About
21
Publications
9,731
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,404
Citations
Introduction
Publications
Publications (21)
Saturated steam (>121 oC and >205 kPa) is widely used in the
medical sterilization process known as autoclaving. However, solar-driven steam generation at such high temperature and pressure
requires expensive optical concentrators. We demonstrate a passive solar thermal device mostly built from low-cost off-the-shelf
components capable of deliverin...
Heat at intermediate temperatures (120-220 °C) is in significant demand in both industrial and domestic sectors for applications such as water and space heating, steam generation, sterilization, and other industrial processes. Harnessing heat from solar energy at these temperatures, however, requires costly optical and mechanical components to conc...
Solar energy offers a promising renewable energy source; however, it is expensive to store electricity from photovoltaics (PV), the most widely deployed solar electricity technology. Solar thermal energy technologies can be paired with inexpensive thermal storage, but are more expensive overall. We have developed a solar receiver that combines PV a...
In any solar thermal application, such as solar space heating, solar hot water for domestic or industrial use, concentrating solar power, or solar air conditioning, a solar receiver converts incident sunlight into heat. In order to be efficient, the receiver must ideally absorb the entire solar spectrum while losing relatively little heat. Currentl...
Adoption of renewable energy technologies has accelerated rapidly in recent years due to growing energy demand and concerns over climate change. Among renewable energy sources, solar energy conversion systems are particularly promising due to the abundance of solar energy reaching Earth. Despite its abundance, the solar resource is dilute, so solar...
Concentrating solar power normally employs mechanical heat engines and is thus only used in large-scale power plants; however, it is compatible with inexpensive thermal storage, enabling electricity dispatchability. Concentrating solar thermoelectric generators (STEGs) have the advantage of replacing the mechanical power block with a solid-state he...
Metal nanoantennas supporting localized surface plasmon resonances have become an indispensable tool in bio(chemical) sensing and nanoscale imaging applications. The high plasmon-enhanced electric field intensity in the visible or near-IR range that enables the above applications may also cause local heating of nanoantennas. We present a design of...
This paper presents an efficient and robust methodology for modeling concentrated solar flux distributions. Compared to ray tracing methods, which provide high accuracy but can be computationally intensive, this approach makes a number of simplifying assumptions in order to reduce complexity by modeling incident and reflected flux as a series of si...
There is a wide spectrum of maturity for concentrating solar power (CSP) technologies, ranging from parabolic trough collector plants, which are a well-established commercial technology. CSP systems can store the thermal energy they collect inexpensively, which can be converted to electricity later, on demand. By using thermal storage, electricity...
We report on optical design and applications of hybrid meso-scale devices and
materials that combine optical and thermal management functionalities owing to
their tailored resonant interaction with light in visible and infrared
frequency bands. We outline a general approach to designing such materials, and
discuss two specific applications in detai...
We develop hybrid optoplasmonic architectures to tailor resonant energy transfer between trapped photons, plasmons, quantum emitters and elementary heat carriers for applications in near- and far-field emission manipulation, radiative cooling, imaging, and ultrasensitive detection.
We discuss radiative heat extraction and spectral shaping via engineering of the density of confined photon states in low-dimensional potential traps, including wells, wires, and dots. Applications include thermophotovoltaics, radiative cooling, energy up- and down-conversion.
We show via numerical simulations that the absorption and solar energy conversion efficiency of a thin-film photovoltaic (PV) cell can be significantly enhanced by embedding it into an optical cavity. A reflective hemi-ellipsoid with an aperture for sunlight placed over a tilted PV cell reflects unabsorbed photons back to the cell, allowing for mul...
A principal loss mechanism for solar receivers in solar-thermal systems is radiation from the absorbing surface. This loss can be reduced by using the concept of directional selectivity in which radiation is suppressed at angles larger than the incident angle of the sunlight striking the absorber. Directional selectivity can achieve efficiencies si...
A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat engine, is placed between a solar absorber and a heat sink. When the solar absorber is illuminated by sunlight, it heats up and t...
We present a conceptual design of a new thermo-photovoltaic solar power conversion system with directionally- and spectrally-selective properties that enables the Shockley-Queisser efficiency limit to be exceeded via thermal upconversion of below-bandgap photons.
Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. Properties and geometries of the devices are lumped into two parameters which are optimized to guide device design. The predicted effi...
A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assem...
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Pr...