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Abstract—In Part I of this paper (“Delay-Optimal Dynamic
Mode Selection and Resource Allocation in Device-to-Device
Communications—Part I: Optimal Policy”), we investigated dy-
namic mode selection and subchannel allocation for an orthogonal
frequency-division multiple access (OFDMA) cellular network
with device-to-device (D2D) communications to minimize the aver-
age end-to-end delay performance under the dropping probability
constraint. We formulated the optimal resource control problem
into an infinite-horizon average-reward constrained Markov de-
cision process (CMDP), and the optimal control policy derived
in Part I using the brute-force offline value iteration algorithm
based on the reduced-state equivalent Bellman equation still faces
the well-known curse-of-dimensionality problem, which limits its
practical application in realistic scenarios with multiple D2D users
and cellular users. In Part II of this paper, we use linear value
approximation techniques to further reduce the state space. More-
over, an online stochastic learning algorithm with two timescales is
applied to update the value functions and Lagrangian multipliers
(LMs) based on the real-time observations of channel state infor-
mation (CSI) and queue state information (QSI). The combined
online stochastic learning solution converges almost surely to a
global optimal solution under some realistic conditions. Simu-
lation results show that the proposed approach achieves nearly
the same performance as the offline value iteration algorithm
and outperforms the conventional CSI-only scheme and through-
put-optimal scheme in a stability sense.

Index Terms—Device-to-device (D2D) communication, mode
selection, online stochastic learning, resource allocation.

I. INTRODUCTION

IN Part I of this paper [1], we introduced the problem of
optimal dynamic mode selection and resource allocation to

minimize the average end-to-end delay under the constraint
of packet-dropping probability for network-assisted device-to-
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device (D2D) communications [2]–[4] with bursty traffic. We
considered an orthogonal frequency-division multiple access
(OFDMA) system with one base station (BS), multiple D2D
user equipment (UE) pairs, and cellular UEs (CUEs) with
uplink or downlink transmission. Compared with the resource
control problem in traditional cellular networks, there are a
number of unique issues to address to obtain resource opti-
mization in D2D communications, such as 1) route selection
between the one-hop route of D2D link (direct over-the-air link)
in D2D mode and the two-hop route of cellular links in Cellular
Mode, 2) resource allocation for D2D links and cellular links
with resource reuse, and 3) joint uplink and downlink resource
optimization for the end-to-end performance of the two-hop
route when a pair of D2D UEs works in the cellular mode.
To characterize the aforementioned issues, we first developed
a queuing model whose underlying system state dynamics
evolves as a controlled Markov chain, where the system state
includes the joint queue state of the queues at the UEs for
uplink transmission and the queues at the BS for downlink
transmission, as well as the joint channel state of all the D2D
links, cellular uplinks, and cellular downlinks. Specifically, we
introduced two important concepts to characterize the unique
features of D2D communications. The first concept is the radio
resource group (RRG), which defines a group of links that may
reuse radio resources. Therefore, the channel state of a link is
a tuple including its adaptive modulation and coding (AMC)
states in all the RRGs that this link belongs to. The second
concept is the link constraint set of a queue to characterize
the set of servers for the queue in different routes. Based on
the queuing model, the delay-optimal resource control over
frequency-selective fading channels with the AMC scheme in
the physical layer is formulated as an infinite-horizon average-
reward constrained Markov decision process (CMDP) [6], [7].
To formulate the CMDP model, the transition kernel of the
controlled Markov chain was derived, which takes into account
the coupling relationship between the uplink and downlink
resource allocation. Moreover, closed-form expressions for
end-to-end performance metrics, such as average delay and
dropping probability, were given as functions of steady-state
probabilities of the controlled Markov chain, based on which
the cost function of CMDP model was given. We utilized the
Lagrangian approach, to turn the CMDP problem into an
unconstrained Markov decision process (MDP) problem, and
established the strong duality result over the space of ran-
domized policy. Moreover, we further proved the existence of
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an optimal policy, which is either a deterministic policy or
a mix of two deterministic policies, equivalent to choosing
independently one of two deterministic policies at each epoch
by the toss of a (biased) coin. To solve the unconstrained
MDP problem, we derived an equivalent Bellman equation
with reduced state space. We showed by simulations that the
optimal policy derived by the brute-force offline value iteration
algorithm based on the equivalent Bellman equation achieves
significant gain compared to various baselines such as the
conventional channel state information (CSI)-only control and
the throughput-optimal control (MaxWeight algorithm).

It is worth noting that the complexity of the brute-force
offline value iteration algorithm based on the reduced-state
equivalent Bellman equation still grows exponentially with the
number of users in the network, limiting its application in prac-
tical scenarios. In fact, it is well known that there is no simple
solution for the infinite-horizon average-reward MDP problem
that delay-aware resource control belongs to, because the brute-
force value iterations or policy iterations could not lead to any
viable solution due to the curse of dimensionality [8]–[11].
Moreover, our problem for network-assisted D2D communi-
cations is further complicated due to the unique issues listed
earlier. For example, the channel state transition probabilities,
which are used to derive the conditional expectations of cost
function and queue state transition probabilities in the equiva-
lent Bellman equation, are very difficult to obtain when more
than two links are allowed to reuse the same time–frequency
resource.

In Part II of this paper, we address the curse-of-
dimensionality problem in solving the CMDP formulated in
Part I so that a practical algorithm with acceptable compu-
tational complexity and signaling overhead can be derived.
To reduce the complexity, we obtain a delay-optimal solution
using approximate dynamic programming and online stochastic
learning. Specifically, we approximate the value function in the
equivalent Bellman equation by a sum of per-queue value func-
tions. The per-queue value functions are estimated and learned
using an online stochastic learning algorithm based on the real-
time observations of the CSI and queue state information (QSI),
eliminating the need of deriving the channel state transition
probabilities. Moreover, the Lagrangian multipliers (LMs) for
the constraint optimization problem are updated simultaneously
with the value functions over different timescales. The optimal
dynamic-mode-selection and resource-allocation actions can be
determined by an algorithm that has a similar structure with the
MaxWeight algorithm in the Lyapunov stability approach, with
the weight determined by the per-queue value functions instead
of the queue lengths. We prove the almost-sure convergence of
the proposed algorithm. We also show by simulations that our
proposed scheme achieves significant gain compared to various
baselines such as the conventional CSI-only control and the
throughput-optimal control (MaxWeight algorithm). Together
with Part I, this pair of works provide a general framework for
the dynamic constrained optimization of mode selection and
resource allocation in D2D communications under the bursty
traffic model, where the general form of the optimal policy and
a practical algorithm with simple structure and near-optimal
performance are given.

This paper is organized as follows: We recall the general
network model for network-assisted D2D communications and
the MDP problem formulation for dynamic mode selection and
resource allocation in Section II. In Section III, we derive a low-
complexity learning algorithm, which updates the per-queue
value functions based on real-time observations of CSI and QSI,
as well as a resource-allocation algorithm with similar structure
as the MaxWeight algorithm. In Section IV, we discuss the per-
formance simulations. Finally, we summarize the main results
in Section V.

II. NETWORK MODEL AND PREVIOUS RESULTS

A. Network Model

Consider a frequency-division duplex (FDD) OFDMA cellu-
lar network with D2D communications capability, where there
are D D2D UE pairs, Cu cellular UEs (CUEs) with uplink
communications, andCd CUEs with downlink communications
in a single cell. A D2D UE pair consists of a source D2D UE
(src. DUE) and a destination D2D UE (dest. DUE) within direct
over-the-air communications range with each other, which is
formed through the various neighbor/peer/service discovery
mechanisms proposed in literature. The whole uplink or down-
link spectrum is divided into NF equal-size subchannels. A
subchannel in the uplink (respectively downlink) spectrum shall
be referred to as uplink (respectively downlink) subchannel in
the remainder of this paper. Moreover, we assume that D2D
links share uplink resources with cellular uplinks. Time is
slotted, and each time slot has an equal length.

The aforementioned OFDMA cellular network with D2D
communications can be formulated as a general network model
with a set N of nodes and a set L of transmission links. Define
N := {0, 1, . . . , N}, where node 0 represents the BS, and
nodes 1, . . . , 2D represent the DUEs, nodes 2D + 1, . . . , 2D +
Cu represent the uplink CUEs, and nodes 2D + Cu +
1, . . . , N = 2D + Cu + Cd represent the downlink CUEs. We
use i or j to denote the index of a node within N (i.e., i, j ∈ N )
in the remainder of this paper. Each transmission link represents
a communication channel for direct transmission from a given
node i to another node j, and is labeled by (i, j) (where i, j ∈
N ). All data that enter the network are associated with a par-
ticular connection, which defines the source and destination of
the data. Let CD = {1, . . . , D}, CCu = {D + 1, . . . , D + Cu},
and CCd = {D + Cu + 1, . . . , D + Cu + Cd} represent the set
of D2D connections, cellular uplink connections, and cellular
downlink connections, respectively. Define C := {1, . . . , C} =
CD

⋃
CCu

⋃
CCd (with C = D + Cu + Cd) as the set of all

connections in the network. We use c to denote the index of a
connection within C (i.e., c ∈ C) in the remainder of this paper.

