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In the recent years, there is a major architectural shift in the Internet infrastructure, where
network control is being gradually decoupled from the data plane. The Software-Defined Net-
working (SDN) paradigm is a prominent relevant technology that offers logically-centralized
control based on the global picture of the network environment. This strategy allows a better
understanding of the context environment while offers improved levels of adaptability and
flexibility towards diverse application requirements and resource constraints.

In another research front, opportunistic networks attempt to exploit even the slightest
communication opportunity in challenging network conditions, associated with both fixed
and mobile resources. For example, in disaster areas where a major part of the infrastructure
may not be in place, the mobile devices may bridge the communication gaps by adopting
opportunistic routing strategies.

Along these lines, we attempt to borrow ideas from the SDN paradigm and apply them
in such challenging environments, including investigating a logically-centralized networking
solution manifesting mobility prediction. In our case, a significant part of the network control
resides at centralized components in the infrastructure network that surrounds the mobile
devices. We present a reference Semi-Markov based mobility model and an opportunistic
routing protocol implementation demonstrating the potential of our solution.

Keywords: Software-Defined Networks; Opportunistic Networks; Infrastructure-supported
Mobile Communication; Mobility Prediction

1. Introduction

Internet is gradually being extended to areas that was not present before, includ-
ing those with challenging network conditions. Examples are the space missions,
disaster environments and places with limited population. Such deployments may
be characterized with intermittent network connectivity and/or other problem-
atic network conditions, such as erroneous communication channels. In the past,
opportunistic communication solutions have been proposed to exploit the scarce
resources in the most efficient way, by adopting store-carry-and forward commu-
nication strategies among the surrounding mobile devices. However, the mobile
devices that may be present in the area usually have limited resources, in terms
of available energy, processing power or memory. The complexity of this task in-
creases more, if we consider application, device and protocol diversity. The need to
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increase the available resources and utilize them in the best possible way, highlights
the requirement to exploit available fixed infrastructure as well; either those that
may be available or be added on-demand (e.g., through bringing communication
vans or balloons in a disaster area).

Since it is difficult to design communication protocols that work in every con-
dition, the research communities focus in particular context-sensitive solutions. A
next evolution step is to generalize based on the specialized results, handle and
hide the present heterogeneity using abstractions. A similar process happens in the
area of infrastructure networks, where Software-Defined Networks (SDN) and the
most prominent relevant proposal so far, OpenFlow [2], decouples network control
from the data plane. This introduces a common control space that works on top of
diverse and multi-vendor equipment, as long as the latter supports the same open
standards in terms of protocols and interfaces.

However, the common control space assumes common management decisions for
the deployed infrastructure that may be difficult to take in parts of the Internet
that are owned by multiple competing operators. So, SDNs work well and are very
efficient when they match a relevant economic demand, i.e., so far in medium- or
large-scale networks that belong to the same organization or industry. In other
words, logically-centralized control is a very efficient way to manage resources, as
long as everybody is happy with the direction it takes. This may not be an issue in
challenging wireless environments, since a single mobile operator or a centralized
authority may be present (e.g., after a disaster).

Here, we argue that in an opportunistic context the core ideas of SDNs are valid.
In this chapter, we propose an experimental networking solution as a first step
towards: (i) Decoupling network control functionality from data plane in the mo-
bile devices and integrate it in fixed infrastructure components; and (ii) Selecting,
deploying and evaluating alternative protocol and mobility forecasting solutions
using a common infrastructure with its associated design abstractions. The main
idea is to offload expensive operations from the mobile devices to the resource-
ful fixed resources and to maintain a global-picture for the network environment.
The latter enables better forecasting for the communication opportunities and har-
monized network control towards common performance goals in the system. For
example, in a disaster environment all available resources should be operating with
a common goal to increase the network lifetime as much as possible.

A main issue to tackle in opportunistic networks is the prediction of future con-
tacts, i.e., poor prediction means waste of available resources and communication
opportunities. Furthermore, a network designer should always consider the cost
of prediction, in terms of communication overhead, processing load and memory
utilization. Here, we suggest that maintaining a global-picture for the network en-
vironment improves the accuracy of predictions, since it allows significantly more
input data for the associated prediction mechanisms. The forecasting overhead
is being offloaded in the infrastructure nodes, so there is insignificant cost for
the mobile devices as well. Although the above vision is being demonstrated here
with a reference Semi-Markov mobility prediction model, we plan to generalize the
platform to support alternative prediction approaches in parallel, for the different
coexisting mobility patterns.

In figure 1, we compare the different approaches to control plane separation be-
tween the traditional SDNs and our proposed paradigm. In the former solutions, a
software controller responds to events from network devices (i.e., topology changes,
traffic statistics or arriving packets) with commands to network switches or routers
(i.e., manipulates rules, queries statistics or sends packets). In the studied frame-
work, an equivalent controller application collects statistics from mobile devices
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(a) Infrastructure Networks (b) Mobile Networks

Figure 1. Approaches to Control Plane Separation for infrastructure and mobile networks

regarding mobility behavior, traffic characteristics, application requirements and
resource availability. Based on this input, sophisticated decision mechanisms may
decide to install a new forwarding rule in the mobile devices or communicate par-
ticular forecasts to the nodes, e.g., probabilities to contact other nodes or the fixed
infrastructure. In this case, we do not have a complete separation between control
and data plane, rather than a different balance between them. The mobile nodes
may still take network control decisions, but using inputs from the fixed infras-
tructure for a better accuracy and resource utilization, i.e., communicated at times
there is a fixed infrastructure connection.

