Leena Ali Ibrahim

Leena Ali Ibrahim
Verified
Leena verified their affiliation via an institutional email.
Verified
Leena verified their affiliation via an institutional email.
  • PhD
  • Professor (Assistant) at King Abdullah University of Science and Technology

About

35
Publications
6,897
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,627
Citations
Introduction
Current institution
King Abdullah University of Science and Technology
Current position
  • Professor (Assistant)
Additional affiliations
August 2021 - present
King Abdullah University of Science and Technology
Position
  • Professor (Assistant)
August 2021 - present
King Abdullah University of Science and Technology
Position
  • Professor (Assistant)
June 2017 - August 2021
Harvard Medical School
Position
  • PostDoc Position
Education
August 2008 - May 2016
University of Southern California
Field of study
  • Neuroscience

Publications

Publications (35)
Article
Full-text available
Background Key to neuronal cell polarization and maturation is proper cytoskeletal organization and function that endows the bipolar neuronal cell with mature dendrites, axons, and functional synapses. Ste20-like kinase (SLK) has been shown to have various cytoskeletal roles. SLK regulates the polarity of microtubules, and its deficiency in the dev...
Preprint
Full-text available
In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate fine neuronal subtypes are still limited. Here, we performed systematic analysis of single cell genomic data to identify e...
Preprint
Full-text available
Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their ‘volume transmission’ output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the sponta...
Preprint
Full-text available
Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their volume transmission output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontane...
Preprint
Full-text available
Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived c...
Article
Full-text available
Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interne...
Article
Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interne...
Article
Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interne...
Article
Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interne...
Article
Full-text available
2020, The Author(s), under exclusive licence to Springer Nature America, Inc. Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overco...
Article
Full-text available
Microglia play a key role in shaping the formation and refinement of the excitatory network of the brain. However, less is known about whether and how they organize the development of distinct inhibitory networks. We find that microglia are essential for the proper development of somatostatin-positive (SST⁺) cell synapses during the second postnata...
Article
Higher-order projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here we investigated the contribution of early thalamic inputs onto L1 interneurons for establishment of top-down connectivity in the prima...
Article
Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapse...
Preprint
Full-text available
Higher order feedback projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here, we investigated the contribution of early thalamic inputs onto L1 interneurons for the establishment of top-down inputs in t...
Chapter
The intrinsic ability of an animal to adapt its behavior and achieve reward is fundamental to survival. Reward-guided behaviors elicit distributed activity across the brain, recruiting cortical and subcortical brain structures such as the prefrontal cortex (PFC), striatum, ventral tegmental area (VTA), and others. Recent advances in techniques for...
Article
Full-text available
Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of...
Preprint
Full-text available
Somatostatin interneurons are the earliest born population of inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interneurons is...
Preprint
Full-text available
Recent success in identifying gene regulatory elements in the context of recombinant adeno-associated virus vectors have enabled cell type-restricted gene expression. However, within the cerebral cortex these tools are presently limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification...
Article
Full-text available
Elucidating axonal and dendritic projection patterns of individual neurons is a key for understanding the cytoarchitecture of neural circuits in the brain. This requires genetic approaches to achieve Golgi-like sparse labeling of desired types of neurons. Here, we explored a novel strategy of stochastic gene activation with regulated sparseness (ST...
Article
Full-text available
Elucidating axonal and dendritic projection patterns of individual neurons is a key for understanding the cytoarchitecture of neural circuits in the brain. This requires genetic approaches to achieve Golgi-like sparse labeling of desired types of neurons. Here, we explored a novel strategy of stochastic gene activation with regulated sparseness (ST...
Article
Cross-modality interaction in sensory perception is advantageous for animals' survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3, but not L4, excitatory neurons was s...
Article
Full-text available
During the development of periphery auditory circuitry, spiral ganglion neurons (SGNs) form a spatially precise pattern of innervation of cochlear hair cells (HCs), which is an essential structural foundation for central auditory processing. However, molecular mechanisms underlying the developmental formation of this precise innervation pattern rem...
Article
Full-text available
Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sou...
Article
Full-text available
Despite accounting for about 20% of all the layer 2/3 inhibitory interneurons, the vasoactive intestinal polypeptide (VIP) expressing neurons remain the least thoroughly studied of the major inhibitory subtypes. In recent studies, VIP neurons have been shown to be activated by a variety of cortico-cortical and neuromodulatory inputs, but their basi...
Article
Full-text available
Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (S...
Article
Full-text available
Neurons in thalamorecipient layers of sensory cortices integrate thalamocortical and intracortical inputs. Although we know that their functional properties can arise from the convergence of thalamic inputs, intracortical circuits could also be involved in thalamocortical transformations of sensory information. We silenced intracortical excitatory...
Article
Full-text available
During the development of periphery auditory circuits, spiral ganglion neurons (SGNs) extend their neurites to innervate cochlear hair cells (HCs) with their soma aggregated into a cluster spatially segregated from the cochlear sensory epithelium. The molecular mechanisms underlying this spatial patterning remain unclear. In this study, in situ hyb...
Article
Full-text available
Corticofugal projections from the primary auditory cortex (A1) have been shown to play a role in modulating subcortical processing. However, functional properties of the corticofugal neurons and their synaptic circuitry mechanisms remain unclear. In this study, we performed in vivo whole-cell recordings from layer 5 (L5) pyramidal neurons in the ra...
Article
Full-text available
Orientation selectivity (OS) in the visual cortex has been found to be invariant to increases in stimulus contrast, a finding that cannot be accounted for by the original, purely excitatory Hubel and Wiesel model. This property of OS may be important for preserving the quality of perceived stimulus across a range of stimulus intensity. The synaptic...

Network

Cited By