The data from connection c are transmitted hop by hop along
the route(s) of the connection to its destination node. Each node
i along the route(s) of connection c maintains a queue q

(c)
i

for storing its data, except for the destination node, since the
data are considered to exit the network once they reach the
destination. Define Θ as the set of queues in the system. We
assume that each queue has a finite capacity of NQ < ∞ (in
number of bits or packets). The set of queues can be divided
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into two nonoverlapping disjoint sets, i.e., uplink queues Θu

and downlink queues Θd, according to whether a queue is
maintained by a UE or the BS. Define ΘCu and ΘCd as the set
of queues for cellular uplink connections and cellular downlink
connections, respectively, whereas define ΘD−u and ΘD−d as
the set of uplink and downlink queues for D2D connections,
respectively. Define the per-queue link constraint set of a queue
q
(c)
i as L(c)

i , where the data from a queue q
(c)
i can only be

transmitted via links in L(c)
i . Note that there is only one link

in L(c)
i for all the queues, except the uplink queues for D2D

connections, i.e., q(c)i ∈ ΘD−u, which can be served by either
D2D link or cellular uplink.

B. Physical Layer Model

We define an RRG Bu as the subset of links (i, j) ∈ L
that can be scheduled for transmission simultaneously on any
subchannel in a time slot. Let U represent the set of RRG
indexes and Uu and Ud represent the subsets of RRG indexes
for uplink and downlink subchannels, respectively. We use u
to denote the index of an RRG within U (i.e., u ∈ U) in the
remainder of this paper. For any link (i, j) ∈ L, define Uij :=
{u|(i, j) ∈ Bu, u ∈ U} as the index set of RRGs that contain
link (i, j).

Assume that the instantaneous channel gain comprising the
path loss, shadowing, and fast-fading effects of the wireless
channel from the transmitter of node i ∈ N to the receiver of
node j ∈ N on any subchannel m remains constant within a
time slot and independent identically distributed (i.i.d.) between
time slots, the value of which at time slot t is denoted by
G

(m)
ij,t . Let p(m)

ij,t be the transmission power of link (i, j) ∈ L
on subchannel m at time slot t. Assume that every scheduled
link on a downlink subchannel (respectively uplink subchannel)
always transmits at constant power PBS

max/NF, (respectively
PUE
max/NF). The signal-to-interference-plus-noise ratio (SINR)

value of a link (i, j) on a subchannel m, when RRG Bu is
scheduled on it at time slot t, can be derived as ∀ (i, j) ∈ Bu

SINR(m,u)
ij,t =

p
(m)
ij,t G

(m)
ij,t

N
(m)
ij,t +

∑
(i′,j′)∈Bu\{(i,j)} p

(m)
i′j′,tG

(m)
i′j,t

(1)

where N
(m)
ij,t denotes the noise power on subchannel m at time

slot t.
We assume that AMC is used, where the SINR values are

divided into K nonoverlapping consecutive regions [12]. For
any k ∈ {1, . . . ,K}, if the SINR value SINR(m,u)

ij,t of link (i, j)
falls within the kth region [Γk−1,Γk), the instantaneous data
rate of link (i, j) on subchannelm, when RRG Bu, ∀u ∈ Uij is
scheduled, is a fixed value Rk, according to the selected modu-
lation and coding scheme in this state. Obviously, Γ0 = 0, and
ΓK = ∞. In addition, we have R1 = 0, i.e., no packet is
transmitted in channel state 1 to avoid the high transmission
error probability. Define the CSI of link (i, j) to be Hij,t :=

{H(m,u)
ij,t |(m ∈ {1, . . . , NF}, u ∈ Uij}, where H

(m,u)
ij,t denotes

the channel state of link (i, j) on subchannel m when RRG Bu

is scheduled. Specifically, H(m,u)
ij,t = k if SINR(m,u)

ij,t is between
[Γk−1,Γk).

C. Bursty Source Model, Queuing Dynamics,
and Queuing Model

Let Ac,t denote the amount of new connection c data1 that
exogenously arrives to its source node during time slot t. We
assume that the data arrival process is i.i.d. over time slots
following general distribution fA(n) with average arrival rate
E[Ac,t] = λc. Let A

(c)
i,t denote the amount of data arrived

to node i for connection c during time slot t. When q
(c)
i ∈

Θu

⋃
ΘCd, node i is the source node of connection c, and

A
(c)
i,t = Ac,t. Otherwise, when q

(c)
0 ∈ ΘD−d, it is the second-

hop queue of connection c, and A
(c)
0,t depends on the data

departure process of the corresponding uplink transmission on
cellular uplink ((2c− 1), 0).

LetQ(c)
i,t denote the length of q(c)i at the beginning of time slot

t. Let r(c)i,t be the instantaneous data rate of queue q
(c)
i during

time slot t,2 which is equal to the sum of the instantaneous data
rate rij,t of the scheduled link (i, j) ∈ L(c)

i at time slot t. If

Q
(c)
i,t is less than r

(c)
i,t during time slot t, padding bits shall be

transmitted along with the data. However, the amount of useful
data transmitted from q

(c)
i during time slot or the throughput of

q
(c)
i is defined as

T
(c)
i,t = min

[
Q

(c)
i , r

(c)
i

]
. (2)

Moreover, the amount of useful data transmitted via link (i, j)
during time slot t or the throughput of link (i, j) is defined

for any link within the link constraint set of queue q
(c)
i ∈

Θd

⋃
ΘCu as

Tij,t = min
[
Q

(c)
i , rij,t

]
∀ (i, j) ∈ L(c)

i . (3)

For any queue q
(c)
i ∈ ΘD−u, we assume that the data in the

queue are first assigned to link (2c− 1, 0), and then, the re-
maining data left in the queue (if any) shall be assigned to link
(2c− 1, 2c). According to the aforementioned data assignment

rule, we have that T(2c−1)0,t obeys (3), while ∀ q(c)(2c−1) ∈ ΘD−u

T(2c−1)(2c),t = min
[
Q

(c)
i − T(2c−1)0,t, r(2c−1)(2c),t

]
. (4)

Arriving data are placed in the queue throughout the time
slot t and can only be transmitted during the next time slot
t+ 1. If the queue length reached the buffer capacity NQ,
the subsequent arriving data will be dropped. According to
the aforementioned assumption, the queuing process evolves as
follows:

Q
(c)
i,t+1 = min

[
NQ,max

[
0, Q(c)

i,t − r
(c)
i,t

]
+A

(c)
i,t

]
. (5)

The queuing model is illustrated in Fig. 2 of Part I of this
work [1].

1The data can take units of bits or packets. The latter is appropriate when all
the packets have fixed length.

2The instantaneous data rate can take units of bits/slot or packets/slot. The
latter is appropriate when all the packets have fixed length and when the
achievable data rates are constrained to integral multiples of the packet size.
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D. System State, Control Policy, and State
Transition Probabilities

The global system state of the aforementioned queuing
model at time slot t can be characterized by the aggregation
of the system CSI and system QSI, i.e., St = (Ht,Qt). The

system QSI is defined as Qt := {Q(c)
i,t |q

(c)
i ∈ Θ}, which is

a vector consisting of the lengths of all the queues at the
beginning of time slot t. The system CSI is defined as Ht :=
{Hij,t|(i, j) ∈ L}, where Hij,t denotes the channel state of
link (i, j) in time slot t, as defined in Section II-B.

In each time slot, an uplink (respectively downlink) subchan-
nel can be allocated to at most one uplink (respectively, down-
link) RRG for uplink (respectively, downlink) transmission.
Let m ∈ {1, . . . , NF} denote the index of a subchannel, which
can be either the mth uplink subchannel or the mth downlink
subchannel. Let x(m)

u,t ∈ {0, 1} denote the subchannel allocation

for RRG Bu, u ∈ U at time slot t, wherex(m)
u,t = 1 if subchannel

m is allocated to RRG Bu, and x
(m)
u,t = 0, otherwise. We have

the constraint that
∑

u∈Uu
x
(m)
u,t ≤ 1 and

∑
u∈Ud

x
(m)
u,t ≤ 1 for

any m ∈ {1, . . . , NF}. We assume that an RRG is sched-
uled for transmission only when all its links have nonempty
queues.

