(M,D) = 0 for all h-divisible R-modules
D. Our next proposition is a w-theoretic analogue of this result.

Proposition 4.2. Let M be an R-module. Then w.w-pdRM 6 1 if and only if
Ext1R(M,D) = 0 for all P†w-divisible R-modules D.

Proof. Let w.w-pdRM 6 1 and let D be a P†w-divisible R-module. Then there is an
exact sequence of R-modules 0 → N → E → D → 0 with E injective and N ∈ P†w.
Hence, Ext1R(M,D) ∼= Ext2R(M,N) = 0.

Conversely, let N ∈ P†w. Then there exists an exact sequence of R-modules
0 → N → E → D → 0 with E GV-torsionfree injective. Therefore, D is P†w-
divisible, and so Ext2R(M,N) ∼= Ext1R(M,D) = 0. Thus, w.w-pdRM 6 1. �

Theorem 4.3. The following statements are equivalent for an integral domain R.

(1) R is a Krull domain.
(2) Every divisible w-module over R is injective.
(3) Every h-divisible w-module over R is injective.
(4) Every divisible strong w-module over R is injective.
(5) Every h-divisible strong w-module over R is injective.
(6) Every P†w-divisible R-module is injective.
(7) Every submodule of a finitely generated projective R-module is w-projective.
(8) Every submodule of a projective R-module is weak w-projective.
(9) Every w-submodule of a projective R-module is weak w-projective.

(10) Every submodule of a weak w-projective R-module is weak w-projective.
(11) gl.w.w-dim(R) 6 1.
(12) gl.dim(R{x}) 6 1, i.e., R{x} is a Dedekind domain.

Proof. (1) ⇔ (2) ⇔ (3) See [2, Theorem 2.6].
(1) ⇔ (7) See [13, Theorem 3.3].
(8) ⇔ (9) ⇔ (10) ⇔ (11) This follows easily from Proposition 3.1.
(2) ⇒ (4) ⇒ (5) ⇒ (6) Trivial.
(1) ⇔ (12) See [3, Corollary 4.19].
(6) ⇒ (11) Let M be an R-module and D a P†w-divisible R-module. Then by

(6), D is injective, and so Ext1R(M,D) = 0. Hence, Proposition 4.2 says that
w.w-pdRM 6 1. Thus, (11) holds.

(8) ⇒ (1) Let I be a nonzero ideal of R. Then by (8), I is weak w-projective.
Therefore, Corollary 2.10 implies that I is w-invertible. Thus, the proof completed
by the fact that a domain is a Krull domain if and only if every nonzero ideal over
it is w-invertible (see [16, Theorem 5.4]). �

To close this section, we give an example of a weak w-projective module that is
not w-projective. However, the following lemma is needed.

Lemma 4.4. Let M be a GV-torisonfree R-module. Then M is projective if and
only if Ext1R(M,N) = 0 for all w-modules N over R.
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Proof. Assume that M is a GV-torsionfree R-module such that Ext1R(M,N) = 0
for all w-modules N over R. Then there exists an exact sequence of R-modules

0 → K → P → M → 0

where P is a projective module. Since M is GV-torsionfree, K is a w-module, and
so Ext1R(M,K) = 0. But [11, Theorem 7.11] says that the exact sequence is split.
Hence, M is projective. The converse is clear. �

We now offer the promised example. In fact, this example also shows that not
all submodules of a projective module over a Krull domain are w-projective.

Example 4.5. Let F be an uncountable field and R = F [x, y] a polynomial ring over
F in two indeterminates x and y. Let Q be the quotient field of R. Then by [9,
Theorem 2], pdRQ = 2. Let us consider the following exact sequence of R-modules

0 → K → P → Q → 0

with P a projective module. Then K is not projective. Since R is a unique factor-
ization domain (of course, it is a Krull domain), K is weak w-projective by Theorem
4.3. Also note that K is a w-module because Q is GV-torsionfree as an R-module.
Next we show that K is not w-projective, either. Indeed, if not, then it follows
from [14, Theorem 6.7.9] that

Ext1R(K, N) ∼= Ext2R(Q,N)

is a GV-torsion R-module for all w-modules N over R. But note that Ext2R(Q,N)
is also a Q-module, and so it is GV-torsionfree over R. Thus, Ext1R(K, N) = 0.
However, Lemma 4.4 implies that K is projective, which is a contradiction.
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