In the proposed platform, the fixed nodes residing around areas with poor or
intermittent connectivity are collectively building and, based on historical data,
training a stochastic model that predicts future contacts. Practically, each infras-
tructure node traces the coordinates of mobile devices passing by along with their
corresponding connectivity times. Such data are being communicated within the
platform and constitute valuable input for the mobility model, which produces
node-level (i.e., detect mobility patterns of certain nodes) or system-level esti-
mations (e.g., number of nodes at a certain area after some time). The mobiles
nodes may query the platform for information on their future contact opportuni-
ties through communicating with their neighboring fixed nodes. The latter responds
with potential suggestions, such as a probability value or coefficients of a known
distribution representing the inter-contact time PDF between the mobile devices,
classes of devices with common characteristics or Internet access nodes, depending
on the context.

So, the moving device can calculate the cost functions associated with poten-
tial tactics - from holding data further, to forwarding to another node and also
to which particular direction - and make a decision with respect the delivery time
of the data or, perhaps, the certainty to reach the destination within some re-
quired timeframe. It is obvious that storing the data in the source mobile node
until a new hotspot appears is a conservative strategy that misses communication
opportunities. Furthermore, 3G networks are often expensive and unavailable. In
experiments documented in [3], in places 3G is not available there is WiFi availabil-
ity roughly half of the time. In our experience, forwarding decisions can be taken
with a level of accuracy that can be occasionally high (when the scenario allows)
although communication and processing overhead could be low. Other approaches
to location-prediction using historical information are based on the limited con-
tact history of a single node (e.g., [4]), group contact-time information of a certain
number of users (e.g., based on their social ties [5]) or use offline network traces to
evaluate the accuracy of Markov or semi-Markov based approaches (e.g., [6], [7]).

In this chapter, we employ a semi-Markov model for the prediction of contact
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opportunities. Semi-Markov models [8] were introduced as stochastic tools with
capacity to accommodate a variety of applied probability models: they may provide
more generality to describe the semantics of complex models - which, in turn,
increases the complexity of analysis. However, the extra-added variables improve
the modeling expressiveness of real-life problems. We also note that the increased
complexity is assigned to the resource-capable fixed nodes, improving prediction
accuracy without damaging the sensitive performance of mobile, battery-powered
devices. It is documented (e.g., in [7], [9]) that Markov-based location predictors
perform very well in practice, but require more complex and expensive mobility
data for sophisticated forecasts such as the time and location of the next user
movement or duration of stay in an area.

Our approach is characterized by two main advantages: (i) the fixed infrastruc-
ture allows for a global view of the system and improved predictions of connectivity
opportunities; (ii) the mobile devices delegate resource-expensive operations to the
infrastructure nodes in order to exploit their capabilities in terms of energy avail-
ability, processing power and memory allocation. Therefore, the performance of
mobile devices is preserved without trading prediction accuracy and hence com-
munication efficiency. Decoupling (but also improving) the forecasting capability
from the routing strategy enables a number of new efficient protocols to be intro-
duced. Furthermore, the forecasting connectivity opportunities can be a basis for
an efficient energy-saving strategy also; the mobile devices could be switching off
their communication subsystems at times the probability to meet other nodes is
low.

To demonstrate the potential of our solution, we consider an urban scenario
where mobile users are interested into getting Internet access. Different hotspots
are scattered in a city center (i.e., around 60 km2 in Thessaloniki, Greece), covering
with Internet connectivity some percentage of that area (i.e., less than 40%). The
hotspots are deployed in real points of interest (central squares, museums and other
places attracting people) and are collectively building a communication model. The
mobile nodes can request information on neighboring nodes: how often or with what
probability they do contact the available hotspots. Such information is passed from
the closest hotspot to the mobile device. So, a moving user can easily make decisions
on whether a neighboring node is more suitable to forward its own data towards
the Internet.

This chapter is an extension of our prior work presented in [1]. Compared to the
latter, we consider the infrastructure supporting such estimations as important as
the proposed model and study both aspects in parallel. Here, we describe a first
architectural version of the discussed platform and its core features. Along with
an extended version of our Semi-Markov mobility prediction model (i.e., initially
appeared in [10]), we propose a reference opportunistic routing implementation
validating our main arguments. Our experimental results confirm the potential of
our solution.

The chapter is structured as follows. In Section 2 we review the state of the art
that is relevant to the present work. In Section 3 we describe a relevant scenario,
a first architectural description of the studied platform along with the proposed
semi-Markov stochastic model. In Section 4 we evaluate the above model in four
experimental scenarios. Finally, in Section 5 we conclude the chapter.