A queue q
(c)
i is scheduled in time slot t when at least one

RRG Bu containing a link (i, j) in its link constraint set L(c)
i is

scheduled on any subchannel. Note that, except for the uplink
queues of D2D connections, the per-queue link constraint set
of every queue contains only one link. When mode selection
of a D2D connection c is performed dynamically at each time
slot, the problem becomes deciding whether to schedule the
D2D link (2c− 1, 2c) or the cellular uplink (2c− 1, 0) on a

subchannel to serve the queue q
(c)
(2c−1), which is essentially a

subchannel-allocation decision. Therefore, the delay-optimal
dynamic-mode-selection and subchannel-allocation problem
can be solved by only considering the design of the delay-
optimal subchannel-allocation algorithm.

In each time slot, the resource controller observes the system
state St and chooses a subchannel-allocation action from the
set of allowable actions in the action space Ax. A subchannel-
allocation action x is defined as x := {x(m)

u ∈ {0, 1}|u ∈
Uu

⋃
Ud,m ∈ {1, . . . , NF}} ∈ Ax.

A control policy prescribes a procedure for action selection
in each state at all decision epoches t. We consider station-
ary Markovian deterministic control policies.3 A deterministic
control policy given by Ω is a mapping S → Ax from the
state space to the action space, which is given by Ω(S) = x ∈
Ax ∀S ∈ S.

Note that the instantaneous data rate r
(c)
i,t is impacted by the

subchannel-allocation action at time slot t, i.e.,

r
(c)
i,t =

∑
(i,j)∈L(c)

i

NF∑
m=1

∑
u∈Uij

x
(m)
u,t RH

(m,u)
ij,t

. (6)

3In Part I, we have proven that the optimal policy is either a deterministic
policy or a mix of two deterministic policies. In Part II, we focus only on the
deterministic policy to facilitate implementation.

The system behavior of the aforementioned queuing model
can be represented by the controlled discrete-time Markov
chain (DTMC) {St}t=0,1,... := {(Ht,Qt)}t=0,1,.... Given a
system state St and an action x at time slot t, the state transition
probability of the DTMC is given by

Pr.{St+1|St,x} = Pr.{Ht+1|Ht}Pr.{Qt+1|St,x}

= Pr.{Ht+1}Pr.{Qt+1|St,x}. (7)

According to (5), the conditional probability of Q(c)
i,t+1 given

the system state St and an action x can be derived as

Pr.
{
Q

(c)
i,t+1|St,x

}
= Pr.

(
A

(c)
i,t = n

)
if Q(c)

i,t+1 = min
[
NQ,max

[
0, Q(c)

i,t − r
(c)
i,t

]
+ n

]
(8)

where

Pr.
(
A

(c)
i,t =n

)
=

⎧⎪⎨⎪⎩
fA(n), if q(c)i ∈ Θu

⋃
ΘCd

1, if q(c)i ∈ ΘD−d and n=T(2c−1)0,t

0, if q(c)i ∈ ΘD−d and n �=T(2c−1)0,t.
(9)

The queue state transition probability Pr.{Qt+1|St,x} can be
derived as the product of Pr.{Q(c)

i,t+1|St,x} over all queues

q
(c)
i ∈ Θ as

Pr.{Qt+1|St,x} =
∏

q
(c)
i ∈Θ

Pr.
{
Q

(c)
i,t+1|St,x

}
. (10)

Remark 1 (Channel State Transition Probability): Note that
we do not recall the derivation of channel state transition proba-
bility Pr.{Ht+1|Ht} = Pr.{Ht+1} in (7) given in Part I. This
is because, to derive the delay-optimal subchannel-allocation
action in Section III, we shall utilize the i.i.d. assumption of
the CSI process and the stochastic approximation method to
simplify the optimization problem, so that Pr.{Ht+1} does not
need to be derived. However, we would like to point out that,
if the i.i.d. assumption of the CSI process does not hold or if
the objective is to determine the steady-state probabilities of
the queuing model for performance evaluation, Pr.{Ht+1|Ht}
needs to be derived.

E. Optimization Problem Formulation

Our objective is to optimize the subchannel-allocation policy
so as to minimize the average weighted sum delay of all the
connections subject to dropping probability constraints.

Problem 1: The delay-optimal subchannel-allocation design
can be formulated as the constrained optimization problem

min
Ω

lim
T→∞

1
T

T∑
t=1

EΩ [g0 (St,Ω(St))]

s.t. lim
T→∞

1
T

T∑
t=1

EΩ [gc (St,Ω(St))] ≤ dmax ∀ c ∈ C

(11)
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where

g0(S,x) =
Q

(c)
i

λc(1 − dmax)
(12)

gc(S,x) =

⎧⎪⎨⎪⎩
1 − T(c+D)0

λc
, if c ∈ CCu

1 − T0(c+D)
λc

, if c ∈ CCd

1 − T(2c−1)(2c)+T0(2c)

λc
, if c ∈ CD.

(13)

For any given nonnegative LMs η = {ηc|c ∈ C}, we define
the Lagrangian function of problem 1 as

L(Ω, η) = Eπ(Ω) [g (S,Ω(S))] +
∑
c∈C

λcηc(1 − dmax)
2 (14)

where

g(S,Ω(S)) =
∑
c∈CCu

(
ωcQ

(c)
(c+D) − ηc(1 − dmax)T(c+D)0

)
+

∑
c∈CCd

(
ωcQ

(c)
0 − ηc(1 − dmax)T0(c+D)

)
+

∑
c∈CD

(
ωc(Q

(c)
(2c−1) +Q

(c)
0

)
−ηc(1 − dmax)

(
T(2c−1)(2c) + T0(2c)

))
. (15)

Therefore, problem 1 can be divided into the following two
subproblems:

Subproblem 1-1 : G(η) = min
Ω

L(Ω,η)

Subproblem 1-2 : G(η∗) = max
η

G(η).

where G(η) is the corresponding Lagrange dual function.
Subproblem 1-1 with given LMs η∗ can be solved by the

equivalent Bellman equation as follows:

θ + V
(
Q(z̀)

)
= min

Ω(Q(z̀))

⎧⎨⎩g
(
Q(z̀),Ω

(
Q(z̀)

))

+
∑

Q(ỳ)∈Q

Pr.
[
Q(ỳ)|Q(z̀),Ω

(
Q(z̀)

)]
V
(
Q(ỳ)

)⎫⎬⎭ ∀Q(z̀) ∈ Q

(16)

where V(Q(ỳ))=EH[V(H,Q(ỳ))|Q(ỳ)]=
∑

H∈H Pr.[H]V(H,

Q(ỳ)) is the conditional expectation of value function V (S)
taken over the channel state space H given the queue state Q(ỳ),
while g(Q(z̀),Ω(Q(z̀))) = EH[g(H,Q(z̀),Ω(H,Q(z̀)))|Q(z̀)]
and Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))] = EH[Pr.[Q(ỳ)|H,Q(z̀),Ω(H,
Q(z̀))]|Q(z̀)] are conditional expectations of cost function g(H,
Q(z̀),Ω(H,Q(z̀))) and transition probability Pr.[Q(ỳ)|H,
Q(z̀),Ω(H,Q(z̀))] taken over the channel state space H given
the queue state Q(z̀), respectively. Ω(Q(z̀)) = {Ω(H,Q(z̀))|
∀H} ⊆ Ax is the partitioned actions of a policy Ω as the
collection of |H| actions, where every action is mapped by
policy Ω from a system state with given QSI Q(z̀) and a
different realization of CSI H ∈ H.

As a remark, note that equivalent Bellman equation (16)
represents a series of fixed-point equations, where the numbers
of equations are determined by the possible values of value
functions V (Q(z̀)), which is |Q|. Therefore, we only need
to solve |Q| instead of |H| × |Q| fixed-point equations with
the reduced-state Bellman equation (16). To solve one such
fixed-point equation using value iteration, the right-hand side
(RHS) of (16) has to be minimized with given value functions
V (Q(ỳ)). For this purpose, the RHS of (16) can be written as

min
Ω(Q(z̀))

∑
H∈H

Pr.[H]f
(
H,Q(z̀),Ω

(
H,Q(z̀)

))
(17)

where

f
(
H,Q(z̀),Ω

(
H,Q(z̀)

))
= g

(
H,Q(z̀),Ω

(
H,Q(z̀)

))
+

∑
Q(ỳ)∈Q

Pr.
[
Q(ỳ)|H,Q(z̀),Ω

(
H,Q(z̀)

)]
V

(
Q(ỳ)

)
.

(18)

Since (17) is a decoupled objective function w.r.t. different CSI
realizations H with a given queue state Q(z̀), we need to obtain
|H| optimal actions to achieve the minimization objective in the
RHS of equivalent Bellman equation (16), where every optimal
action is w.r.t. a system state (H,Q(z̀)) with given Q(z̀) and
a different CSI realization H ∈ H that minimizes the value
of f(H,Q(z̀),Ω(H,Q(z̀))). This means that the control policy
obtained by solving (16) is based on the system state S instead
of only the queue state Q.

Since the brute-force value iteration algorithm in Part I faces
the curse-of-dimensionality problem, we will develop a solu-
tion with reduced complexity using linear value approximation
and online stochastic learning in the next section.

III. OPTIMAL SOLUTION BY APPROXIMATE MARKOV

DECISION PROCESS AND STOCHASTIC LEARNING

Here, we will first assume that the optimal LMs are given and
focus on the solution of subproblem 1-1 in Section V-A and B.
Then, in Section V-C, we use an online stochastic learning
algorithm with two timescales to determine the optimal LMs.

A. Linear Value-Function Approximation

Here, we use the linear value-function approximation method
to further reduce the state space.

First, we define the per-queue cost function as

g
(c)
i

(
S
(c)
i ,Ω(S)

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωcQ

(c)
2c−1−ηc(1−dmax)T(2c−1)(2c), if q(c)2c−1∈ΘD−u

ωcQ
(c)
c+D−ηc(1−dmax)T(c+D)0, if q(c)c+D∈ΘCu

ωcQ
(c)
0 −ηc(1 − dmax)T0(2c), if q(c)0 ∈ΘD−d

ωcQ
(c)
0 −ηc(1−dmax)T0(c+D), if q(c)0 ∈ΘCd.

(19)
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Thus, the overall cost function is given by g(S,Ω(S)) =∑
q
(c)
i ∈Θ g

(c)
i (S

(c)
i ,Ω(S)), according to (15). Moreover, de-

fine g
(c)
i (Q

(c)
i ,Ω(Q)) = EH[g(H

(c)
i , Q

(c)
i ,Ω(H,Q))|Q] as

the conditional per-queue cost function, which is equal to the
conditional expectation of the per-queue cost function g(S

(c)
i ,

Ω(S)) taken over the channel state space H given the queue
state Q.

Next, the linear approximation architecture for the value
function V (Q) is given by

V (Q) =V
({

Q
(c)
i |q(c)i ∈Θ

})
≈

∑
q
(c)
i ∈Θ

NQ∑
q=0

I
[
Q

(c)
i = q

]
Ṽ

(c)
i (q)

= ṼTF(Q) ∀Q ∈ Q (20)

where

Ṽ =
[
Ṽ

(c)
i |q(c)i ∈ Θ

]T
, Ṽ

(c)
i =

[
Ṽ

(c)
i (0), . . . , Ṽ (c)

i (NQ)
]

F(Q) =
[
I
[
Q

(c)
i = 0

]
, . . . , I

[
Q

(c)
i = NQ

]∣∣∣ q(c)i ∈ Θ
]T

.

Denote Ṽ
(c)
i (q), q ∈ {0, 1, . . . , NQ} as the per-queue value

function and V (Q), Q ∈ Q} the global value function in the
remainder of this paper. Therefore, Ṽ(c)

i and Ṽ are the per-

queue value function vectors for queue q
(c)
i and all the queues

in the network, respectively. Similarly, define the global value
function vector as

V = [V (Q)|Q ∈ Q]T .

As a remark, note that the number of global value functions is
|Q| = (NQ + 1)|Θ| in total, which grows exponentially with
the number of queues. On the other hand, the number of per-
queue value functions is (NQ + 1)× |Θ| in total, which grows
linearly with the number of queues. Therefore, we can represent
the (NQ + 1)|Θ| global value functions with (NQ + 1)× |Θ|
per-queue value functions by the linear approximation
architecture.

From (16), the key issue in deriving the optimal control
actions is to obtain the global value function vector V. With
linear value-function approximation, we only need to obtain the
per-queue value function vector Ṽ. To illustrate the structure of
our solution, we first assume that we could obtain the per-queue
value functions via some means (e.g., via offline value iteration)
and focus on deriving the optimal action under every system
state to minimize the value of f(H,Q(z̀),Ω(H,Q(z̀))). Define

Q
(c,ỳ)
i ∈ {1, . . . , NQ} as the local queue state of queue q

(c)
i

when the global queue state is Q(ỳ), i.e., Q(ỳ) = {Q(c,ỳ)
i |q(c)i ∈

Θ}. Therefore, according to (20), we have

V (Q(ỳ)) ≈
∑

q
(c)
i ∈Θ

Ṽ
(c)
i

(
Q

(c,ỳ)
i

)
. (21)

The optimal control action is given by the following subprob-
lem 1-1(a).

Subproblem 1-1(a): For given per-queue value functions Ṽ
and LMs η, find the optimal action Ω∗(H,Q(z̀)) for sys-
tem state {H,Q(z̀)} that minimizes the value of f(H,Q(z̀),
Ω(H,Q(z̀))), which can be written (22) and (23), shown at
the bottom of the page, where the post-action system state
Q

(c,z̀)
i (r

(c)
i , x) is defined by the following equation:

Q
(c,z̀)
i

(
r
(c)
i , x

)
= min

[
max

[
0, Q

(c,z̀)
i − r

(c)
i

]
+ x,NQ

]

Ω∗
(
H,Q(z̀)

)
= argmin

Ω

∑
q
(c)
i ∈Θ

g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

∑
Q(ỳ)∈Q

{
Pr.

[
Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))

]
V (Q(ỳ))

}

=argmin
Ω

∑
q
(c)
i ∈Θ

g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

∑
Q(ỳ)∈Q

⎧⎪⎨⎪⎩
∏

q
(c)
i ∈Θ

Pr.
[
Q

(c,ỳ)
i |H,Q(z̀),Ω(H,Q(z̀))

] ∑
q
(c)
i ∈Θ

Ṽ
(c)
i

(
Q

(c,ỳ)
i

)⎫⎪⎬⎪⎭
(22)

= argmin
Ω

∑
q
(c)
i ∈Θ

⎛⎜⎝g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

NQ∑
Q

(c,ỳ)
i =1

Pr.
[
Q

(c,ỳ)
i |H,Q(z̀),Ω(H,Q(z̀))

]
Ṽ

(c)
i

(
Q

(c,ỳ)
i

)⎞⎟⎠
= argmin

Ω

∑
q
(c)
i ∈Θu

⋃
ΘCd

(
g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

∑
n

fA(n)Ṽ
(c)
i

(
Q

(c,z̀)
i

(
r
(c)
i , n

)))
︸ ︷︷ ︸

B
Ω(H,Q(z̀))
i,c , q

(c)
i ∈Θu

⋃
ΘCd

(23)

+
∑

q
(c)
0 ∈ΘD−d

(
g
(c)
0

(
H

(c)
0 , Q

(c,z̀)
0 ,Ω(H,Q(z̀))

)
+ Ṽ

(c)
0

(
Q

(c,z̀)
0

(
r
(c)
0 , T(2c−1)0

)))
︸ ︷︷ ︸

B
Ω(H,Q(z̀))
0,c , q

(c)
0 ∈ΘD−d

(24)
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and when Q
(c,z̀)
i = 0 and, thus, r(c)i = 0, we define

Q
(c,z̀)
i (x) = min[x,NQ].

Step (22) follows from the linear value approximation structure
in (21). Step (24) holds because the arrival process for any
queue q

(c)
i ∈ Θu

⋃
ΘCd equals the arrival process for connec-

tion c, while the arrival process for any queue q(c)0 ∈ ΘD−d de-
pends on the departure process of the previous hop. Therefore,
(8) and (9) are used to replace the local queue state transition
probabilities on the left-hand side of the equality.

Remark 2 (Complexity of Solution Based on (24)): If we
directly derive the optimal action based on (24), for every action
x ∈ Ax, we need to calculate the bid term B

(x)
i,c for every q

(c)
i ∈

Θ and derive the summation of bids over all queues. Finally,
the action x∗ with the minimum sum bid value is selected. The
complexity of the aforementioned solution is O(|Ax|), which
grows exponentially with the number of subchannels.