2. Related Works

Internet complexity has been increased rapidly since new communication
paradigms, other than Infrastructure - based networking, have been incorporated
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into the internetworking model (e.g., ad-hoc, mesh or space networking). In this
context, the network becomes also a storage device - not just a communication
vehicle. This new property of the Internet alone challenges all known models and
evaluation standards for internetworked systems. Furthermore, approaches such as
Delay - and Disruption - Tolerant Networks (DTNs) [11] undergo major standard-
ization efforts that target a unification perspective for the various pieces of the
global network jigsaw puzzle. An example work that brings closer different types
of networks (i.e., wireless and mobile) is [12], attempting to define a continuum
between the different networks. We note that protocols originally designed for a
homogeneous network environment are not expected to work optimally in such a
hybrid setting.

A number of approaches support mobile communication using the surrounding
infrastructure. In the area of VANETs, proposals either exploit infrastructure to
support car-to-car communication (e.g., through roadside access points) or the
opposite (e.g., [13]). Recent papers consider clouds as a dynamic infrastructure
that improves mobile communication through offloading resources from the mobile
users (e.g., [14]). DTN throw-boxes have been introduced as stationary, battery-
powered nodes, embedded with storage and processing capabilities, being able to
enhance the capacity of DTNs [15]. Mobile infostation networks use the infostation
nodes to support mobile communications for this specific context (e.g., to keep
information close to the mobile users [16]). Other proposals move a portion of the
mobile data traffic to WiFi networks, exploiting the significantly lower cost of WiFi
technology and existing backhaul infrastructure [17].

Our proposal, inspired from the Software-Defined Networking paradigm, focuses
on how the infrastructure can support mobile communication through taking over
the contact forecasting operations from the mobile devices. This allows for more
accurate but resource - efficient estimations. We attempt to offer much better envi-
ronmental conditions for the forecasting capabilities and leave the routing strategies
to the opportunistic network protocol. This allows both aspects to evolve in parallel,
allowing clearer evaluations as well, i.e., their interrelation makes difficult a justi-
fication for the potential performance gains or losses. In our understanding, this
is the first SDN-inspired opportunistic networking proposal, employing mobility
prediction. Other wireless SDN approaches cover aspects such as Software-defined
wireless mesh and sensor networks [18], [19], software-defined cellular networks [20]
or home networks [21]. Our solution does not depend to OpenFlow [2], although it
can inspire its future evolution, i.e., to support mobility prediction features.

Another important aspect in mobile communication is the study of the inter-
contact time distributions (e.g., [22]). The inter-contact time distribution is related
to the potential existing mobility patterns and allows for an estimation of the con-
tact opportunities. This essentially determines the strategy of network protocols
(e.g., the routing decisions). The inter-contact time distribution type may change
under certain conditions. For example, in [23] the distribution change is associ-
ated with the examined time-scale and in [24] with the geometry of the topology.
In our experience, there is a range of typical distributions that may match the
inter-contact time distributions for particular network settings. Theoretical models
ending up in analytical expressions (e.g., [24]) may cover the typical general mod-
els but are often inefficient in practice. Here, the proposed infrastructure supports
a number of typical distributions and performs curve-fitting whenever is possible
(for a certain time-period or set of nodes). Beyond that, an on-line estimation
of upcoming probability values is way more appropriate since our ultimate goal
is to exploit all opportunities to turn a temporarily-incapable to a soon-capable
communication system.
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Along these lines, we model user mobility with a semi-Markov process with het-
erogeneous properties, allowing for flexible definition of different distributions for
inter-contact times, under different conditions. Such conditions and other relevant
patterns are extensively explored and associated with practical constraints (e.g.,
resource availability). Other relevant approaches using semi-Markov processes are
[25, 26]. Both approaches model routing behavior rather than mobility patterns.
Other works attempting to predict node mobility using semi-Markov processes in
wireless environments are [27–29]. Another work but in a different scientific area
is [30] (i.e., mobility tracking for elderly people).

At this stage, we evaluate the proposed infrastructure and model in the context
of an urban scenario, where mobile devices require Internet connectivity even at
times they are not covered from deployed hotspots. For methodological reasons,
we focus on the particular environment and the study of next-place or WiFi con-
nectivity forecasts in order to devise strategies for extended and efficient Internet
access. In the near future, we plan to move on to more complicated scenarios, pre-
dicting device-to-device connectivity opportunities in heterogeneous deployments
(i.e., mixing networked vehicles with pocket switched networks).

In the literature, approaches to mobile connectivity forecasting have been pro-
posed in different contexts, such as resource reservation in cellular networks or
handoff planning (e.g., [31, 32]). The BreadCrumbs [33] proposal maintains a per-
sonalized mobility model on the user’s device that tracks Access Points (APs) using
RF fingerprinting and combines the predictions with an AP quality database to
produce connectivity forecasts. MobiSteer [34] uses specialized hardware (i.e., a
directional antenna) to detect connectivity opportunities and to maximize the du-
ration and quality of connectivity between a moving vehicle and stationary access
points. Song et al [35] studies the efficiency of different mobility prediction mod-
els in the context of improved bandwidth reservation and smoother handoffs for
VoIP communications. In this work, they assume a centralized collection of mo-
bility information. Regarding the algorithms used for next-place or WiFi connec-
tivity forecasts, they range from Markov approaches (e.g., second- or higher-order
Markov models [4, 33], Gauss-Markov models [36], semi-Markov [6, 10, 37] and hy-
brid Markov approaches [38]), raw and semantic trajectories (e.g., [39]) and models
predicting human mobility to solutions exploiting sociological aspects (e.g., [40]).