To deal with the exponentially increasing action space with
the number of subchannels, we expand Ṽ

(c)
i (Q

(c,z̀)
i (r

(c)
i , x)) in

(24) using Taylor expansion as follows:

Ṽ
(c)
i

(
Q

(c,z̀)
i

(
r
(c)
i , x

))
= Ṽ

(c)
i

(
Q

(c,z̀)
i

)
+
(
x−r

(c)
i

)(
Ṽ

(c)
i

(
Q

(c,z̀)
i

))′

(25)

where(
Ṽ

(c)
i

(
Q

(c,z̀)
i

))′
≈ Ṽ

(c)
i

(
Q

(c,z̀)
i +1

)
/2 − Ṽ

(c)
i

(
Q

(c,z̀)
i −1

)
/2.

Therefore, (24) is equivalent to (26), shown at the bottom
of the page, where B

(m,u)
(i,c) is expressed in (27), shown at the

bottom of the page, and I1 = I((2c− 1, j) = ((2c− 1), (2c)))
and I2 = I((2c− 1, j) = ((2c− 1), 0)) with (2c− 1, j) ∈ Bu.

Recall that any uplink (respectively, downlink) subchannel
m ∈ {1, . . . , NF} can be allocated to at most one uplink (re-
spectively downlink) RRG. Moreover, note that the summation
index m in the first and second terms of (26) represent the index
of uplink and downlink subchannels, respectively. Therefore,
for every m in the first or second term, at most one x

(m)
u∗ = 1,

while all the other x(m)
u = 0. Now, subproblem 1-1(a) becomes

determining the largest B(m,u) for every uplink and downlink
subchannel m, where for any m = 1, . . . , NF

B(m,u) =

{∑
q
(c)
i ∈Θu

B
(m,u)
(i,c) , if u ∈ Uu

B
(m,u)
(0,c) , if u ∈ Ud.

(28)

Algorithm 1 (Solution to Subproblem 1-1(a)): Given per-
queue value functions Ṽ and LMs η, based on the observed
system state St at the beginning of time slot t, the optimal action
for subproblem 1-1(a) is determined as

x(m)
u

=

⎧⎪⎨⎪⎩
1, if u ∈ Uu, u = argmaxu′ B(m,u′) ∀u′ ∈ Uu

or u ∈ Ud, u = argmaxu′ B(m,u′) ∀u′ ∈ Ud

0, otherwise,

∀m = 1, . . . , NF. (29)

Remark 3 (Complexity of Algorithm 1): Every uplink queue
needs to compute

∑
(i,j)∈L(c)

i
|Uij | ×NF bids, while every

downlink queue needs to compute NF bids. Moreover, the
BS needs to find the minimum values of |Uu| ×NF uplink
B(m,u) values and of |Ud| ×NF downlink B(m,u) values.
Therefore, the overall computational complexity of Algorithm 1
is O((|Uu|+ |Ud|)×NF) and only grows linearly with the
number of subchannels.

Remark 4 (Structure of Algorithm 1): The subchannel-
allocation solution in (29) has a similar structure with the
MaxWeight algorithm based on the Lyapunov stability ap-
proach [13]. When the MaxWeight algorithm is applied to our
network model for D2D communications, the weight for each
link (i, j) at each time slot is defined as its differential backlog

Wij = Q
(c)
i,t −Q

(c)
j,t . Given the link weight, we can select an

RRG u∗, with the maximum sum over all its links of the product
of link weight Wij and instantaneous data rate R

H
(m,u∗)
ij

.

Compared with the MaxWeight algorithm, Algorithm 1 only
differs in that the weight of link (i, j) is determined by the
difference in the derivatives of per-queue value functions and
the LM instead of the difference in queue length.

Ω∗
(
H,Q(z̀)

)
= argmax

Ω

⎛⎜⎝ NF∑
m=1

∑
q
(c)
i ∈Θu

∑
(i,j)∈L(c)

i

∑
u∈Uij

x(m)
u B

(m,u)
(i,c) +

NF∑
m=1

∑
q
(c)
0 ∈Θd

∑
(0,j)∈L(c)

0

∑
u∈U0j

x(m)
u B

(m,u)
(0,c)

⎞⎟⎠ (26)

B
(m,u)
(i,c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
H

(m,u)
(2c−1)j

((
Ṽ

(c)
2c−1

(
Q

(c,z̀)
2c−1

))′
+ ηc(1 − dmax)I1 −

(
Ṽ

(c)
0

(
Q

(c,z̀)
0

))′
I2

)
, if q(c)2c−1 ∈ ΘD−u

R
H

(m,u)
(c+D)0

((
Ṽ

(c)
c+D

(
Q

(c,z̀)
c+D

))′
+ ηc(1 − dmax)

)
, if q(c)c+D ∈ ΘCu

R
H

(m,u)
0(2c)

((
Ṽ

(c)
0

(
Q

(c,z̀)
0

))′
+ ηc(1 − dmax)

)
, if q(c)0 ∈ ΘD−d

R
H

(m,u)
0(c+D)

((
Ṽ

(c)
0

(
Q

(c,z̀)
0

))′
+ ηc(1 − dmax)

)
, if q(c)0 ∈ ΘCd

(27)
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In the previous discussion, we assume that the per-queue
value function vector Ṽ is already known in subproblem 1-1(a)
and propose Algorithm 1 to derive the optimal control action
under every system state. However, we still have to determine
Ṽ, to solve subproblem 1-1. For this purpose, we let Ṽ (c)

i (0) =

0, ∀ q(c)i ∈ Θ. Therefore, according to the linear approximation
architecture, among the (NQ + 1)|Θ| global value functions,
there are NQ × |Θ| global value functions that equal to the

NQ × |Θ| per-queue value functions {Ṽ (c)
i (q)|∀ q

(c)
i ∈ Θ, q =

1, . . . , NQ}. We refer the system states of these global value
functions as representative states, and they share the same
characteristics that only one queue is nonempty while the queue
lengths of all the other queues are zero. The set of representative
states QR is defined as

QR =
{
Q

(q)
(i,c)| ∀ q

(c)
i ∈ Θ, q = 1, . . . , NQ

}
where Q(q)

(i,c) = {Q(c)
i = q,Q

(c′)
i′ = 0|q(c

′)
i′ ∈ Θ \ q(c)i } denotes

the global queue state with Q
(c)
i = q ∈ {1, . . . , NQ} for queue

q
(c)
i and Q

(c′)
i′ = 0 for all the other queues q(c

′)
i′ ∈ Θ \ q(c)i .

Therefore, given the solution of subproblem 1-1(a), we
still have to solve the following subproblem 1-1(b), to solve
subproblem 1-1.

Subproblem 1-1(b): Derive the per-queue value functions Ṽ
that satisfy the following equivalent Bellman equation under
every representative state Q

(q)
(i,c) ∈ QR:

θ + Ṽ
(c)
i (q) = min

Ω

{
g
(c)
i

(
q,Ω

(
Q

(q)
(i,c)

))
+

∑
q
(c)
i ∈Θ

NQ∑
Q

(c,ỳ)
i =1

Pr.
[
Q

(c,ỳ)
i |Q(q)

(i,c),Ω
(
Q

(q)
(i,c)

)]
Ṽ

(c)
i

(
Q

(c,ỳ)
i

)⎞⎟⎠
(30)

where (30) is derived by combining (23) with (16).
Remark 5 (Complexity Reduction Due to Linear Value-

Function Approximation): Due to linear value-function ap-
proximation, the following simplifications can be achieved in
solving problem 1.

• Only (NQ + 1)× |Θ| per-queue value functions need to
be stored instead of (NQ + 1)|Θ| global value functions.

• To determine the optimal control action in subproblem
1-1(a) with given per-queue value functions, Algorithm 1
with a simple structure as the MaxWeight algorithm can
be derived with the help of Taylor expansion.

• Only NQ × |Θ| fixed-point equations in (30) instead of
(NQ + 1)|Θ| fixed-point equations in (16) need to be
determined to derive the per-queue value functions.

B. Online Stochastic Learning

1) Solution to Problem 1: Instead of solving the equivalent
Bellman equation on the representative states (30) using offline
value iteration, we will estimate Ṽ using the online stochastic
learning algorithm here.

Fig. 1. Implementation flow of Algorithm 2 with online stochastic learning
(solution to problem 1).