Compared to the related works, our SDN-inspired solution decouples network
control features (i.e., the mobility model aspects) from the routing protocol and
offloads them to the surrounding infrastructure (e.g., the prediction operations).
This allows a larger number of samples to be considered (i.e., due to the more
complete view) and more complicated calculations to be performed, improving
the forecasting accuracy in a resource friendly way for the mobile devices. The
semi-Markov model extends the modeling complexity through introducing extra
parameters, matching better the details of networking scenarios. For example, it
can relax the basic assumptions of Markov models that durations of states follow
geometric / exponential distributions and can represent non-homogeneous distri-
butions or heterogeneity in time for waiting times. Its hybrid properties can match
well the hybrid characteristics of the Internet (i.e., heterogeneity in many aspects,
including topologies mixing fixed with mobile nodes).
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Figure 2. The studied environment

3. Case Study and Modeling Considerations

3.1 Studied Environment

In this chapter, we consider a heterogeneous network scenario consisting of both
mobile and infrastructure nodes. Along these lines, we assume a communication
system that integrates deployed infrastructure (e.g., a network of hotspots) with
opportunistic networks, therefore allowing for additional communication opportu-
nities even for uncovered city areas. The infrastructure nodes have been delegated
the responsibility of tracking the position of mobile nodes as well as the potential
estimation of their future positions.

As we show in figure 2, the studied city scenario includes a number of hotspots
covering with connectivity only a percentage of the area (e.g., 30-40 %). There is a
wide-range of mobile device types moving around the hotspots. Each mobile node
may need to access the Internet or to interact with any other node. To address this
demand, a dynamic path should be established between the communicating nodes,
carrying the data to be transmitted. This is not trivial, since all nodes may be
constantly moving and all participating node positions are not known in advance.

In figure 3, we give an initial architectural version of the investigated Oppor-
tunistic SDN solution. We plan to further design and complete its implementation
in the near future. The main idea is as follows:

• A network monitoring system collects measurements regarding the mobility be-
havior of mobile nodes (e.g., locations, contact times and durations).

• Classifiers group users according their mobility behavior. Each user group can
be assigned a particular trained mobility model (e.g., the proposed semi-Markov
model).

• The coordination component is the ”heart” of our infrastructure and is respon-
sible to control all other components, evaluate and add or remove new mobility
models, corresponding user groups or classification algorithms.

• A management interface allows an administrator to parameterize the coordina-
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Figure 3. An initial architecture of the investigated infrastructure

tion component.

• The mobility behavior forecasting interface communicates the appropriate pre-
dictions to the mobile nodes requesting them.

• The monitoring system collects prediction accuracy information from the mobile
nodes, implementing a close-loop that assists the selection of the appropriate
classifier and mobility model each time.

Of course the above solution is associated with a number of research challenges
that are beyond the focus of this chapter. For example, privacy issues could be
addressed with an approach that periodically refreshes the device id’s assigned to
each user, at time-scales there is minor impact to the forecasting accuracy. After
the collection of the data, there is no use to keep the mobile users identity, since new
users will be classified to the previously detected mobility patterns. We consider
a similar solution and its associated trade-offs as a subject of a future work. The
issue of trust or other privacy matters (e.g., whether you can trust strangers to
forward your data) can be handled in the same way with most other solutions in
the area of DTNs (an example solution is [41]).

3.2 Semi-Markov Model and Basic Equations

In this subsection, we detail the proposed stochastic model and its basic equations
reflecting different aspects of users’ mobility behavior. The stationary nodes im-
plement collectively the model and communicate the output of the equations to
the interested mobile nodes. An efficient routing decision may require one or more
calculations, based on its own criteria. We present usage examples along with the
model description, in the context of our proposed infrastructure. We highlight that
all equations can be used as contact predictors for communication between the
mobile nodes as well.

We model the users’ mobility behavior using a Discrete - Time Semi - Markov
System (DTSMS). A semi-Markov chain is a generalized Markov model and can
be considered as a process whose successive state occupancies are governed by a
Markov chain (i.e., embedded Markov chain), although state duration is described
by a random double variable which associates with the present but also with the
next transition state. A relevant model discussion focused on theoretical aspects
can be found in [10].

At the beginning of our analysis, we assume a population of users moving around
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a city center (i.e., in this chapter we considered the city of Thessaloniki) and pass
through a number of scattered hotspots in real points of interests in the area
(e.g., central squares, museums etc). The users can be stratified into a set of areas
S = 1, 2, ..., N . We assume that a number of areas have network coverage (e.g.,
1 to K) while other areas do not (e.g., K to N). These areas are assumed to be
exclusive and exhaustive, so that each user is located at exactly one area at any
given time. The state of the system at any given time is described by the following
vector:

N(n) = [N1(n), N2(n), ...., NN (n)] (1)

The Ni(n) represents the expected number of users located at an area i, after
n time slots. We consider a closed system with constant total population of users
denoted with T . Also, we assume that individual transitions between states oc-
cur according to a homogeneous semi-Markov chain (i.e., embedded semi-Markov
chain). In this respect, let us denote by P the stochastic matrix whose (i, j)th
element equals to the probability of a user in the system which entered an area i
to make its next transition to area j. Thus, whenever a user enters area i selects
area j for its next transition, according to the probabilities pi,j .

A mobile node may request a specific probability value in the form of pi,j from
the infrastructure system. This expresses the probability of a node to reach an area
j after being at an area i, in the next transition. This value could be used from a
mobile node in order to check if there is a chance for a user to pass by area i and
reach area j straightaway. For example, the mobile node could perform a quick
check if two areas are adjacent.

In our model, the mobile user remains for sometime within area i, prior to enter-
ing area j. Holding times are described by the holding time mass function hi,j(n),
which equals to the probability that a user entered area i at its last transition holds
for n time slots in i before its next transition, given that node moves to area j.

The holding time mass function hi,j(n) could be used by a mobile node in order
to check the possibility of a direct transition from area i to area j at a given time.
Occasionally, the destination area may not matter, but instead, the transition is
important: for example, a transition from a non-covered to a network-covered area.
A node, therefore, at an isolated area may evaluate the cumulative probability to
move to any area with connectivity, independently of which area it is.

By the same token, we discuss the following variation of the holding time mass
function:

hi(n) =
∑

j=1,2,...N(j 6=i)

pi,jhi,j(n) (2)

The hi(n) function captures the probability of a mobile node at state i to make a
transition at time n (the particular destination area is irrelevant). Along the same
lines, we introduce the probabilities:

hconi (n) =
∑

j=1,2,...K

pi,jhi,j(n) (3)
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hdisci (n) =
∑

j=K,K+1,...N

pi,jhi,j(n) (4)

The functions hconi (n) and hdisci (n) capture the probabilities of a mobile node
to move from area i to any area with connectivity or not at time n, respectively.
For example, a forwarding decision could be made based on the possibility of the
forwarding node to carry data to an Internet access network.

We also detail equation >wi(n) which expresses the probability of a user who
made a transition to area i to reach the next area in longer than n time slots:

>wi(n) =

∞∑
m=n+1

N∑
k=1

pi,khi,k(m) (5)

The initial condition is >wi(0) = 1.
Similarly, variations like >wconi (n) and >wdisci (n) could be introduced.
The >wi equations can support the forwarding decisions of the opportunistic

routing protocol inline with data transmission deadlines, e.g., delay constraints for
real-time or other time-critical applications.

A main aspect of the proposed model is related to the interval transition prob-
abilities which correspond to the multistep transition probabilities of a Markov
process. So, let us define as qi,j(n) the probability of a user from area i to be at an
area j after n time slots, independently of the required intermediate state changes.
This metric allows multi-path contact predictions, i.e., captures the probability of
a node to be at an area after some time (or two mobile nodes to contact each other,
in a general setting), independently of the required steps.

The basic recursive equation for calculating the interval transition probabilities
is the following [42], [43]:

qi,j(n) = δi,j · >wi(n)

+

N∑
k=1

n∑
m=0

pi,khi,k(m)qk,j(n−m) (6)

The initial condition is qi,j(0) = δi,j , where δi,j is defined:

δi,j =

{
1 if i = j
0 elsewhere

(7)

Also, since our semi-Markov model allows for a distinction between the number
of time slots passed and the number of transitions occurred, a mobile node can
request separately the probability distribution of the number of areas that a user
has crossed starting from area i and ending at area j at time n. In this respect, we
define as φi,j(x/n) the probability of a user who has made a transition to area i to
be in area j after n time slots and having crossed x areas.

Using probabilistic arguments, it is proved (i.e., in [42], [44]) that the basic
recursive equation for calculating the above probabilities is as follows:
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φi,j(x/n) = δi,jδ(x) · >wi(n)

+
N∑
k=1

N∑
m=0

pi,khi,k(m)qk,j(x− 1/n−m) (8)

with initial condition φi,j(0/n) = δi,j · >wi(n).
The expected number of areas that a user passes by, starting from area i and

moving to area j after n time slots can be calculated by [42]:

di,j(n) =
gi,j(n)

qi,j(n)
(9)

where:

gi,j(n) =

N∑
k=1

n∑
m=0

pi,khi,k(m)[2gk,j(n−m)−

N∑
r=1

n−m∑
u=0

pk,rhk,r(u)gr,j(n−m− u) + δk,j · >wj(n−m)] (10)

Equations φi,j(x/n) and di,j(n) can be considered from routing decisions involv-
ing the number of steps required to reach an area. An example is to check the
distance in steps between a user and a particular area. This maybe translated to
more chances to reach a hotspot or even extra overhead to reach to the target area,
i.e., it depends on the context.