Remark 6 (Motivation of Online Stochastic Learning): The
motivation of using an online stochastic learning algorithm to
update the per-queue value functions iteratively instead of using
an offline value iteration algorithm is that the former algorithm
can solve the Bellman equation iteratively without the need of
explicitly deriving the CSI probability distribution Pr.[H] to

calculate the “conditional cost” g
(c)
i (q,Ω(Q

(q)
(i,c))) and “con-

ditional transition probability” Pr.[Q
(c,ỳ)
i |Q(q)

(i,c),Ω(Q
(q)
(i,c))]

in (30).
The online iterative algorithm (Algorithm 2) is given by

the following, which simultaneously solves subproblem 1-1(b)
in deriving per-queue value functions and subproblem 1-2 in
deriving LMsη. Since Algorithm 2 embeds Algorithm 1 to solve
subproblem 1-1(a), it is the complete solution for problem 1.

Algorithm 2 (Solution to Problem 1): Fig. 1 illustrates the
implementation flow of the overall solution with detailed steps
as follows:

• Step 1 (Initialization): The per-queue value function
vector Ṽ0 and LM vector η0 are initialized. The subscript
denotes the index of time slot.

• Step 2 (Calculate Control Action): Based on the ob-
served system state St and the per-queue value functions
Ṽt at time slot t, the optimal control action x is calculated
using Algorithm 1 at the beginning of time slot t.

• Step 3 (Update Per-Queue Value Functions and LMs):
Based on the observed system state St and the optimal
action x, the instantaneous data rate and throughput of
every queue q

(c)
i and its associated links (i, j) ∈ L(c)

i are
known. Based on the aforementioned information, the
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per-queue value functions Ṽt and LMs ηt can be updated
at the end of time slot t to Ṽt+1 and ηt+1 using the
following update function:

Ṽ
(c)
i,t+1(q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 − εv

τ
(c)
i (q,t)

)
Ṽ

(c)
i,t (q) + εv

τ
(c)
i (q,t)

ΔṼ
(c)
i,t (q)

if Qt = Q
(q)
(i,c)

Ṽ
(c)
i,t (q)

if Qt �= Q
(q)
(i,c)

∀ q(c)i ∈ Θ, q = 1, . . . , NQ (31)

where εv
τ
(c)
i (q,t)

=
∑t

t′=0 I[Qt′ = Q
(q)
(i,c)], and ΔṼ

(c)
i,t (q)

is expressed in (32), shown at the bottom of the page.
Moreover, the LMs ηc,t of every connection c can be
updated at the end of time slot t to ηc,t+1 using the
following function:

ηc,t+1 = ηc,t + εηtΔηc,t (33)

where Δηc,t is expressed in (34), shown at the bottom of
the page. In the aforementioned equations, ({εvt }, {ε

η
t })

are the sequences of step sizes, which satisfy
∞∑
t=0

εvt = ∞, εvt > 0, lim
t→∞

εvt = 0

∞∑
t=0

εηt = ∞, εηt > 0, lim
t→∞

εηt = 0

∞∑
t=0

[
(εvt )

2 + (εηt )
2
]
< ∞, and lim

t→∞

εηt
εvt

= 0.

• Step 4 (Termination): If ‖Ṽt+1− Ṽt‖ < δv and ‖ηt+1−
ηt‖ < δη , stop; otherwise, set t := t+ 1 and go to step 2.

Remark 7 (Complexity and Implementation Consideration of
Algorithm 2): In Algorithm 2, we assume that it is centralized
implemented by the BS. The BS needs to store (NQ + 1)× |Θ|
per-queue value functions and C LMs. The computational
complexity of Algorithm 2 at each time slot is the sum of
two parts: 1) the computational complexity of determining the
optimal action according to Algorithm 1, which is O((Uu +
Ud)×NF), as given in Remark 3; and 2) the computational

complexity of updating the per-queue value functions. Note that
Ṽi,t(c)(q) is only updated to a different value at any time slot
t, when the global queue state Q̃t is the representative state
Q̃

(q)
i,c , according to (33). This implies that at most one per-queue

value function shall be updated to a different value with com-
putational complexity O(NQ + 1) at any time slot, while all
the other per-node value functions remain the same. Therefore,
the overall computational complexity of Algorithm 2 is at most
O((NQ + 1) + (|Uu|+ |Ud|)×NF) at each time slot, which
grows linearly with the buffer capacity and the number of RRGs
and subchannels. The memory requirement and computational
complexity of Algorithm 2 are greatly reduced compared to
those of the offline value iteration algorithm. Moreover, the
structure of Algorithm 2 enables distributed implementation,
where the per-queue value functions are distributively main-
tained at nodes that maintain the corresponding queues. The
optimal action in Algorithm 1 can be derived using an auction
mechanism, in which each src. DUE and uplink CUE sends
bid values to the BS for the queues that it maintains. In this
way, the computation task can be offloaded to the UEs from
the BS. However, larger signaling overhead need to be involved
compared to the centralized implementation.

2) Convergence Analysis: Here, we shall establish techni-
cal conditions for the almost-sure convergence of the online
stochastic learning algorithm (see Algorithm 2). Recall that
the purpose of Algorithm 2 is to iteratively derive the per-
queue value function vector Ṽ in subproblem 1-1(b) and LMs
η in subproblem 1-2 so that problem 1 can be solved. Given
η∗, subproblem 1-1 is an unconstrained MDP problem; hence,
learning algorithms in [14] apply to update Ṽ, which is done
in Algorithm 2. However, the correct η∗ needs to be derived.
We do this by a gradient ascent in the dual (i.e., Lagrange
multiplier) space in view of subproblem 1-2. Since we have two
different step size sequences {εvt }, {εηt } and {εηt } = o({εvt }),
the LM’s update is carried out simultaneously with the per-
queue value function’s update but over a slower timescale.
Here, we are using the formalism of two-timescale stochastic
approximation from [15]. During the per-queue value func-
tions’ update (timescale I), we have ηc,t+1 − ηc,t = O({εηt }) =
o({εvt }) ∀ c ∈ C, and hence, the LMs appear to be quasi-static

ΔṼ
(c)
i,t (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωcq + ηc(1 − dmax)min
[
q, r

(c)
i,t

]
+

∑
n fA(n)

(
Ṽ

(c)
i,t

(
q
(
r
(c)
i,t , n

))
− Ṽ

(c)
i,t (q(n))

)
, if q(c)i ∈ ΘCu

⋃
ΘCd

ωcq + ηc(1 − dmax)min[q, r(2c−1)(2c),t]

+
∑

n fA(n)
(
Ṽ

(c)
i,t

(
q
(
r
(c)
i,t , n

))
− Ṽ

(c)
i,t (q(n))

)
+ Ṽ

(c)
0,t

(
T(2c−1)0,t

)
, if q(c)i ∈ ΘD−u

ωcq + ηc(1 − dmax)min
[
q, r

(c)
0,t

]
+ Ṽ

(c)
0,t

(
q
(
r
(c)
0,t , 0

))
, if q(c)i ∈ ΘD−d

(32)

Δηc,t =

⎧⎪⎨⎪⎩
(1 − dmax)

(
λc(1 − dmax)− T(c+D)0

)
, if c ∈ CCu

(1 − dmax)
(
λc(1 − dmax)− T0(c+D)

)
, if c ∈ CCd

(1 − dmax)
(
λc(1 − dmax)− T(2c−1)(2c) − T0(2c)

)
, if c ∈ CD

(34)
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during the per-node value functions’ update in (31) and (32).
On the other hand, since the per-queue value functions will be
updated much faster than the LMs due to εηt /ε

v
t → 0, during

the LMs’ update in (33) and (34) (timescale II), the “primal”
minimization carried out by the learning algorithm for MDPs
in (31) and (32) is seen as having essentially equilibrated.
Therefore, we will give the convergence of per-queue value
function over timescale I and LMs over timescale II in Lemma 2
and Lemma 3, respectively.

Before Lemma 2 is given, we first give the relationship
between the global value function vector V and the per-queue
value function vector Ṽ in matrix form, for ease of notation, as
follows:

V = MṼ and Ṽ = M†V

where M ∈ R
|Q|×(NQ+1)|Θ| with the z̀th row (z̀ = 1, . . . , |Q|)

equals to FT (Q(z̀)). Therefore, the first equation aforemen-
tioned follows directly from (20). The second equation, on
the other hand, uses the matrix M† ∈ R

(NQ+1)|Θ|×|Q| to select
NQ|Θ| elements from V, which correspond to the representa-
tive states. Specifically, M† has only one element of 1 in each
row, while all the other elements equal 0, and the position of 1
in the (q + (id(i, c)− 1)(NQ + 1))th row (q ∈ {1, . . . , NQ}
and id(i, c) ∈ {1, . . . , |Θ|} is the index of queue q

(c)
i within

set Θ) corresponds to the position of the representative state
V (Q

(q)
i,c ) in the global queue state vector V. Moreover, the

position of 1 in the (1 +NQ × id(i, c))th row corresponds to
the position of global queue state with all queues being empty
V ({Q(c)

i = 0|q(c)i ∈ Θ}) in the global queue state vector V.
Now, the vector form of the equivalent Bellman equation (30)

under all the representative states can be written as

θe+ Ṽ∞(η) = M†T
(
η,MṼ∞(η)

)
(35)

where e is an (NQ + 1)|Θ| × 1 vector with all elements equal
to 1. The mapping T is defined as

T(η,V) = min
Ω

[g(η,Ω) +P(Ω)V]

where g(η,Ω) is the vector form of function g(Q,Ω(Q))
defined in (16), and P(Ω) is the matrix form of transition
probability Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))] defined in (16).