We define the entrance probabilities ei,j(n) as the probabilities of a user which
made a transition to area i to reach area j after n time slots.

According [42], [44] the entrance probabilities can be calculated from the follow-
ing equation:

ei,j(n) = δi,jδ(n) +

N∑
k=1

n∑
m=0

pi,khi,k(m)ek,j(n−m) (11)

with initial condition ei,j(0) = δi,j , where δ(n) is:

δ(n) =

{
1 if n = 0
0 elsewhere

(12)

Equation ei,j(n) is considering entrance of node at a particular area. This can
be used as a way to decouple contact duration with a hotspot from exact contact
time.
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Also, if we define as νi,j(x/n) the probability that a user will pass through area
j, on x occasions during an interval of length n, given that the user started at area
i, then we can derive the following result [42]:

νi,j(x/n) = δ(x)>wi(n) +
n∑

m=0

N∑
k=1,k 6=j

pi,khi,k(m)·

νk,j(x/n−m) +

n∑
m=0

pi,jhi,j(m)νj,j(x− 1/n−m) (13)

A usage example for the νi,j(x/n) equation follows. Taking into consideration the
number of times a user passes through an area (i.e., the value x), is useful for cases
we request some data through a forwarding node and expect that node to return.
We can check with the equation νi,j(x/n) the possibility of a node at a particular
area to leave the area and come back again (e.g., for x = 1).

For closed semi-Markov systems, such as the one we assume here, the expected
user population structure is calculated by the equation [43]:

Nj(n) =
N∑
i=1

Ni(0)qi,j(n) (14)

where Ni(0) is the initial population of users at an area i.
Using equation Nj(n), we can make estimations regarding the node density at

each area and at any given time. This result could be combined with the probabili-
ties of a node to be at some particular area, and exploit its forwarding opportunities
beyond the traditional restrictive models.

4. Evaluation

4.1 Evaluation Methodology

Here, we detail our evaluation methodology and the experimental scenarios we
carried out. We extracted a large area of the city center of Thessaloniki, Greece
from the OpenStreetMap website [45]. The area’s dimensions are 6.2km x 10.1km,
including 397 streets and 1884 landmarks. We selected twelve representative points
of interest, assuming they offer Internet connectivity as well. Their locations were
extracted from the same information source and selected based on their popularity
(e.g., the Aristotles Square, the railway station, the St. Sophia Church, well-known
museums etc). We conduct simulations with real parameters using the opportunis-
tic networks simulator theone [46]. A map screenshot that includes some of the
selected points of interest is shown in figure 4. The mobile users walk around the
city, following one of the identified streets each time and directing towards an area
based on a mobility pattern detailed in the corresponding scenario. The users stay
in each area from few minutes to hours and their walking speed ranges between 0.5
and 1.5 m/sec. Our next step is to use alternative mobility traces from the CRAW-
DAD database [47] in order to validate the general applicability of our proposal.
A real deployment is in our plans as well.
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Figure 4. The experimental scenario

We grouped our experiments into four distinct scenarios, focusing on different
aspects of our proposal. The first three scenarios demonstrate the efficiency of the
proposed semi-Markov model, assuming corresponding user mobility behavior in
the city center:

• A ”Home-to-work” scenario, where a mobile node walks occasionally between
home, work and the main city square. There is 33% probability of the user to be
in one of these three areas.

• A ”Walking around the city” scenario, where the mobile node occasionally selects
one of twelve different areas in the city center as the next visiting area, with equal
probability.

• A ”Going out” scenario, where the mobile node has a high probability (33%) to
be in the main square (assuming it as a meeting point) and an equal probability
for each of the other eleven areas.

For the above three scenarios, we show how the proposed equations can be used as
prediction mechanisms for a number of different mobility aspects and how different
mobility patterns can be detected and exploited by a communication protocol.

In the fourth scenario, we implement a particular example of a routing protocol
using the proposed infrastructure and model. In this scenario, mobile users walk
around the city according to one of the three example mobility patterns demon-
strated in the first three scenarios. Here, we ultimately target Internet access. The
twelve areas in the city are Internet access points (i.e., hotspots). The purpose of
each mobile user is to route data sooner and with minimum overhead to one of
these hotspots.

The routing decisions use the hi variations of equations, since the destination
area does not matter, as long as it is a hotspot. For simplicity, we assume one area
without Internet connection (i.e., area 13). Each mobile user looks up from the
infrastructure the hi calculated predictions assigned for the corresponding model.
The predictions are in the form of tabular data with the upcoming forecasts or
distribution parameters, in case of a successful curve fitting. The matching of mobile
users with the mobility models is handled by the infrastructure using a simple
heuristic algorithm (i.e., using predefined matching rules). The model matching
methodology is an important aspect in its own right; due to space limitations, we do
not extend this discussion here. Although the heuristic algorithm we used is rather
simple, the results are very promising. An improved version of the user classification
algorithm with an associated comparative analysis with relevant solutions (such as
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[38]) is a subject of a future work. A mobile node attempting to transmit data
follows a simple forwarding strategy, according to which the node either keeps
data further until a window of opportunity occurs or forwards it immediately in
case the neighboring mobile node has a higher hi value from the source mobile
node, at the given time. More details on the SemiMarkov protocol implementation
can be found in Pseudocode 1.

4.2 Evaluation Results

4.2.1 Scenario 1: ”Home-to-Work”

In figures 5, 6 we show the equations hi and hi,j , respectively. Both metrics reflect
the probabilities of a mobile node to move to the next area, at some particular
time slots. In the case of figure 6, the destination area does not matter, as long
as we have a state change. It takes some time (i.e., more than 50 secs) for the
mobile node to change state, a value that is a factor of the movement speed and
the distance between the three areas. In figure 5, we show the probability of a
mobile node to move to one of the three areas (i.e., home, work or main square),
when it is located at an area without connectivity (i.e., area 13). The three h
probabilities (i.e., h13,1, h13,3 and h13,9) have often similar values, something not
surprising given the experimental setup parameters. This behavior leads to reduced
communication overhead of the forecasting request interactions between mobile
nodes and infrastructure: an average value suffices.

The w metric (figure 7) reflects the probability of a user who made a transition to
an area, to reach to the next area after at least n time slots. In this case, there is a
very low probability for a state change, if the mobile node stays at a particular area
for more than 600 secs. The w13(n) value is indeed interesting, since it represents
the probability of a mobile node being at an area without connectivity, to move
to an area with connectivity in less than n minutes. In this example, there is an
insignificant chance of a connectivity time that exceeds 200 secs. Of course, this
result is guided by the experimental setup parameters.

Equation q, shown in figure 8, reflects the probability of a node being at an area
without connectivity to move to an area with connectivity at some given time, but
without considering the number of areas crossed. We see that after some time, i.e.,
200-300 secs, the probabilities to move to one of the three areas with connectivity,
tend to converge to fixed values. Curve q13,13(n) shows the probability of a mobile
node being at an area without Internet connectivity to visit an area covered by a
hotspot, stay for a while and then leave the hotspot again.

In figure 9, we trace the behavior of metric φi,j for this particular scenario.
In the same figure, we note that the number of areas crossed increases by time,
but is typically no more than 2-3 areas. Higher values are justified because of a
ping-pong movement between two areas. Metric φi,j is useful, in case a routing
decision incorporate the number of hops data should transverse. For example, a
node crossing a number of areas with connectivity, may appear more attractive
due to its increased connectivity opportunities. Of course, in case delay is a crucial
parameter, more areas crossed means also more resources used and more time to
reach to the destination.

4.2.2 Scenario 2: ”Walking Around the City”

Compared with scenario 1, the h values have a similar behavior (see figures 10,
11) because the transition probabilities of state changes in the two scenarios are
similar. The main difference lies in the number of states (i.e., 12 areas for scenario
two and 3 areas for scenario one). In figures 10, 11, we depict three states only, for
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clarity and comparison purposes (i.e., between the first three scenarios). We note
that the h values reflect changes between state 13 (i.e., area without connectivity)
and any other available state. This happens because we assume that available
hotspots do not have overlaps but instead have gaps between them. State changes
are associated with the parameters of our system (i.e., waiting time at each state).
In our case, this is a random value picked from a uniform distribution in the range
of [0, 120] seconds.

Of course, the topological properties of the system (i.e., locations and distances
between the hotspots) do matter and impact the state change probabilities between
the different areas within the same scenario. This is reflected on the w values (i.e.,
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Figure 10. Probability of a user to remain for time n within area i, prior to entering area j - hi,j(n)

figure 12) and the q values (i.e., figure 13). After some time, the different q values
converge to fixed values.

4.2.3 Scenario 3: ”Going out”

Through the h metrics (i.e., figures 14, 15), we see a notable difference compared
with the previous two scenarios. The h values for area 1 (the main square of the
city, the Aristotle Square) are significantly lower. In this scenario, state 1 has been
chosen with a probability 0.33. So, there is a high probability for a node to remain
at the main square (i.e., same destination state to the source state). This is a
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Figure 13. Probability of a user to leave area i and reach area j with multiple steps, after n time slots -
qi,j(n)

pattern that could be detected (i.e., hotspots that have a high probability to host
mobile users). The same is reflected in a number of other metrics. For example, the
w1(n), q13,1(n) values are significantly higher than other q, w values, respectively
(see figures 16, 17). In figure 18, we observe that, as time passes, a mobile user
may return back to the main square, but the number of areas crossed increases.

To summarize, the proposed model detects certain patterns regarding the spatial
behavior of the users. Some examples are:

• How probable is a state change between two particular states in a single step
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Figure 15. Probability of a user to remain for time n within area i, prior to entering any other area -
hi(n)

(i.e., hi,k values) or in many steps (i.e., qi,k values).

• What is the probability of a state transition from some given state to any other
target state (i.e., hi and wi values).

• Whether some states have a significantly higher probability to be reached (i.e.,
qi,k, or wi or h values).