Lemma 1 (Convergence of Per-Queue Value Function Learn-
ing Over Timescale I): Denote

At−1 =
(
1 − εvt−1

)
I+M†P(Ωt)Mεt−1

Bt−1 =
(
1 − εvt−1

)
I+M†P(Ωt−1)Mεt−1

where Ωt is the unichain control policy at slot t, P(Ωt) is the
transition matrix under the unichain system control policy, and
I is the identity matrix. If for the entire sequence of control
policies {Ωt} there exists δβ > 0 and some positive integer β,
such that

[Aβ · · ·A1](k,Ì) ≥ δβ

[Bβ · · ·B1](k,Ì) ≥ δβ ∀ k (36)

where [·](k,Ì) denotes the element in the kth row and the Ìth
column(where Ì corresponds to the queue state Q(Ì) that all
queues areempty), and δt = O(εvt ), then the following state-
ments are true.

1) The update of the per-queue value function vector will
converge almost surely for any given initial parameter
vector Ṽ0 and LM vector η, i.e.,

lim
t→∞

Ṽt(η) = Ṽ∞(η).

2) The steady-state per-queue value function vector Ṽ∞
satisfies (35).

Proof: See Appendix A. �
Remark 8 (Interpretation of the Conditions in Lemma 2):

Note that At and Bt are related to an equivalent transition
matrix of the underlying Markov chain. Equation (36) simply
means that the system state SI , representing any system state
where all the queue lengths are zero, is accessible from all the
system states after some finite number of transition steps. This
is a very mild condition and is satisfied in most of the cases that
we are interested.

Lemma 2 (Convergence of LMs’ Update Over Timescale II):
The iteration on the vector of LMs η converges almost surely to
the set of maxima of G(η). Supposing that the LMs converge
to η∗, then η∗ satisfies the dropping probability constraints in
problem 1.

Proof: See Appendix B. �

IV. SIMULATION RESULTS

Here, we compare our proposed approximate MDP solution
with online stochastic learning (see Algorithm 2) to the ap-
proximate MDP solution with offline value iteration based on
the Bellman equation (30) and two other reference subchannel-
allocation algorithms. One is the CSI-only algorithm, in which
the RRG selection is only adaptive to CSI and a subchannel
is allocated to the RRG with the maximum sum over all its
link transmission rates at every time slot. The other is the
MaxWeight algorithm, which is adaptive to both CSI and QSI,
as discussed in Remark 4. The offline value iteration algorithm
can find the per-queue value functions and optimal policy
that satisfy the Bellman equation (30) and therefore provide
the performance upper bound. However, the CSI probability
distribution Pr.[H] needs to be derived, which is very hard
when there are more than two links in an RRG, as discussed
in Part I. The simulation parameter setting is the same with
that in Part I of this paper [1], except that the buffer size is
set to be NQ = 10 packets and there are NF = 10 independent
subchannels.

Fig. 2 shows the average weighted sum delay and the max-
imum dropping probability over all connections versus the
mean arrive rate λ for the simple network in Fig. 1 of Part I
[1], where the number of connections C = 3 (one D2D con-
nection, one cellular uplink connection, and one cellular down-
link connection). The dropping probability constraint is set to
dmax = 0.1. It can be observed that the performance of the
proposed approximate MDP solution with online learning is
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Fig. 2. Average weighted sum delay and the maximum dropping probability
over all connections versus the mean arrive rate λ with C = 3(D = Cu =
Cd = 1) and dmax = 0.1.

close to that of the approximate MDP solution using the value
iteration algorithm, where both solutions have lower average
delay than the two reference subchannel-allocation algorithms.
Although the dropping probability of the MaxWeight algorithm
is almost the same with both approximate MDP solutions
in the light traffic load regime, it grows significantly higher
than the approximate MDP solutions when λ increases beyond
4 packets/slot. This is because the approximate MDP solutions
will guarantee that the dropping probability is no larger than
the constraint dmax, if this can be achieved by any policy
under the given mean arrival rate λ. As a consequence, the
proposed approximate MDP approach with online learning
is an effective method to reduce the complexity and achieve
optimal performance (with regard to the offline value itera-
tion algorithm), while guaranteeing the dropping probability
constraint.

Fig. 3 shows the average weighted sum delay and the
maximum dropping probability over all connections versus
the number of connections C with λ = 1 packets/slot. The
dropping probability constraint is set to dmax = 0.3. Note that
the performance of the approximate MDP solution with value
iteration algorithm is not shown in Fig. 3. This is because the
aforementioned policy cannot be derived when the number of
connections becomes large, since there are some RRGs with
more than two links, whose CSI probability distributions are
hard to obtain. It is obvious that our proposed approximate
MDP solution with online learning algorithm performs better
in the average weighted sum delay and the maximum dropping
probability than the two other reference algorithms. Among the
three algorithms, the CSI-only algorithm performs the worst
since it does not take the QSI into account. The dropping
probability of the MaxWeight algorithm exceeds dmax = 0.3
with the increasing number of connections, while our proposed
algorithm can always keep it under the constraint. When the
connection number C = 30, our simulation results show that,
as compared to the MaxWeight algorithm, the average weighted
sum delay and the maximum dropping probability achieved by

Fig. 3. Average weighted sum delay and the maximum dropping probability
over all connections versus the number of connections C with λ = 1 pack-
ets/slot and dmax = 0.3. The number of connections is C = 3(D = Cu =
Cd = 1), C = 12(D = Cu = Cd = 4), C = 21(D = Cu = Cd = 7), and
C = 30(D = Cu = Cd = 10), respectively.

Fig. 4. Convergence property of the proposed online stochastic learning algo-
rithm and the brute-force offline value iteration algorithm with C = 3(D =
Cu = Cd = 1) and λ = 5 packets/slot.

our proposed approximate MDP-online learning algorithm are
decreased by 10% and 38%, respectively.

Fig. 4 shows the convergence property of the proposed
online stochastic learning algorithm and the brute-force offline
value iteration algorithm. We plot a portion of per-queue value
functions of the three connections versus the scheduling slot
index at a mean arrive rate λ = 5 packets/slot. It can be seen
that the online stochastic learning algorithm converges fast, and
after 1000 iterations, the values are close to the final converged
results. The average weighted sum delay corresponding to
the average per-queue value function at the 750th iteration is
smaller than the other two reference algorithms. Moreover, it
is clear that the value functions calculated online quickly ap-
proach the value functions calculated offline when the number
of iterations grows.
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V. CONCLUSION

In this pair of papers, we considered a delay-optimal
dynamic-mode-selection and resource-allocation algorithm un-
der dropping probability constraints for network-assisted D2D
communications with bursty traffic arrival, which is cast into
an infinite-horizon average-reward CMDP in the first part of
this work. In the second part of this work, we addressed the
issue of exponential memory requirement and computational
complexity by using linear value approximation techniques to
reduce the state space. Moreover, an online stochastic learning
algorithm with two timescales was adopted to update the value
functions and LMs based on the real-time observations of CSI
and QSI. The obtained solution has a simple structure with
a computational complexity of O((NQ + 1) + (|Uu|+ |Ud|)×
NF), which grows linearly with the buffer capacity and the
number of RRGs and subchannels. We proved that, under
some mild conditions, the proposed approximate MDP and on-
line stochastic learning solution converges almost surely (with
probability 1) to a global optimal solution. Simulation results
show that the proposed approach outperforms the conventional
CSI-only scheme and throughput-optimal scheme (MaxWeight
algorithm).

APPENDIX A
PROOF OF LEMMA 2

Since each representative state is updated comparably often
in the asynchronous learning algorithm, quoting the conclusion
in [17], the convergence property of the asynchronous update
and the synchronous update is the same. Therefore, we con-
sider the convergence of the related synchronous version for
simplicity in this proof. It is easy to see that the per-queue
value function vector Ṽt is bounded almost surely during the
iterations of the algorithm. In the following, we first introduce
and prove the following lemma on the convergence of learning
noise.