• What is the number of areas that need to be crossed by a mobile user walking
across two predetermined areas (i.e., φi,j values).

In the following scenario, we present results from our sample protocol implemen-
tation in order to demonstrate the potential of the proposed model and infrastruc-
ture.

4.2.4 Scenario 4: The SemiMarkov Protocol

Here, we present indicative results from a comparative analysis between three
different routing protocols:

• The simple FirstContact protocol that forwards data to the first contacted node.
We use it as a reference, because our protocol is based on a similar implementa-
tion.

• The SemiMarkov protocol that uses hi type of equations and a simple model
matching technique for the mobile nodes, in order to forward data from the
source nodes to other nodes with higher chance to reach one available hotspot.

• The MaxProp protocol, as a representative opportunistic routing protocol. Cer-
tainly, this is a sophisticated protocol, having many of its mechanisms optimized
and well-tuned.
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We range the number of mobile nodes that follow the selected mobility pat-
terns and measure three representative metrics, namely, average time the data are
buffered (i.e., average buffertime), average latency for the data to reach to the
Internet and overhead ratio.

The SemiMarkov protocol performs significantly better in terms of average la-
tency compared with the two other protocols (see figure 20). Furthermore, it re-
quires slightly lower buffering capacity compared with the FirstContact and signif-
icantly lower compared with the MaxProp protocol (see figure 19). The overhead



August 22, 2018 18:16 From Parallel to Emergent Computing: Book Chapter Proposal ijpeds-
book-2018

20 Taylor & Francis and I.T. Consultant

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1  2  3  4  5

A
v
e

ra
g

e
 B

u
ff
e

rt
im

e

Flows

FirstContact
MaxProp

SemiMarkov

Figure 19. Average time the data are buffered
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Figure 20. Average latency for the data to reach to the Internet

ratio is comparable with that of the FirstContact protocol but significantly lower
than the one of the MaxProp protocol (see figure 21). The reduced latency and
overhead demonstrate that a gentle forwarding scheme that relies on accurate es-
timation of user mobility behavior is indeed possible, in a number of conditions.
This result is interesting, since it shows that sophisticated calculations may lead,
based on the context, to simple actions rather than sophisticated actions that may
make the protocol inefficient in terms of network overhead and delay.

Although our sample protocol uses fractions of the proposed model (i.e., hi type
of equations only) and is based on a protocol implementation that could be tuned
further in many aspects (e.g., using redundancy or other novel opportunistic rout-
ing techniques), the potential of our approach was clearly demonstrated.

5. Conclusions

In this chapter, we investigated an SDN-inspired communication paradigm where
infrastructure and opportunistic networks can efficiently interoperate. We argue
that:

• Opportunistic networks can bridge distant infrastructure networks (i.e., in areas
without connectivity) using sophisticated routing protocols capable of detecting
and exploiting user mobility patterns.

• Centralized infrastructure nodes can support opportunistic communication with
mechanisms that: (i) detect system - wide mobility patterns; and (ii) perform
resource - expensive estimation calculations for the benefit of the mobile devices.
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Figure 21. Overhead ratio

We introduced a semi-Markov model and detailed a number of equations suit-
able to predict different aspects of user mobility behavior, including detection of
mobility patterns. Through a reference protocol we have developed, we demon-
strated that routing does not require high latency, costly buffering and prohibitive
overhead. This work focuses on the infrastructure being able to support a variety
of network protocols exploiting communication opportunities using a number of
accurate user- and system-level forecasts. Our approach allows for more complete
and complex mobility models that would be difficult to integrate in the resource-
constrained mobile devices. A more sophisticated protocol contrasted experimen-
tally with the related solutions is in our short-term plans, together with a further
design and implementation of the fixed infrastructure side of the platform.
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Pseudocode 1 The SemiMarkov Protocol

’ This function is executed every time the mobile node
(e.g., node A) contacts any other node (e.g., node B)
function NewContact (node B):

’ Updates the local contact history of node A
UpdateContactHistory (node B)
if (B is an infrastructure node):

’ Node A communicates its local contact
history with the infrastructure
CommunicateContactHistory ()
’ Retrieves fresh predictors from the
infrastructure (can be tabular data with the
upcoming predicted values or distribution
parameters after curve fitting)
RetrieveHiConValues ()
’ Forwards the pending data to the Internet
ForwardDataToInternet ()

end if
if (B is a mobile node):

’ Retrieves the last time node B was
connected to the infrastructure
lasttimeBconnected = RetrieveLastTimeConnected
(node B)
’ Calculate how much time passed since
node B reached the infrastructure
timepassedforB=currenttime() - lasttimeBconnected
’ Calculate how much time passed since
node A reached the infrastructure
timepassedforA=currenttime() - lasttimeAconnected
’ Calculate the latest hicon values
for nodes A, B
hAcon = hicon (node A, timepassedforA)
hBcon = hicon (node B, timepassedforB)
if (hAcon>=hBcon):

’ Keep the pending data to node A
KeepData ()

else
’ Forward the pending data to node B
ForwardData (node B)

end if
end if

end function