Lemma 3: Define

qt = M†
[
g(Ωt) +P(Ωt)MṼt −MṼt −T0(MṼt)e

]
where T0(V) = minΩ[gÌ(Ω) +PÌ(Ω)V] denotes the map-

ping on the queue state Q(Ì), where gÌ(Ω) is the vector form

of function g(Q(Ì),Ω(Q(Ì))), and PÌ(Ω) is the matrix form

of transition probability Pr.[Q(ỳ)|Q(Ì),Ω(Q(Ì))]. When the
number of iterations t ≥ j → ∞, the procedure of update can
be written as follows with probability 1:

Ṽt+1 = Ṽj +

t∑
i=j

εvi qi.

Proof: The synchronous update of per-queue value func-
tion vector can be written in the following vector form:

Ṽt+1=Ṽt+εviM
†
[
g(Ωt) + JtMṼt −MṼt −T0(MṼt)e

]
where the matrix Jt is the matrix form of queue state transition
probability Pr.[Q(ỳ)|Ht(z̀),Q

(z̀),Ω(Ht(z̀),Q
(z̀))] with given

Ht(z̀) in each row, which is the real-time observation of channel
state at time slot t(z̀) with queue state Qt(z̀) = Q(z̀). Define

Yt = M†
[
g(Ωt) + JtMṼt −MṼt −T0(MṼt)e

]
and δZt = qt −Yt and Zt =

∑t
i=j ε

v
i δZi. The online value

function estimation can be rewritten as

Ṽt+1=Ṽt+εviYt=Ṽt+εviqt−εvi δZt=Ṽj+

t∑
i=j

εvi qi−Zt.

(37)

Our proof of Lemma 4 can be divided into the following steps:

1) Step 1: Letting Ft = σ(Vm,m ≤ t), it is easy to see that
E[δZt|Ft−1] = 0. Thus, {δZt| ∀ t} is a Martingale differ-
ence sequence, and {Zt| ∀ t} is a Martingale sequence.
Moreover, Yt is an unbiased estimation of qt, and the
estimation noise is uncorrelated.

2) Step 2: According to the uncorrelated estimation error
from step 1, when j → ∞, we have

E
[
|Zt|2|Fj−1

]
=E

⎡⎣| t∑
i=j

εvi δZi|2|Fj−1

⎤⎦
=

t∑
i=j

E
[
|εvi δZi|2|Fj−1

]

= Z̃

t∑
i=j

(εvi )
2 → 0

where Z̃ ≥ maxj≤i≤t E[|δZi|2|Fj−1] is a bounded con-
stant vector, and the convergence of Z̃

∑t
i=j(ε

v
i )

2 is from
the definition of sequence {εvi }.

3) Step 3: From step 1, {δZt| ∀ t} is a Martingale se-
quence. Hence, according to the inequality of Martingale
sequence, we have

Pr.

[
sup
j≤i≤t

|Zi|≥λ
∣∣Fj−1

]
≤
E

[
|Zt|2|Fj−1

]
λ2

∀λ>0.

From the conclusion of step 2, we have

lim
j→∞

Pr.

[
sup
j≤i≤t

|Zi| ≥ λ|Fj−1

]
= 0 ∀λ > 0.

Hence, from (37), we almost surely have Ṽt+1 = Ṽj +∑t
i=j ε

v
i qi when j → ∞.

�
Moreover, the following lemma is about the limit of se-

quence {qt}.
Lemma 4: Supposing that the following two inequalities are

true for t = m,m+ 1, . . . ,m+ n:

g(Ωt)+P(Ωt)MṼt ≤ g(Ωt−1) +P(Ωt−1)MṼt (38)

g(Ωt−1)+P(Ωt−1)MṼt−1 ≤ g(Ωt)+P(Ωt)MṼt−1 (39)
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we then have

lim
t→+∞

qt = 0.

Proof: From (38) and (39), we have

qt =M†
[
g(Ωt) +P(Ωt)MṼt −MṼt − ωte

]
≤M†

[
g(Ωt−1) +P(Ωt−1)MṼt −MṼt − ωte

]
,

qt−1 =M†
[
g(Ωt−1) +P(Ωt−1)MṼt−1 −MṼt−1 − ωt−1e

]
≤M†

[
g(Ωt) +P(Ωt)MṼt−1 −MṼt−1 − ωt−1e

]
where ωt = T0(MṼt). According to Lemma 4, we have

Ṽt = Ṽt−1 + εvt−1qt−1.

Therefore

qt ≥
[
(1 − εvt−1)I+M†P(Ωt)Mεt−1

]
qt−1 + ωt−1e− ωte

=At−1qt−1 + ωt−1e− ωte,

qt ≤
[
(1 − εvt−1)I+M†P(Ωt−1)Mεt−1

]
qt−1 + ωt−1e− ωte

=Bt−1qt−1 + ωt−1e− ωte.

Thus, we have

At−1 · · ·At−βqt−β − C1e ≤ qt ≤ Bt−1 · · ·Bt−βqt−β − C1e

⇒ (1−δβ)(minqt−β)e≤qt+C1e≤(1−δβ)(maxqt−β)e

⇒
{
minqt + C1 ≥ (1 − δβ)minqt−β

maxqt + C1 ≤ (1 − δβ)maxqt−β

⇒ maxqt −minqt ≤ (1 − δβ)(maxqt−β −minqt−β)

⇒
∣∣qk

t

∣∣ ≤ maxqt −minqt ≤ C2(1 − δβ) ∀ k.

Then, we have

0 ≤
∣∣qk

m+n

∣∣ ≤ C3

�n/β�−1∏
i=0

(1 − δm+iβ) = 0 ∀ k (40)

where the first step is due to conditions on matrix sequence At

andBt; minqt andmaxqt denote the minimum and maximum
elements in qt, respectively; qk

t denotes the kth element of the
vector qt; |qk

t | ≤ maxqt −minqt is due to minqt ≤ 0; and
C1, C2, and C3 are constants. According to the property of
sequence {εvt }, we have

lim
t→+∞

�t/β�−1∏
i=0

(1 − εiβ) = 0.

In addition, noting that δt = O(εvt ), from (40), we have

lim
t→+∞

qk
t = 0 ∀ k.

Summarizing the aforementioned conclusions, we have

lim
t→+∞

qt = 0.

�
Therefore, (35) is straightforward when qt → 0. This com-

pletes the proof.

APPENDIX B
PROOF OF LEMMA 3

Due to the separation of timescale, the primal update of the
per-node value function converges to Ṽ∞(η) w.r.t. current LM
η [15]. By [18, Lemma 4.2], G(η) is a concave and continu-
ously differentiable, except at finitely many points where both
right and left derivatives exist. Since the subchannel-allocation
policy is discrete, we have Ω∗(η) = Ω∗(η +�η), i.e., ∇η =
(Ω∗(η +�η)− Ω∗(η))/�η = 0. Therefore, ∂G(ηt)/∂ηt is
expressed in the equation, shown at the bottom of the page,
where Ω∗(ηt) = argminΩG(ηt). Using the standard stochas-
tic approximation theorem [14], the dynamics of the LM update
equation in (33) can be represented by the following ordinary
differential equation (ODE), shown at the bottom of the page.
Therefore, we show that the aforementioned ODE can be ex-
pressed as η′

t = ∇G(ηt). As a result, the aforementioned ODE
will converge to ∇G(ηt) = 0, which corresponds to (33). This
completes the proof.

∂G(ηt)

∂ηt

=

⎧⎪⎨⎪⎩
EΩ∗(ηt)

[
(1 − dmax)

(
λc(1 − dmax)− T(c+D)0

)]
, if c ∈ CCu

EΩ∗(ηt)
[
(1 − dmax)

(
λc(1 − dmax)− T0(c+D)

)]
, if c ∈ CCd

EΩ∗(ηt)
[
(1 − dmax)

(
λc(1 − dmax)− T(2c−1)(2c) − T0(2c)

)]
, if c ∈ CD

η′
t =

⎧⎪⎨⎪⎩
EΩ∗(ηt)

[
(1 − dmax)

(
λc(1 − dmax)− T(c+D)0

)]
, if c ∈ CCu

EΩ∗(ηt)
[
(1 − dmax)

(
λc(1 − dmax)− T0(c+D)

)]
, if c ∈ CCd

EΩ∗(ηt)
[
(1 − dmax)

(
λc(1 − dmax)− T(2c−1)(2c) − T0(2c)

)]
, if c ∈ CD.
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